
1

Solutions homework #2
Carlos Cotrini

October 27, 2017

Probabilistic foundations of artificial intelligence

2

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

B indep. I given F?

3

Principle of d-separation
● Given a set of observed variables, if there is no

active trail between two variables, then they are
independent.

B

A

C

D

B

A

C

D

B indep from C | A Unclear if B indep from C | A, D

4

1. Bayesian Networks: d-separation
● Recap on active trails. Case 1. (Mountain)

Observed
variable

Hidden
variable

Observed or
hidden
variable

Inactive!

5

1. Bayesian Networks: d-separation
● Recap on active trails. Case 2a. (Downhill)

Inactive!

6

1. Bayesian Networks: d-separation
● Recap on active trails. Case 2b. (Uphill)

Inactive!

7

1. Bayesian Networks: d-separation
● Recap on active trails. Case 3. (Valley)

Inactive!

trail

8

1. Bayesian Networks: d-separation
● Recap on active trails. Case 3.

Inactive!

trail

9

1. Bayesian Networks: d-separation
● Recap on active trails. Case 3.

Inactive!

trail

10

1. Bayesian Networks: d-separation
● Recap on active trails. Case 3.

Inactive!

trail

11

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

12

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

A indep. F?

13

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

A indep. F?

14

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

A indep. F?

15

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

A indep. F?

INCONCLUSIVE

16

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

A indep. G?

17

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

A indep. G?

18

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

A indep. G?

19

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

A indep. G?

YES!

20

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

B indep. I given F?

21

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

B indep. I given F?

22

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

B indep. I given F?

INCONCLUSIVE

23

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

D indep. J given G, H?

24

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

D indep. J given G, H?

25

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

D indep. J given G, H?

26

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

D indep. J given G, H?

YES!

27

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

I indep. B given H?

28

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

I indep. B given H?

YES!

29

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

D indep. J?

30

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

D indep. J?

INCONCLUSIVE

31

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

I indep. C given H, F?

32

1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

I indep. C given H, F?

INCONCLUSIVE

33

Be careful with the direction of the
arrows!

B

A

C

D

B indep from C ?

34

Be careful with the direction of the
arrows!

B

A

C

D

A indep from D ?

35

2. Variable elimination
● Compute

P(J = j)

A
B

C

D

F

E

G

H

I

J

36

2. Variable elimination
● Compute

P(J = j)

A
B

C

D

F

E

G

H

I

J

37

2. Variable elimination
● Compute

P(J = j)

A
B

C

D

F

E

G

H

I

J

38

2. Variable elimination
● Compute

P(J = j)

A
B

C

D

F

E

G

H

I

J

39

2. Variable elimination
● Compute

P(J = j)

A
B

C

D

F

E

G

H

I

J

40

2. Variable elimination
● Compute

P(J = j)

A
B

C

D

F

E

G

H

I

J

41

2. Variable elimination
● Compute

P(J = j)

A
B

C

D

F

E

G

H

I

J

1

3. An algorithm for d-separation
● Given a Bayesian Network, a variable X, and a

set of variables E with observed values e,
compute all variables Z that are indep. from X
given E.

2

3. Algorithm for d-separation

W

S

U

X

I

A

P

Q

E
B

R

K

XXXX

3

3. Algorithm for d-separation

W

S

U

X

I

A

P

Q

E
B

R

K

XXXX

D-reachable: if it can be reached with an
active trail from X

d-reachable

4

3. Algorithm for d-separation

W

S

U

X

I

A

P

Q

E
B

R

K

XXXX

5

3. Algorithm for d-separation

W

S

U

X

I

A

P

Q

E
B

R

K

XXXX

6

3. Algorithm for d-separation

Key insight: Subtrails of active trails are also
active!

7

3. Algorithm for d-separation

Key insight: Subtrails of active trails are also
active!

Compute d-reachable variables with a depth-first
(or breadth-first) search.

8

3. Algorithm for d-separation

W

S

U

Y

I

A

P

Q

E
B

R

K
toVisit = [X]

X

d-reachable = {}

9

3. Algorithm for d-separation

W

S

U

Y

I

A

P

Q

E
B

R

K
toVisit = []

X

d-reachable = {X}

10

3. Algorithm for d-separation

W

S

U

Y

I

A

P

Q

E
B

R

K
toVisit = [A]

X

d-reachable = {X}

11

3. Algorithm for d-separation

W

S

U

Y

I

A

P

Q

E
B

R

K
toVisit = [S, A]

X

d-reachable = {X}

12

3. Algorithm for d-separation

W

S

U

Y

I

A

P

Q

E
B

R

K
toVisit = [I, S, A]

X

d-reachable = {X}

13

3. Algorithm for d-separation

W

S

U

Y

I

A

P

Q

E
B

R

K
toVisit = [S, A]

YX

d-reachable = {X}

14

3. Algorithm for d-separation

W

S

U

Y

I

A

P

Q

E
B

R

K
toVisit = [S, A]

YX

d-reachable = {X}

15

3. Algorithm for d-separation

W

S

U

I

A

P

Q

B

R

K
toVisit = [A]

Y

E

YX

d-reachable = {X, S}

16

3. Algorithm for d-separation

W

S

U

I

A

P

Q

B

R

K
toVisit = [W, A]

Y

E

YX

d-reachable = {X, S}

17

3. Algorithm for d-separation

W

S

U

I

A

P

Q

B

R

K
toVisit = [B, W, A]

Y

E

YX

d-reachable = {X, S}

18

3. Algorithm for d-separation

W

S

U

I

A

P

Q

B

R

K
toVisit = [U, B, W, A]

Y

E

YX

d-reachable = {X, S}

19

3. Algorithm for d-separation

W

S

U

I

A

P

Q

B

R

K
toVisit = [W, B, A]

E

YYX

d-reachable = {X, S, U}

20

3. Algorithm for d-separation

W

S

U

I

A

P

Q

B

R

K
toVisit = [B, A]

E

YYX

d-reachable = {X, S, U}

21

3. Algorithm for d-separation

W

S

U

I

A

P

Q

B

R

K
toVisit = [B, A]

E

YYX

d-reachable = {X, S, U}

22

3. Algorithm for d-separation

W

S

U

I

A

P

Q

B

R

K
toVisit = [A]

E

YYX

d-reachable = {X, S, U}

23

3. Algorithm for d-separation

W

S

U

I

A

P

Q

B

R

K
toVisit = [R, A]

E

YYX

d-reachable = {X, S, U}

24

3. Algorithm for d-separation

W

S

U

I

A

P

Q

B

R

K
toVisit = [A]

E

YYX

d-reachable = {X, S, U, R}

25

3. Algorithm for d-separation

W

S

U

E

I

A

P

Q

B

R

K
toVisit = []

E

YX

d-reachable = {X, S, U, R, A}

26

3. Algorithm for d-separation

W

S

U

E

I

A

P

Q

B

R

K
toVisit = []

E

YX

d-reachable = {X, S, U, R, A}

27

3. Algorithm for d-separation

W

S

U

E

I

A

P

Q

B

R

K
toVisit = [K]

E

YX

d-reachable = {X, S, U, R, A}

28

3. Algorithm for d-separation

W

S

U

E

I

A

P

Q

B

R

K
toVisit = []

E

YX

d-reachable = {X, S, U, R, A, K}

29

3. Algorithm for d-separation

def get_reachable(X, E):
toVisit = [X], visited = {}

while toVisit != []:
V = toVisit.pop()

“visit V”

add V to visited

for Y an unvisited neighbor of V:
if …. then push Y

Loop’s invariant: Z is in toVisit iff there is an active trail
from X to Z

30

3. Algorithm for d-separation

def get_reachable(X, E):
toVisit = [X], visited = {}, reachable = {}

while toVisit != []:
V = toVisit.pop()

if V is not obs then add V to reachable

add V to visited

for Y an unvisited neighbor of V:
if …. then push Y

Loop’s invariant: Z is in toVisit iff there is an active trail
from X to Z

31

What neighbors to append?
● Let V be the node currently visited and Y be an

unvisited neighbor.
● By our invariant, there is an active trail t from X

to V.
● What we need to decide if t.append(Y) active...

32

What neighbors to append?
● Let V be the node currently visited and Y be an

unvisited neighbor.
● By our invariant, there is an active trail t from X

to V.
● What we need to decide if t.append(Y) active...

– V - -> Y or V <- - Y?

33

What neighbors to append?
● Let V be the node currently visited and Y be an

unvisited neighbor.
● By our invariant, there is an active trail t from X

to V.
● What we need to decide if t.append(Y) active...

– V - -> Y or V <- - Y?

– Is V or any of its descendants observed?

34

What neighbors to append?
● Let V be the node currently visited and Y be an

unvisited neighbor.
● By our invariant, there is an active trail t from X

to V.
● What we need to decide if t.append(Y) active...

– V - -> Y or V <- - Y?

– Is V or any of its descendants observed?

– W - -> V or W <- - V? (W is V’s predecesor in t)

35

What neighbors to append?
● Let V be the node currently visited and Y be an

unvisited neighbor.
● By our invariant, there is an active trail t from X

to V.
● What we need to decide if t.append(Y) active...

– V - -> Y or V <- - Y?

Easy to check

– Is V or any of its descendants observed?

– W - -> V or W <- - V? (W is V’s predecesor in t)

36

What neighbors to append?
● Let V be the node currently visited and Y be an

unvisited neighbor.
● By our invariant, there is an active trail t from X

to V.
● What we need to decide if t.append(Y) active...

– V - -> Y or V <- - Y?

Easy to check

– Is V or any of its descendants observed?

Compute in advance the ancestors of all
observed variables

– W - -> V or W <- - V? (W is V’s predecesor in t)

37

What neighbors to append?
● Let V be the node currently visited and Y be an

unvisited neighbor.
● By our invariant, there is an active trail t from X

to V.
● What we need to decide if t.append(Y) active...

– V - -> Y or V <- - Y?

Easy to check

– Is V or any of its descendants observed?

Compute in advance the ancestors of all
observed variables

– W - -> V or W <- - V? (W is V’s predecesor in t)

Keep track how you reached V

38

3. Algorithm for d-separation

def get_reachable(X, E):
toVisit = [X], visited = {}, reachable = {}

while toVisit != []:
V = toVisit.pop()

if V is not obs then add V to reachable

add V to visited

for Y an unvisited neighbor of V:
if …. then push Y

Loop’s invariant: Z is in toVisit iff there is an active trail
from X to Z

39

3. Algorithm for d-separation

def get_reachable(X, E):
toVisit = [X], visited = {}, reachable = {}

ancestors_E = computeAncestors(E)

while toVisit != []:
V = toVisit.pop()

if V is not obs then add V to reachable

add V to visited

for Y an unvisited neighbor of V:
if …. then push Y

Loop’s invariant: Z is in toVisit iff there is an active trail
from X to Z

40

3. Algorithm for d-separation

def get_reachable(X, E):
toVisit = [(<--,X)], visited = {}, reachable = {}

ancestors_E = computeAncestors(E)

while toVisit != []:
(dir, V) = toVisit.pop()

if V is not obs then add V to reachable

add V to visited

for Y an unvisited neighbor of V:
if …. then push Y

Loop’s invariant: Z is in toVisit iff there is an active trail
from X to Z

41

for Y an unvisited neighbor of V:
● If dir == <-- :

● If dir == --> :

42

for Y an unvisited neighbor of V:
● If dir == <-- :

–

● If dir == --> :
– If V --> Y:

●

– If V <-- Y:
●

43

for Y an unvisited neighbor of V:
● If dir == <-- :

– If V is not observed, then push (dir’, Y)

● If dir == --> :
– If V --> Y:

● If V is not observed, then push (-->, Y)

– If V <-- Y:
● If V is in ancestors_E, then push (<--, Y)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 1 (1)
	Slide 2 (1)
	Slide 3 (1)
	Slide 4 (1)
	Slide 5 (1)
	Slide 6 (1)
	Slide 7 (1)
	Slide 8 (1)
	Slide 9 (1)
	Slide 10 (1)
	Slide 11 (1)
	Slide 12 (1)
	Slide 13 (1)
	Slide 14 (1)
	Slide 15 (1)
	Slide 16 (1)
	Slide 17 (1)
	Slide 18 (1)
	Slide 19 (1)
	Slide 20 (1)
	Slide 21 (1)
	Slide 22 (1)
	Slide 23 (1)
	Slide 24 (1)
	Slide 25 (1)
	Slide 26 (1)
	Slide 27 (1)
	Slide 28 (1)
	Slide 29 (1)
	Slide 30 (1)
	Slide 31 (1)
	Slide 32 (1)
	Slide 33 (1)
	Slide 34 (1)
	Slide 35 (1)
	Slide 36 (1)
	Slide 37 (1)
	Slide 38 (1)
	Slide 39 (1)
	Slide 40 (1)
	Slide 41 (1)
	Slide 42
	Slide 43

