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Solutions homework #2
Carlos Cotrini

October 27, 2017

Probabilistic foundations of artificial intelligence
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1. Bayesian Networks: d-separation
● Solutions task 1
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Principle of d-separation
● Given a set of observed variables, if there is no 

active trail between two variables, then they are 
independent.

B
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B indep from C | A Unclear if B indep from C | A, D
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1. Bayesian Networks: d-separation
● Recap on active trails. Case 1. (Mountain)

Observed 
variable

Hidden 
variable

Observed or
hidden 
variable

Inactive!
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1. Bayesian Networks: d-separation
● Recap on active trails. Case 2a. (Downhill)

Inactive!
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1. Bayesian Networks: d-separation
● Recap on active trails. Case 2b. (Uphill)

Inactive!



7

1. Bayesian Networks: d-separation
● Recap on active trails. Case 3. (Valley)

Inactive!

trail
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1. Bayesian Networks: d-separation
● Recap on active trails. Case 3.
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1. Bayesian Networks: d-separation
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1. Bayesian Networks: d-separation
● Recap on active trails. Case 3.

Inactive!

trail
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1. Bayesian Networks: d-separation
● Solutions task 1
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1. Bayesian Networks: d-separation
● Solutions task 1
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1. Bayesian Networks: d-separation
● Solutions task 1
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1. Bayesian Networks: d-separation
● Solutions task 1
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A indep. G?

YES!
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1. Bayesian Networks: d-separation
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1. Bayesian Networks: d-separation
● Solutions task 1
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1. Bayesian Networks: d-separation
● Solutions task 1
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1. Bayesian Networks: d-separation
● Solutions task 1
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1. Bayesian Networks: d-separation
● Solutions task 1
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I indep. B given H?

YES!
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1. Bayesian Networks: d-separation
● Solutions task 1
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1. Bayesian Networks: d-separation
● Solutions task 1
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1. Bayesian Networks: d-separation
● Solutions task 1

A

B

C

D

F

E

G

H

I

J

I indep. C given H, F?



32

1. Bayesian Networks: d-separation
● Solutions task 1
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Be careful with the direction of the 
arrows!

B
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C

D

B indep from C ?
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Be careful with the direction of the 
arrows!
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A indep from D ?
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2. Variable elimination
● Compute

P(J = j)
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2. Variable elimination
● Compute

P(J = j)
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3. An algorithm for d-separation
● Given a Bayesian Network, a variable X, and a 

set of variables E with observed values e, 
compute all variables Z that are indep. from X 
given E.
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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D-reachable: if it can be reached with an 
active trail from X

d-reachable
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3. Algorithm for d-separation

Key insight: Subtrails of active trails are also 
active!
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3. Algorithm for d-separation

Key insight: Subtrails of active trails are also 
active!

Compute d-reachable variables with a depth-first 
(or breadth-first) search.
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation
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3. Algorithm for d-separation

def get_reachable(X, E):
toVisit = [X], visited = {}

while toVisit != []:
V = toVisit.pop()

“visit V”

add V to visited

for Y an unvisited neighbor of V:
if …. then push Y

Loop’s invariant: Z is in toVisit iff there is an active trail 
from X to Z
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3. Algorithm for d-separation

def get_reachable(X, E):
toVisit = [X], visited = {}, reachable = {}

while toVisit != []:
V = toVisit.pop()

if V is not obs then add V to reachable

add V to visited

for Y an unvisited neighbor of V:
if …. then push Y

Loop’s invariant: Z is in toVisit iff there is an active trail 
from X to Z
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What neighbors to append?
● Let V be the node currently visited and Y be an 

unvisited neighbor.
● By our invariant, there is an active trail t from X 

to V.
● What we need to decide if t.append(Y) active...
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What neighbors to append?
● Let V be the node currently visited and Y be an 

unvisited neighbor.
● By our invariant, there is an active trail t from X 

to V.
● What we need to decide if t.append(Y) active...

– V - -> Y or V <- - Y?
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What neighbors to append?
● Let V be the node currently visited and Y be an 

unvisited neighbor.
● By our invariant, there is an active trail t from X 

to V.
● What we need to decide if t.append(Y) active...

– V - -> Y or V <- - Y?

– Is V or any of its descendants observed?
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What neighbors to append?
● Let V be the node currently visited and Y be an 

unvisited neighbor.
● By our invariant, there is an active trail t from X 

to V.
● What we need to decide if t.append(Y) active...

– V - -> Y or V <- - Y?

– Is V or any of its descendants observed?

– W - -> V or W <- - V? (W is V’s predecesor in t)
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What neighbors to append?
● Let V be the node currently visited and Y be an 

unvisited neighbor.
● By our invariant, there is an active trail t from X 

to V.
● What we need to decide if t.append(Y) active...

– V - -> Y or V <- - Y?

Easy to check

– Is V or any of its descendants observed?

– W - -> V or W <- - V? (W is V’s predecesor in t)
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What neighbors to append?
● Let V be the node currently visited and Y be an 

unvisited neighbor.
● By our invariant, there is an active trail t from X 

to V.
● What we need to decide if t.append(Y) active...

– V - -> Y or V <- - Y?

Easy to check

– Is V or any of its descendants observed?

Compute in advance the ancestors of all 
observed variables

– W - -> V or W <- - V? (W is V’s predecesor in t)
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What neighbors to append?
● Let V be the node currently visited and Y be an 

unvisited neighbor.
● By our invariant, there is an active trail t from X 

to V.
● What we need to decide if t.append(Y) active...

– V - -> Y or V <- - Y?

Easy to check

– Is V or any of its descendants observed?

Compute in advance the ancestors of all 
observed variables

– W - -> V or W <- - V? (W is V’s predecesor in t)

Keep track how you reached V
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3. Algorithm for d-separation

def get_reachable(X, E):
toVisit = [X], visited = {}, reachable = {}

while toVisit != []:
V = toVisit.pop()

if V is not obs then add V to reachable

add V to visited

for Y an unvisited neighbor of V:
if …. then push Y

Loop’s invariant: Z is in toVisit iff there is an active trail 
from X to Z
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3. Algorithm for d-separation

def get_reachable(X, E):
toVisit = [X], visited = {}, reachable = {}

ancestors_E = computeAncestors(E)

while toVisit != []:
V = toVisit.pop()

if V is not obs then add V to reachable

add V to visited

for Y an unvisited neighbor of V:
if …. then push Y

Loop’s invariant: Z is in toVisit iff there is an active trail 
from X to Z



40

3. Algorithm for d-separation

def get_reachable(X, E):
toVisit = [(<--,X)], visited = {}, reachable = {}

ancestors_E = computeAncestors(E)

while toVisit != []:
(dir, V) = toVisit.pop()

if V is not obs then add V to reachable

add V to visited

for Y an unvisited neighbor of V:
if …. then push Y

Loop’s invariant: Z is in toVisit iff there is an active trail 
from X to Z
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for Y an unvisited neighbor of V:
● If dir == <-- : 

● If dir == --> :
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for Y an unvisited neighbor of V:
● If dir == <-- : 

–

● If dir == --> :
– If V --> Y:

●

– If V <-- Y:
●
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for Y an unvisited neighbor of V:
● If dir == <-- : 

– If V is not observed, then push (dir’, Y)

● If dir == --> :
– If V --> Y:

● If V is not observed, then push (-->, Y)

– If V <-- Y:
● If V is in ancestors_E, then push (<--, Y)
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