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Basic foundations on Probability

Probability Space (Ω,F ,P): e.g. Throwing a dice

I Set of atomic events Ω:

{1, 2, 3, 4, 5, 6}

I Set of all non-atomic events F ⊆ 2Ω

The number is odd

I Probability measure P : F → [0, 1]

P(The number is odd) = 1/2

P(The number is 1) = 1/6



Basic foundations on Probability

Probability Axioms

I Normalization:
P(Ω) = 1

I Non-Negativity
∀A ∈ F : P(A) ≥ 0

I σ-Additivity

∀A1 . . .An . . . s.t. Ai ∩ Aj = ∅ ∀i 6= j

P(∪iAi ) =
∑
i

P(Ai )

If Ai ∩ Aj 6= ∅ then the union bound holds

P(∪iAi ) ≤
∑
i

P(Ai )



Basic foundations on Probability

Probability Rules

I Marginalization (Sum Rule):

f (x) =
∑
y

f (x , y)

I Factorization (Product Rule)

f (x , y) = f (x |y)f (y) = f (y |x)f (x)

f (x , y , z) = f (x |y , z)f (y |z)f (z) = f (y |x , z)f (x |z)f (z)

I For a pdf of n variables, i.e., f (x1, x2, . . . xn), how many
different factorizations exist? If the variables are all
independent, how many different factorizations exist?



Basic foundations on Probability

Indpendence and Conditional Independence

I x , y are independent (also, x ⊥ y) iff:

f (x , y) = f (x)f (y)

I x , y are independent given z (also, x ⊥ y |z) iff:

f (x , y |z) = f (x |z)f (y |z)

I Factorization (Product Rule) with conditional independence:

f (x , y , z) = f (z |x , y)f (x |y)f (y)

f (x , y , z) = f (x |y , z)f (y |z)f (z) = f (x |z)f (y |z)f (z)
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Bayes Rule

1% of women at age fourty who participate in routine screening
have breast cancer. 80% of women with breast cancer will get
positive mammographies. 9.6% of women without breast cancer
will also get positive mammographies.
A women in this age group had a positive mammography in a
routine screeining. What is the probability that she has breast
cancer?



Bayes Rule

Data

I P(BC = T ) = 1%, P(BC = F ) = 99%.

I P(+|BC = T ) = 80%, P(+|BC = F ) = 9.6%.

P(BC = T |+) =
P(BC = T ,+)

P(+)

=
P(BC = T ,+)∑

BC={T ,F}
P(BC ,+)

=
P(+|BC = T )P(BC = T )∑
BC={T ,F}

P(+|BC )P(BC )

=
80%× 1%

80%× 1% + 9.6%× 99%
= 7.76%



Geometric Distribution

Suppose you throw a dice repeatedly until you get a 6.

(a) What is the set of atomic events Ω?

(b) What is the probability of finding a sequence of length n?

(c) What is the expected value of the sequence length?

(d) What is the expected number of 3s we observe?



Geometric Distribution

(a) Any sequence of elements that only in the last position
contains a 6, e.g. wk = {1, 5, 2, 3, 6}.

(b)

P(Ln) = (5/6)n−1(1/6)

(c)

E(Ln) =
∞∑
i=1

i(5/6)i−1(1/6)

= (1/6)
1

(1− 5/6)2
= 6



Geometric Distribution

(d) Define event Ai : throw i is number 3.

P(Ai ) = (5/6)i−1︸ ︷︷ ︸
not a 6

(1/6)︸ ︷︷ ︸
a 3

Lets call wk the k-th sequence (e.g. wk = {1, 3, 4, 3, 3, 5, 6},
wk ∈ A2,A4,A5).
Define RV S : number of 3s in outcome (e.g. S(wk) = 3).
How to write S in terms of Ai?

S(wk) =
∞∑
i=1

1Ai
(wk)

1Ai
(w) =

{
1, w ∈ Ai

0, otherwise



Geometric Distribution
Expected number of 3s is the expected number of S .

E(S) = E
∞∑
i=1

1Ai
=
∞∑
i=1

E1Ai
Note1

=
∞∑
i=1

(∑
w∈Ω

1Ai
(w)p(w)

)

=
∞∑
i=1

∑
w∈Ai

p(w)

 =
∞∑
i=1

p(Ai )

=
∞∑
i=1

(5/6)i−1(1/6) = (1/6)
1

1− 5/6
= 1

1E
∑∞

i=1 Xi =
∑∞

i=1 EXi only if
∑∞

i=1 E|Xi | converges by dominated
convergence theorem.



Conditional Independence
Prove or disprove (by counterexample):

(a) X ⊥ Y |Z ⇒ X ⊥ Y

False. Assume that: P(X = 1) = 0.1, P(Y = 1) = 0.5,
P(Z = 1) = 0.5, and:

P(·|Z = z) Z = 0 Z = 1

X = 1 0.4 0.3

Y = 1 0.6 0.2

P(X ,Y ) =
∑
Z

P(X ,Y ,Z ) =
∑
Z

P(X |Z )P(Y |Z )P(Z )

P(X ,Y ) = P(X |Y )P(Y )

P(X = 1,Y = 1) = 0.4× 0.6× 0.5 + 0.3× 0.2× 0.5 = 0.15

P(X = 1|Y = 1) = P(X = 1,Y = 1)/P(Y = 1) = 0.3 > P(X = 1)



Conditional Independence
Prove or disprove (by counterexample):

(b) (X ⊥ Y |Z )&(X ⊥ Z |Y )⇒ X ⊥ (Y ,Z )

P(X ,Y ,Z ) = P(X ,Y |Z )P(Z ) = P(X |Z )P(Y |Z )P(Z )

= P(X |Z )P(Y ,Z )

= P(X ,Z |Y )P(Y ) = P(X |Y )P(Z |Y )P(Y )

= P(X |Y )P(Y ,Z )

⇒P(X |Z ) = P(X |Y )

P(X |Z )P(Z )P(Y ) = P(X ,Z )P(Y ) =

P(X |Y )P(Y )P(Z ) = P(X ,Y )P(Z )

∑
z

P(X ,Z = z)︸ ︷︷ ︸
=P(X )

P(Y ) = P(X ,Y )
∑
z

P(Z = z)︸ ︷︷ ︸
=1

⇒ X ⊥ Y
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Definition and facts

A vector-valued RV x ∈ Rn is said to have a multivariate normal
distribution with mean µ ∈ Rn and covariance matrix Σ ∈ Sn

++ if
its pdf is:

p(x ;µ,Σ) =
1

(2π)n/2 det(Σ)1/2
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)

1. If you know mean and covariance of a Gaussian random
variable, you know the whole distribution.

2. Sum of independent gaussians is Gaussian.

3. Marginal of a joint Gaussian is Gaussian.

4. Conditional of a joint Gaussian is Gaussian.



Linear transformations

For X ∼ N (µ,Σ). By factorizing the covariance matrix as
Σ = U∆UT = BBT , the RV Z = B−1(X − µ) ∼ N (0, I ).

I Proof by change of variables formula:

pZ (z) = pX (x) ·

∣∣∣∣∣det

(
∂xi

∂zTj

)∣∣∣∣∣
I Any gaussian variable can be decomposed into n independent

gaussian variables.

I By generating n independent gaussians and applying BZ + µ
any gaussian distribution can be generated.



Diagonal Covariance Case

Consider x =

[
x1

x2

]
, µ =

[
µ1

µ2

]
, and Σ =

[
σ2

1 0
0 σ2

2

]

p(x) =
1

(2π)n/2|σ2
1σ

2
2|1/2

exp

(
−1

2

[
x1 − µ1

x2 − µ2

]T [
σ−2

1 0

0 σ−2
2

] [
x1 − µ1

x2 − µ2

])

=
1√

2πσ1

exp

(
− 1

2σ2
1

(x1 − µ1)2

)
· 1√

2πσ2

exp

(
− 1

2σ2
2

(x2 − µ2)2

)
In general, when Σ is diagonal, then the components of x are
indepentent of each other.



Shape of Level sets

A level set of a function f : Rn → R is a set

{x ∈ Rn : f (x) = c} ,

for some c ∈ R. For 2-D gaussians with diagonal covariance matrix

c =
1

2πσ1σ2
exp

(
− 1

2σ2
1

(x1 − µ1)2 − 1

2σ2
2

(x2 − µ2)2

)
1 =

(x1 − µ1)2

2σ2
1 log

(
1

2πcσ1σ2

) +
(x2 − µ2)2

2σ2
2 log

(
1

2πcσ1σ2

)



Shape of Level sets

Σ =

[
1 0
0 1

]
Σ =

[
1 0
0 4

]
Σ =

[
1 0.5

0.5 2

]



Sum of Independent Gaussians
Assume that x ∼ N (µx ,Σx) and x ∼ N (µy ,Σy ) are independent,
then z = x + y is also Gaussian (Not proven). Let’s calculate it
first two moments.

E[zi ] = E[xi + yi ] = E[xi ] + E[yi ] = µx + µy

E[(zi − µi )(zj − µj)] = E[zizj ]− E[zi ]E[zj ]

= E[(xi + yi )(xj + yj)]− E[xi + yi ]E[xj + yj ]

= E[xixj + xiyj + xjyi + yiyj ]− E[xi + yi ]E[xj + yj ]

= E[xixj ]− E[xi ]E[xj ]︸ ︷︷ ︸
=Σxi,j

+ E[yiyj ]− E[yi ]E[yj ]︸ ︷︷ ︸
=Σyi,j

+ E[xiyj ]︸ ︷︷ ︸
=E[xi ]E[yj ]

−E[xi ]E[yj ] + E[yixj ]︸ ︷︷ ︸
=E[yi ]E[xj ]

−E[yi ]E[xj ]

= Σxi,j + Σyi,j



Marginal of joint Gaussians

p(xA, xB) =
1

Z
exp

(
−1

2

[
xA − µA

xB − µB

]T [
ΣAA ΣAB

ΣBA ΣBB

]−1 [
xA − µA

xB − µB

])

V =

[
VAA VAB

VBA VBB

]
=

[
ΣAA ΣAB

ΣBA ΣBB

]−1

,

[
xA − µA

xB − µB

]
=

[
∆A

∆B

]
p(xA) =

1

Z

∫
xB

exp

(
−1

2

[
∆A

∆B

]T [
VAA VAB

VBA VBB

] [
∆A

∆B

])
dxB , (Note)2

=
1

Z
exp

(
−1

2

[
∆T

A (VAA − VABV
−1
BB VBA)∆A

])
·
∫
xB

exp

(
−1

2

[
(∆B + V−1

BB VBA∆A)TVBB(∆B + V−1
BB VBA∆A)

])
dxB

p(xA) =
1

ZA
exp

(
−1

2

[
∆T

A (VAA − VABV
−1
BB VBA)∆A

])
=

1

ZA
exp

(
−1

2

[
∆T

A Σ−1
AA∆A

])
2 1

2
zTAz + bT z + c = 1

2
(z + A−1b)TA(z + A−1b) + c − bTA−1b



Conditional of joint Gaussians

p(xB |xA) =
p(xA, xB)

p(xA)

=
1

Z ′
exp

(
−1

2

[
xA − µA
xB − µB

]T [
ΣAA ΣAB

ΣBA ΣBB

]−1 [
xA − µA
xB − µB

])

=
1

Z ′
exp

(
−1

2

[
∆T

A (VAA − VABV
−1
BBVBA)∆A

])
· exp

(
−1

2

[
(∆B + V−1

BBVBA∆A)TVBB(∆B + V−1
BBVBA∆A)

])
=

1

Z ′′
exp

(
−1

2

[
(∆B + V−1

BBVBA∆A)TVBB(∆B + V−1
BBVBA∆A)

])
xB |xA ∼N (µB − V−1

BBVBA(xA − µA)︸ ︷︷ ︸
=µB|A

; ΣBB − ΣBAΣ−1
AAΣAB︸ ︷︷ ︸

=ΣB|A=V−1
BB

)
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