
Probabilistic Artificial Intelligence
Problem Set 3
Oct 26, 2018

1. Variable elimination

In this exercise you will use variable elimination to perform inference on a bayesian network.
Consider the network in �gure 1 and its corresponding conditional probability tables (CPTs).

A C

B

E D

F

Figure 1: Bayesian network for problem 1.

P (A = t) = 0.3 (1)
P (C = t) = 0.6 (2)

Table 1: CPTs for problem 1.

(a) P (B|A,C)

A C P (B = t)

f f 0.2
f t 0.8
t f 0.3
t t 0.5

(b) P (D|C)

C P (D = t)

f 0.9
t 0.75

(c) P (E|B)

B P (E = t)

f 0.2
t 0.4

(d) P (F |D,E)

D E P (F = t)

f f 0.95
f t 1
t f 0
t t 0.25

1



Assuming a query on A with evidence for B and D, i.e. P (A|B,D), use the variable elimi-
nation algorithm to answer the following queries. Make explicit the selected ordering for the
variables and compute the probability tables of the intermediate factors.

1. P (A = t|B = t,D = f)

2. P (A = f |B = f,D = f)

3. P (A = t|B = t,D = t)

Consider now the ordering,C,E, F,D,B,A, use again the variable elimination algorithm and
write down the intermediate factors, this time without computing their probability tables. Is
this ordering be�er or worse than the one you used before? Why?

2. Belief propagation

In this exercise, you will implement the belief propagation algorithm for performing inference
in Bayesian networks. As you have seen in the class lectures, the algorithm is based on con-
verting the Bayesian network to a factor graph and then passing messages between variable
and factor nodes of that graph until convergence.

You are provided some skeleton Python code in the .zip �le accompanying this document.
Take the following steps for this exercise.

1. Install the Python dependencies listed in README.txt, if your system does not already
satisfy them. A�er that, you should be able to run demo.py and produce some plots,
albeit wrong ones for now.

2. Implement the missing code in bprop.py marked with TODO. In particular, you have to
�ll in parts of the two functions that are responsible for sending messages from variable
to factor nodes and vice versa, as well as parts of the function that returns the resulting
marginal distribution of a variable node a�er message passing has terminated.

3. Now, set up the full-�edged earthquake network, whose structure was introduced in
Problem Set 2 and is shown again in Figure 2. Here is the story behind this network:
While Fred is commuting to work, he receives a phone call from his neighbor saying that
the burglar alarm in Fred’s house is ringing. Upon hearing this, Fred immediately turns
around to get back and check his home. A few minutes on his way back, however, he
hears on the radio that there was an earthquake near his home earlier that day. Relieved
by the news, he turns around again and continues his way to work.
To build up the conditional probability tables (CPTs) for the network of Figure 2 youmay
make the following assumptions about the variables involved:

• All variables in the network are binary.
• As can be seen from the network structure, burglaries and earthquakes are assumed
to be independent. Furthermore, each of them is assumed to occur with probability
0.1%.

2



Phone

AlarmRadio

Earthquake Burglar

Figure 2: �e earthquake network to be implemented.

• �e alarm is triggered in the following ways: (1) When a burglar enters the house,
the alarm will ring 99% of the time; (2) when an earthquake occurs, there will
be a false alarm 1% of the time; (3) the alarm might go o� due to other causes
(wind, rain, etc.) 0.1% of the time. �ese three types of causes are assumed to be
independent of each other.

• �e neighbor is assumed to call only when the alarm is ringing, but only does so
70% of the time when it is actually ringing.

• �e radio is assumed to never falsely report an earthquake, but it might fail to
report an earthquake that actually happened 50% of the time. (�is includes the
times that Fred fails to listen to the announcement.)

4. A�er having set up the network and its CPTs, answer the following questions using your
belief propagation implementation:

(a) Before Fred gets the neighbor’s call, what is the probability of a burglary having
occurred? What is the probability of an earthquake having occurred?

(b) How do these probabilities change a�er Fred receives the neighbor’s phonecall?
(c) How do these probabilities change a�er Fred listens to the news on the radio?

3. Gibbs sampling

In this exercise, you will implement a Gibbs sampling algorithm for performing approximate
inference in Bayesian networks. Although using a factor graph is not necessary for Gibbs sam-
pling, we will use the already available factor graph representation from the previous problem
set to conveniently acquire the Markov blanket of each variable. �at way, all information
required to compute the posterior distribution of a variable v given some values for all other
variables, is contained in the CPTs of the neighboring factor nodes N (v).

More concretely, let x−v be the set of all variables except for v, and s−v be the value of those

3



variables at the current iteration. Similarly, let xf\v, sf\v be all variables that participate in
factor f except for v, and sf\v be the values thereof. �en, to update the value of v you will
have to draw from the posterior

P (v = d | x−v = s−v) =
1

Z

∏
f∈N (v)

f(v = d,xf\v = sf\v),

where Z is a normalization factor. In practice, you will compute the above product (without
the 1/Z part) for all d ∈ dom(v), then normalize to get a proper distribution, and �nally draw
from that distribution to obtain a new value for v.

You are provided some skeleton Python code in the .zip �le accompanying this document.
Take the following steps for this exercise.

(i) Install the Python dependencies listed in README.txt, if your system does not already
satisfy them. A�er that, you should be able to run demo.py and produce some plots,
albeit wrong ones for now.

(ii) Implement the missing code in sampling.py marked with TODO. In particular, you have
to �ll in the part that computes the posterior distribution discussed above, as well as the
part that picks a variable and updates the state of the Gibbs sampler.

(iii) If your implementation is correct, you should get (approximately) correct results for the
naive Bayes model of the demo �le that represents the coin �ipping network of exercise
3 in here: https://las.inf.ethz.ch/courses/pai-f16/sol/hw1-sol.pdf.

(iv) Now, you can try out your Gibbs sampler on the earthquake network of the previous
problem set. Compare your results to those you obtained using belief propagation. �ere
are three parameters you can tune:

• �e starting state of the Gibbs sampler. By default, it is created by drawing inde-
pendent and uniformly random values for each variable.

• �e length of the burn-in period, during which the state is updated, but not saved.
�erefore, anything sampled during this stage has no e�ect on the approximate
marginals computed a�erwards.

• �e function used to obtain the approximate marginals that are plo�ed. By default,
this function is a cumulative average, i.e., it computes the approximate marginal
distribution of a variable at step i by looking at the average number of occurences
of each value of that variable among the samples obtained by the algorithm up
to step i. A simple modi�cation would be to only use every k-th sample when
computing these averages, since successive samples are heavily correlated.

4

https://las.inf.ethz.ch/courses/pai-f16/sol/hw1-sol.pdf

	Variable elimination
	Belief propagation
	Gibbs sampling

