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1. River Swim

Consider the MDP with states 1, . . . , S as illustrated below. �e agent starts in state 1 and tries
to swim up the river to reach the �nal state S. All states except for 1 and S have two actions

le� (L) and right (R). �e �rst state has only the R action, whereas the last state has only the

L action. In any state s = 1, . . . , S, the L action brings the agent to the previous state s − 1,
wheres the R action gets the agent to the next state s with probability p or the same state with

probability 1− p. �ere is a reward of +1 in state S and no reward in any of the other states.

�e episode ends when the learner reaches state S and we use a discount factor 0 < γ ≤ 1.
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(i) Compute the value function Vγ(s) for the policy that always picks the R action in any

state s = 1, . . . S.

(ii) Show that this policy is in fact the optimal policy for this problem.

(iii) What is the optimal average reward Vγ(1) for γ = 0, γ = 1 and p = 1 respectively? Do

the results you get make sense?

�e de�nition of the Q-function is Q(s, a) = r(s) + γ
∑

s′ P (s
′|a, s)Vγ(s′), where P (s′|a, s)

is the probability of going to state s′ when picking action a in state s. Remember that the

Q-functionQ∗ of the optimal policy satis�es the equation V ∗(s) = maxaQ
∗(s, a). �e idea of

Q-learning is to estimateQ∗(s, a) directly from sample transitions (s, a, r, s′). Given an initial

estimate Q̂(0)(s, a), we update our estimate according to

Q̂(i+1)(s, a) = (1− α)Q̂(i)(s, a) + α
(
r + γmax

a′
Q̂(i)(s

′, a′)
)
. (1)

(iv) Suppose you get the following transitions for the MDP above with S = 3 and γ = 1:
(1,R,0,2), (2,R,1,3), (1,R,0,1), (1,R,0,2), (2,R,1,3).

Compute the updates for Q̂(i), starting with the initialization Q̂(0)(s, a) = 0 for all s ∈
{1, 2, 3} and a ∈ {L,R}, and learning rate 0 < α < 1.

(v) In online Q-learning, the idea is to improve the current policy by choosing an action

ai+1 = argmaxa Q̂(i)(si, a). Assume that we start with the initialization Q̂(0)(s, L) = 1

and Q̂(0)(s,R) = 0 for all states s = 1, . . . , S. What sample trajectory does the policy

generate in the MDP above, and does the estimate Q̂(i) converge to the optimalQ-value?

Does this agent ever reach state S?
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2. Deep Dive

We want to build a learning agent, which dives into the ocean to �nd a treasures hidden on

the seabed. Our problem is modeled the by a grid-world of sizeD×W as shown in the �gure

below. �e agent’s starting position is denoted by ‘A’. At each step, the agent can move to a

neighboring cell in any direction using the actions (L), (R), (U), (D) with the obvious limits at

the boundary. Transitions are deterministic. �e only reward of +1 is given when the agent

reaches the treasure ‘G’ in the bo�om row, and its exact position is not known to the agent.

We have the additional constraint that our agent can stay below the surface (a non-white cell)

for at most T steps, otherwise we receive a reward of -10 and the agent is reset to position ‘A’.
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(i) �e condition that the agent can stay at most T steps below the surface is non-Markovian,
because it depends on the previous steps taken by the agent. However, by enlarging the

state-space we can o�en make such problemsMarkovian. Find an MDP withW ×D×T
states that models the problem described above, and fully specify its transition model

and reward function.

(ii) In order to learn a good policy, the agent needs to gather data by exploration. Perhaps

the simplest way of doing exploration is to take an random action in any state. What is

the main concern with this exploration strategy in this example, in particular if T ≈ 2D
and D is very large?

Suppose we run episodes of length (W + 2T ). We de�ne the worst-case sample complexity of

this problem as the maximum expected number of episodes an agent needs to obtain a reward

of +1 for the �rst time in any con�guration of the environment. �e expectation is over the

randomness of the agent.

(iii) Show that the worst-case sample complexity of the random agent is lower bounded by

4W+2D−3
. To do so, you need to specify one instance of the environment, such that the

expected number of episodes the random agent takes to get +1 reward is 4W+2D−3
. For

simplicity, assume that T = 2D − 2, such that the only way of ge�ing to the treasure is

starting the dive directly above it. Hint:
∑∞

i=1 ix
i−1 = 1

(1−x)2 for 0 < x < 1.

continues next page…
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In the lecture, you have seen the Rmax algorithm, which chooses an optimistic initialization of

the environment to achieve e�cient exploration. Inspired by this idea, we use the following

algorithm: First, we initialize an estimate of the reward function R̂(s) = 1 for all states s in
our MDP. In the ith episode, we then compute the optimal policy in the MDP with the current

estimate of reward function R̂, and follow this policy for the whole episode. We then use the

data from all visited states to update our reward function (the reward is deterministic).

(iv) Show that the worst-case sample complexity of this agent is upper bounded byW ·D ·T .
To do so, you need to show that for any instance of the environment, the agent takes at

mostW ·D · T episodes to achieve a reward of +1.

(v) (Bonus question.) Assume we want to avoid a negative reward at all cost. Can you �nd

a di�erent initialization, such that our Rmax algorithm still �nds the treasure, but never

stays below the surface for more than T steps?
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