Probabilistic Artificial Intelligence

Problem Set 1 Solutions

September 28, 2018

1. Conditional Independence

Consider the following joint distribution for three random variables, $a, b, c \in\{0,1\}$.

a	b	c	$p(a, b, c)$
0	0	0	0.192
0	0	1	0.144
0	1	0	0.048
0	1	1	0.216
1	0	0	0.192
1	0	1	0.064
1	1	0	0.048
1	1	1	0.096

Show that a and b are dependent, namely $p(a, b) \neq p(a) p(b)$. But, they are marginally independent given c, namely $p(a, b \mid c)=p(a \mid c) p(b \mid c)$. (c.f. Bishop Pattern Recognition and Machine Learning, Exercise 8.3)

Solution. For $p(a, b) \neq p(a) p(b)$ it suffices to simply produce example values for which the two expressions differ. Let $a=0, b=0$. Then by marginalizing on c,

$$
p(a=0, b=0)=0.192+0.144=0.336
$$

Where as by marginalizing on b, c,

$$
p(a=0)=0.192+0.144+0.048+0.216=0.6
$$

And by marginalizing on a, c,

$$
p(b=0)=0.192+0.144+0.192+0.064=0.592
$$

Thus we can show $p(a=0) \cdot p(b=0)=0.6 \cdot 0.592=0.3552 \neq 0.336$.
To show $p(a, b \mid c)=p(a \mid c) p(b \mid c)$, we need to show that it holds for every value of a, b, c. Note that $p(c=0)=0.192+0.048+0.192+0.048=0.48$.

For the case when $a=0, b=0, c=0$,

$$
p(a=0, b=0 \mid c=0)=0.192 / 0.48=0.4
$$

a	b	$p(a, b, c)$
0	0	0.4
0	1	0.1
1	0	0.4
1	1	0.1

Table 1: $p(a, b \mid c=0)$

a	b	$p(a, b, c)$
0	0	0.27692308
0	1	0.41538462
1	0	0.12307692
1	1	0.18461538

Table 2: $p(a, b \mid c=1)$
and

$$
p(a=0 \mid c=0) p(b=0 \mid c=0)=(0.192+0.048) / 0.48 \cdot(0.192+0.192) / 0.48=0.4
$$

Which are equal.
More generally, we can take the entire table and divide it by $p(c=0)$ and $p(c=1)$ to get the conditional distributions $p(a, b \mid c=0)$ (Table 1) and $p(a, b \mid c=1$) (Table 2) respectively. We can then use these tables to look up the relevant values.

2. Bayes Rule

A routine breast cancer mammography screening is performed on a group of people of age fourty. 1% of the participants in the screening actually have breast cancer. 80% of the people in the screening with breast cancer received positive results (has breast cancer) on the mammmography test. 9.6% of people without breast cancer received a positive result on their mammographies. Suppose a person of this age receives a positive result on their mammography. Given the information in this screening, what is the probability that he has breast cancer?

Solution. Our goal is to estimate, $P(C=1 \mid T=1)$ where C means cancer and T means mammography (test). Using Bayes Rule,

$$
P(C=1 \mid T=1)=\frac{P(T=1 \mid C=1) P(C=1)}{P(T=1)}
$$

where $P(T=1)=P(T=1 \mid C=0) P(C=0)+P(T=1 \mid C=1) P(C=1)$.
Thus using the values provided in the question,

$$
P(C=1 \mid T=1)=\frac{0.8 \cdot .01}{.096 \cdot .99+.8 \cdot .01} \approx .077
$$

3. Chain rule

Derive the chain rule from the basic rules of probability. (Hint: by the definition of conditional probability $P(A, B)=P(A \mid B) P(B)$). How many factorizations are possible for a distribution on n random variables?

Solution. The chain rule states that

$$
P\left(A_{1}, \ldots, A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{2}, A_{1}\right) \ldots P\left(A_{n} \mid A_{n-1}, \ldots, A_{1}\right)
$$

By induction. In the case of $n=2$ we have simply the definition of conditional probability. Assume true for the n-th case. Consider the $n+1$-th case. Again by the definition of conditional probability,

$$
P\left(A_{1}, \ldots, A_{n}, A_{n+1}\right)=P\left(A_{n+1} \mid A_{1}, \ldots, A_{n}\right) P\left(A_{1}, \ldots, A_{n}\right)
$$

expand the term $P\left(A_{1}, \ldots, A_{n}\right)$ using the inductive assumption.
To see that there are n ! ways to factor a distribution on n random variables, consider an iterative process where at each step you choose to "factor out" a specific variable. For example, at step 1 you factor out A_{1} resulting in $P\left(A_{1}\right) P\left(A_{2}, \ldots, A_{n} \mid A_{1}\right)$. Now you have $n-1$ choices left for which variable to factor out. For example, suppose you choose number 42 resulting in $P\left(A_{1}\right) P\left(A_{42} \mid A_{2}, \ldots, A_{41}, A_{43}, \ldots, A_{n}\right) P\left(A_{42} \mid A_{2}, \ldots, A_{41}, A_{43}, \ldots, A_{n}\right)$. Now you have $n-2$ remaining choices for the next factorization.

