
Probabilistic Artificial Intelligence
Problem Set 1 Solutions
September 28, 2018

1. Conditional Independence

Consider the following joint distribution for three random variables, a, b, c ∈ {0, 1}.

a b c p(a, b, c)

0 0 0 0.192
0 0 1 0.144
0 1 0 0.048
0 1 1 0.216
1 0 0 0.192
1 0 1 0.064
1 1 0 0.048
1 1 1 0.096

Show that a and b are dependent, namely p(a, b) 6= p(a)p(b). But, they are marginally inde-
pendent given c, namely p(a, b | c) = p(a | c)p(b | c). (c.f. Bishop Pa�ern Recognition and
Machine Learning, Exercise 8.3)

Solution. For p(a, b) 6= p(a)p(b) it su�ces to simply produce example values for which the
two expressions di�er. Let a = 0, b = 0. �en by marginalizing on c,

p(a = 0, b = 0) = 0.192 + 0.144 = 0.336

Where as by marginalizing on b, c,

p(a = 0) = 0.192 + 0.144 + 0.048 + 0.216 = 0.6

And by marginalizing on a, c,

p(b = 0) = 0.192 + 0.144 + 0.192 + 0.064 = 0.592

�us we can show p(a = 0) · p(b = 0) = 0.6 · 0.592 = 0.3552 6= 0.336.

To show p(a, b|c) = p(a|c)p(b|c), we need to show that it holds for every value of a, b, c. Note
that p(c = 0) = 0.192 + 0.048 + 0.192 + 0.048 = 0.48.

For the case when a = 0, b = 0, c = 0,

p(a = 0, b = 0|c = 0) = 0.192/0.48 = 0.4
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a b p(a, b, c)

0 0 0.4
0 1 0.1
1 0 0.4
1 1 0.1

Table 1: p(a, b|c = 0)

a b p(a, b, c)

0 0 0.27692308
0 1 0.41538462
1 0 0.12307692
1 1 0.18461538

Table 2: p(a, b|c = 1)

and

p(a = 0|c = 0)p(b = 0|c = 0) = (0.192 + 0.048)/0.48 · (0.192 + 0.192)/0.48 = 0.4

Which are equal.

More generally, we can take the entire table and divide it by p(c = 0) and p(c = 1) to get the
conditional distributions p(a, b|c = 0) (Table 1) and p(a, b|c = 1) (Table 2) respectively. We
can then use these tables to look up the relevant values.

2. Bayes Rule

A routine breast cancer mammography screening is performed on a group of people of age
fourty. 1% of the participants in the screening actually have breast cancer. 80% of the people
in the screening with breast cancer received positive results (has breast cancer) on the mamm-
mography test. 9.6% of people without breast cancer received a positive result on their mam-
mographies. Suppose a person of this age receives a positive result on their mammography.
Given the information in this screening, what is the probability that he has breast cancer?

Solution. Our goal is to estimate, P (C = 1|T = 1) where C means cancer and T means
mammography (test). Using Bayes Rule,

P (C = 1|T = 1) =
P (T = 1|C = 1)P (C = 1)

P (T = 1)

where P (T = 1) = P (T = 1|C = 0)P (C = 0) + P (T = 1|C = 1)P (C = 1).

�us using the values provided in the question,

P (C = 1|T = 1) =
0.8 · .01

.096 · .99 + .8 · .01
≈ .077
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3. Chain rule

Derive the chain rule from the basic rules of probability. (Hint: by the de�nition of condi-
tional probability P (A,B) = P (A | B)P (B)). How many factorizations are possible for a
distribution on n random variables?

Solution. �e chain rule states that

P (A1, . . . , An) = P (A1)P (A2|A1)P (A3|A2, A1) . . . P (An|An−1, . . . , A1)

By induction. In the case of n = 2 we have simply the de�nition of conditional probability.
Assume true for then-th case. Consider then+1-th case. Again by the de�nition of conditional
probability,

P (A1, . . . , An, An+1) = P (An+1|A1, . . . , An)P (A1, . . . , An)

expand the term P (A1, . . . , An) using the inductive assumption.

To see that there are n! ways to factor a distribution on n random variables, consider an iter-
ative process where at each step you choose to “factor out” a speci�c variable. For example, at
step 1 you factor out A1 resulting in P (A1)P (A2, . . . , An|A1). Now you have n − 1 choices
le� for which variable to factor out. For example, suppose you choose number 42 resulting
in P (A1)P (A42|A2, . . . , A41, A43, . . . , An)P (A42|A2, . . . , A41, A43, . . . , An). Now you have
n− 2 remaining choices for the next factorization.
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