Probabilistic Foundations of Artificial Intelligence
Solutions to Problem Set 4
Nov 16, 2018

1. Bayesian networks and Markov chains

Consider the query $P(R|S = t, W = t)$ in the following Bayesian network, and how Gibbs sampling can answer it.

(i) How many states does the Markov chain have?

(ii) Calculate the transition matrix T containing $P(X_{t+1} = y | X_t = x)$ for all x, y.

(iii) What does T^2, the square of the transition matrix, represent?

(iv) What about T^n as $n \to \infty$?

(v) Explain how to do probabilistic inference in Bayesian networks, assuming that T^n is available. Is this a practical way to do inference?
Solution

(i) There are two uninstantiated Boolean variables (Cloudy and Rain) and therefore four possible states.

(ii) First, we compute the sampling distribution for each variable, conditioned on its Markov blanket.

\[
P(C|r, s) = \frac{1}{Z} P(C|s) P(r|C) = \frac{1}{Z} (0.5, 0.5) (0.1, 0.5) (0.8, 0.2) = \frac{1}{Z} (0.04, 0.05) = \langle 4/9, 5/9 \rangle \\
P(C|\neg r, s) = \frac{1}{Z} P(C|s) P(\neg r|C) = \frac{1}{Z} (0.5, 0.5) (0.1, 0.5) (0.2, 0.8) = \frac{1}{Z} (0.01, 0.2) = \langle 1/21, 20/21 \rangle \\
P(R|c, s, w) = \frac{1}{Z} P(R|c) P(w|s, R) = \frac{1}{Z} (0.8, 0.2) (0.99, 0.9) = \frac{1}{Z} (0.792, 0.18) = \langle 22/27, 5/27 \rangle \\
P(R|\neg c, s, w) = \frac{1}{Z} P(R|\neg c) P(w|s, R) = \frac{1}{Z} (0.2, 0.8) (0.99, 0.9) = \frac{1}{Z} (0.198, 0.72) = \langle 11/51, 40/51 \rangle
\]

Strictly speaking, the transition matrix is only well-defined for the variant of MCMC in which the variable to be sampled is chosen randomly\(^1\). (In the variant where the variables are chosen in a fixed order, the transition probabilities depend on where we are in the ordering.) Now consider the transition matrix.

- Entries on the diagonal correspond to self-loops. Such transitions can occur by sampling \textit{either} variable. For example, for the self-loop on \((c, r)\), we obtain:

\[
t((c, r) \rightarrow (c, r)) = 0.5 P(c|r, s) + 0.5 P(r|c, s, w) = 17/27,
\]

where the two factors of 0.5 are corresponding to the probability that the variables to be sampled are \(C\) and \(R\), respectively.

- Entries where one variable is changed must sample that variable. For example,

\[
t((c, r) \rightarrow (c, \neg r)) = 0.5 P(\neg r|c, s, w) = 5/54
\]

- Entries where both variables change cannot occur. For example,

\[
t((c, r) \rightarrow (\neg c, \neg r)) = 0
\]

This gives us the following transition matrix \(T\), where the transition is from the state given by the row label to the state given by the column label:

(iii) T^2 represents the probability of going from each state to each state in two steps.

(iv) T^n (as $n \to \infty$) represents the long-term probability of being in each state starting in each state; for ergodic T these probabilities are independent of the starting state, so every row of T is the same and represents the posterior distribution over states given the evidence.

(v) We can produce very large powers of T with very few matrix multiplications. For example, we can get T^2 with one multiplication, T^4 with two, and T^{2^k} with k. Unfortunately, in a network with n non-event Boolean variables, the matrix is of size $2^n \times 2^n$, so each multiplication takes $O(2^{3n})$ operations.

2. *Markov chains and detailed balance*

Assume that you are given a Markov chain with state space Ω and transition matrix T, which is defined for all $x, y \in \Omega$ and $t \geq 0$ as $T(x, y) := P(X_{t+1} = y \mid X_t = x)$. Furthermore, let π be the stationary distribution of the chain.

(i) Show that, if for some t the current state X_t is distributed according to the stationary distribution and additionally the chain satisfies the detailed balance equations

$$\pi(x)T(x, y) = \pi(y)T(y, x), \text{ for all } x, y \in \Omega,$$

then the following holds for all $k \geq 0$ and $x_0, \ldots, x_k \in \Omega$:

$$P(X_t = x_0, \ldots, X_{t+k} = x_k) = P(X_t = x_k, \ldots, X_{t+k} = x_0).$$

(This is why a chain that satisfies detailed balance is called *reversible*.)

(ii) Show that, if T is a symmetric matrix, then the chain satisfies detailed balance, and the uniform distribution on Ω is stationary for that chain.
Solution

(i) We use the chain rule, as well as the detailed balance condition:

\[
\begin{align*}
P(X_t = x_0, \ldots, X_{t+k} = x_k) &= P(X_t = x_0)P(X_{t+1} = x_1 | X_t = x_0) \ldots P(X_{t+k} = x_k | X_{t+k-1} = x_{k-1}) \text{ ch. rule} \\
&= \pi(x_0)T(x_0, x_1) \ldots T(x_{k-1}, x_k) \quad X_t \sim \pi \\
&= T(x_1, x_0)\pi(x_1) \ldots T(x_{k-1}, x_k) \quad \text{detailed balance} \\
&= \ldots \\
&= \pi(x_1, x_0) \ldots T(x_k, x_{k-1})\pi(x_k) \quad \text{detailed balance} \\
&= \pi(x_k)T(x_k, x_{k-1}) \ldots T(x_1, x_0) \\
&= P(X_t = x_k)P(X_{t+1} = x_{k-1} | X_t = x_k) \ldots P(X_{t+k} = x_0 | X_{t+k-1} = x_1) \quad X_t \sim \pi \\
&= P(X_t = x_k, \ldots, X_{t+k} = x_0). \quad \text{ch. rule}
\end{align*}
\]

(ii) By definition of a symmetric matrix, we have that \(\pi(x)T(x, y) = \pi(x)T(y, x) \), for all \(x, y \in \Omega \). Therefore, if \(\pi(x) = \frac{1}{|\Omega|} \), for all \(x \in \Omega \), then \(\pi(x)T(x, y) = \pi(y)T(y, x) \), which means that detailed balance holds for the chain and the uniform distribution is stationary.