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1. Bayesian networks and Markov chains

Consider the query P (R|S = t,W = t) in the following Bayesian network, and how Gibbs

Figure 1: Bayesian Network

sampling can answer it.

(i) How many states does the Markov chain have?

(ii) Calculate the transition matrix T containing P (Xt+1 = y | Xt = x) for all x, y.

(iii) What does T 2, the square of the transition matrix, represent?

(iv) What about Tn as n → ∞?

(v) Explain how to do probabilistic inference in Bayesian networks, assuming that Tn is
available. Is this a practical way to do inference?

1



Solution

(i) There are two uninstantiated Boolean variables (Cloudy and Rain) and therefore four
possible states.

(ii) First, we compute the sampling distribution for each variable, conditioned on its Markov
blanket.

P (C|r, s) = 1

Z
P (C)P (s|C)P (r|C)

=
1

Z
⟨0.5, 0.5⟩⟨0.1, 0.5⟩⟨0.8, 0.2⟩ = 1

Z
⟨0.04, 0.05⟩ = ⟨4/9, 5/9⟩

P (C|¬r, s) = 1

Z
P (C)P (s|C)P (¬r|C)

=
1

Z
⟨0.5, 0.5⟩⟨0.1, 0.5⟩⟨0.2, 0.8⟩ = 1

Z
⟨0.01, 0.2⟩ = ⟨1/21, 20/21⟩

P (R|c, s, w) = 1

Z
P (R|c)P (w|s,R)

=
1

Z
⟨0.8, 0.2⟩⟨0.99, 0.9⟩ = 1

Z
⟨0.792, 0.18⟩ = ⟨22/27, 5/27⟩

P (R|¬c, s, w) = 1

Z
P (R|¬c)P (w|s,R)

=
1

Z
⟨0.2, 0.8⟩⟨0.99, 0.9⟩ = 1

Z
⟨0.198, 0.72⟩ = ⟨11/51, 40/51⟩

Strictly speaking, the transition matrix is only well-defined for the variant of MCMC in
which the variable to be sampled is chosen randomly1. (In the variant where the variables
are chosen in a fixed order, the transition probabilities depend on where we are in the
ordering.) Now consider the transition matrix.

• Entries on the diagonal correspond to self-loops. Such transitions can occur by
sampling either variable. For example, for the self-loop on (c, r), we obtain:

t((c, r) → (c, r)) = 0.5P (c|r, s) + 0.5P (r|c, s, w) = 17/27,

where the two factors of 0.5 are corresponding to the probability that the variables
to be sampled are C and R, respectively.

• Entries where one variable is changed must sample that variable. For example,

t((c, r) → (c,¬r)) = 0.5P (¬r|c, s, w) = 5/54

• Entries where both variables change cannot occur. For example,

t((c, r) → (¬c,¬r)) = 0

This gives us the following transition matrix T , where the transition is from the state
given by the row label to the state given by the column label:

1Slide 14 of https://las.inf.ethz.ch/courses/pai-f17/slides/pai-07-bayesian-networks-mcmc.pdf
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(c, r) (c,¬r) (¬c, r) (¬c,¬r)

(c, r) 17/27 5/54 5/18 0
(c,¬r) 11/27 22/189 0 10/21
(¬c, r) 2/9 0 59/153 20/51
(¬c,¬r) 0 1/42 11/102 310/357


(iii) T 2 represents the probability of going from each state to each state in two steps.

(iv) Tn (as n → ∞) represents the long-term probability of being in each state starting in
each state; for ergodic T these probabilities are independent of the starting state, so
every row of T is the same and represents the posterior distribution over states given
the evidence.

(v) We can produce very large powers of T with very few matrix multiplications. For exam-
ple, we can get T 2 with one multiplication, T 4 with two, and T 2k with k. Unfortunately,
in a network with n non-event Boolean variables, the matrix is of size 2n × 2n, so each
multiplication takes O(23n) operations.

2. Markov chains and detailed balance

Assume that you are given a Markov chain with state space Ω and transition matrix T , which
is defined for all x, y ∈ Ω and t ≥ 0 as T (x, y) := P (Xt+1 = y | Xt = x). Furthermore, let π
be the stationary distribution of the chain.

(i) Show that, if for some t the current state Xt is distributed according to the stationary
distribution and additionally the chain satisfies the detailed balance equations

π(x)T (x, y) = π(y)T (y, x), for all x, y ∈ Ω,

then the following holds for all k ≥ 0 and x0, . . . , xk ∈ Ω:

P (Xt = x0, . . . , Xt+k = xk) = P (Xt = xk, . . . , Xt+k = x0).

(This is why a chain that satisfies detailed balance is called reversible.)

(ii) Show that, if T is a symmetric matrix, then the chain satisfies detailed balance, and the
uniform distribution on Ω is stationary for that chain.
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Solution

(i) We use the chain rule, as well as the detailed balance condition:

P (Xt = x0, . . . , Xt+k = xk)

= P (Xt = x0)P (Xt+1 = x1 | Xt = x0) . . . P (Xt+k = xk | Xt+k−1 = xk−1) ch. rule
= π(x0)T (x0, x1) . . . T (xk−1, xk) Xt ∼ π

= T (x1, x0)π(x1) . . . T (xk−1, xk) detailed balance

= . . .
...

= T (x1, x0) . . . T (xk, xk−1)π(xk) detailed balance
= π(xk)T (xk, xk−1) . . . T (x1, x0)

= P (Xt = xk)P (Xt+1 = xk−1 | Xt = xk) . . . P (Xt+k = x0 | Xt+k−1 = x1) Xt ∼ π

= P (Xt = xk, . . . , Xt+k = x0). ch. rule

(ii) By definition of a symmetric matrix, we have that π(x)T (x, y) = π(x)T (y, x), for all
x, y ∈ Ω. Therefore, if π(x) = 1

|Ω| , for all x ∈ Ω, then π(x)T (x, y) = π(y)T (y, x),
which means that detailed balance holds for the chain and the uniform distribution is
stationary.
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