
Probabilistic Foundations of Artificial Intelligence
Solutions to Problem Set 5
Dec 7, 2018

1. Particle filter

Suppose that you have a robot, which is moving randomly through an 1-dimensional environ-
ment. You want to track the robot’s position, x, which is discretized to integer values, x ∈ Z.
The robot’s movement is modeled as a random walk,

xt+1 = xt + ϵt, (1)

where ϵt is uniformly distributed and can take integer values in [−3, 3]. To track the robot, a
sensor that measures the distance to the robot has been placed at the origin. The measurement
model is

yt = (xt + ηt)
2, (2)

where ηt is distributed according to

P (ηt) =

0.6 if ηt = 0

0.2 if |ηt| = 1

0 otherwise.
(3)

You want to use a particle filter with six particles to track the robot’s position. At initial
time, the robot is at the origin, x0 = 0. Hence, the particles are initialized to xi = 0,
i ∈ {0, 1, 2, 3, 4, 5}.

(i) You draw samples from the distribution of ϵ0 and obtain (−1,−1, 0, 1, 2, 3). What is the
position of the particles after the prediction update?

(ii) You obtain a measurement, y1 = 1. What are the weights of the individual particles?

(iii) Are five particles enough to accurately estimate the state? Why/Why not?

(iv) Why would a Kalman filter not work reliably in this case?

Solution

(i) Using the movement model,
x1 = x0 + ϵ0, (4)

we obtain x′ = (−1,−1, 0, 1, 2, 3).

1

(ii) From the measurement model we obtain ηt = ±
√
yt − xt, and consequently the mea-

surement probability distribution

P (yt+1 | x′i) = P (ηt+1 = ±
√
yt+1 − x′i) (5)

The particle weights are computed as wi =
1

Z
P (yt+1 | x′i)

n = 0, P (y1 = 1 | x′0 = −1) = P (η1 = 0) + P (η1 = 2) = 0.6 + 0.0 = 0.6 (6)
n = 1, P (y1 = 1 | x′1 = −1) = P (η1 = 0) + P (η1 = 2) = 0.6 + 0.0 = 0.6 (7)
n = 2, P (y1 = 1 | x′2 = 0) = P (η1 = −1) + P (η1 = 1) = 0.2 + 0.2 = 0.4 (8)
n = 3, P (y1 = 1 | x′3 = 1) = P (η1 = 0) + P (η1 = −2) = 0.6 + 0.0 = 0.6 (9)
n = 4, P (y1 = 1 | x′4 = 2) = P (η1 = −1) + P (η1 = −3) = 0.2 + 0.0 = 0.2 (10)
n = 5, P (y1 = 1 | x′5 = 3) = P (η1 = −2) + P (η1 = −4) = 0.0 + 0.0 = 0.0 (11)

Z =

N∑
i=0

P (y1 = 1 | x′i) = 0.6 + 0.6 + 0.4 + 0.6 + 0.2 + 0.0 =
24

10
(12)

Consequently, we can calculate the weights with wi =
1
ZP (y1 = 1 |x′i)

w0 =
6

24
, w1 =

6

24
, w2 =

4

24
. w3 =

6

24
, w4 =

2

24
, w5 = 0 (13)

(iii) No, because we cannot even capture the probability distribution of the movement pre-
diction accurately (uniform distribution). We need more samples to accurately estimate
the state.

(iv) A Kalman filter can only describe Gaussian distributions (unimodal). Here, the noise is
not Gaussian and the measurements are nonlinear. Furthermore, the distance measure-
ments cannot break the symmetry in the problem, so that the posterior state distribution
after one step is bimodal.

2. Hero in the maze

Consider the following problem related to probabilistic planning. You are a hero H who is
being chased by a ghost G in a maze.

(i) Suppose the maze is a simple (infinite) chain of nodes, each node labeled with a number
(from −∞ to ∞): H starts at 0, G starts at -2. H always tries to move away from G,
but only succeeds with probability p, and with probability 1 − p gets stuck (i.e., with
probability p, H moves 1 step to the right, from node i to i+1, and gets 1 unit of reward;
with probability 1 − p, H doesn’t change its location and gets 0 units of reward). G
always chases after H and never gets stuck. If G catches H, H incurs -10 reward in the
timestep in which it got caught (and 0 reward in all subsequent time steps). Both G and

2

H move simultaneously. Write down the state space with the transition probabilities.
For a discount factor γ, what is the expected long term future reward as a function p
and γ? Calculate its value for p = .9 and γ = .95. Hint: You may want to consider the
relative positions of H and G instead of their absolute positions when choosing your state
representation.

(ii) Now, suppose the maze is a “T”, i.e, an (infinitely large) tree, where only one node, the
starting node of H, has degree 3, all other nodes have degree 2. In the first round, H
has the choice of either moving “right” and being chased (the same as above); or moving
”down” and not being chased. If H moves “down”, it will also get stuck with probability
1 − p like above, but only incur reward 1/2 for each step moved (which happens with
probability p. In all subsequent actions, H continues to (attempt to) move in the same
direction as in the first round (i.e., once it decides to move right, it has to continue to
move right etc.) What is the expected long term future reward in this case, as a function
of p and γ? Calculate its value for p = .9 and γ = .95. For these values of p and γ, which
initial action should H take? For a value of γ = .95, give an explicit rule on howH should
choose its initial action as a function of p. Compute the critical (decision-relevant) values
of p (you may have to do this numerically).

Solution

2 1 0

p (+1)

1-p (-10)

1 (0)

p (+1)

1-p (0)
2

1-p (0)

p (+1/2)

1-p (0)1-p (0)

p (+1/2) p (+1/2)

(a) (b)

Figure 1: (a) Hero moving right; (b) hero moving down

(i) Both Ghost and Hero can only move right (hero gets stuck randomly).
The state space is the set of all possible relative positions of H to G, i.e., X = {0, 1, 2}.
There is only one action that the hero will move forward, although sometimes he may
get stuck. Transition probabilities are labeled as Figure 1 (a):

P (Next state = 2|state = 2) = p
P (Next state = 1|state = 2) = 1− p
P (Next state = 1|state = 1) = p
P (Next state = 0|state = 1) = 1− p
P (Next state = 0|state = 0) = 1

For the optimal policy π∗ it holds (Bellman equation)

V ∗(x) = max
a∈A(x)

∑
x′

P (x′|x, a)
(
r(a, x, x′) + γV ∗(x′)

)

3

The values of the three states 0, 1, 2 can be computed as follows:

V (0) = 0 (14)
V (1) = p(1 + γV (1)) + (1− p)(−10 + γV (0))) (15)
V (2) = p(1 + γV (2)) + (1− p)(0 + γV (1)). (16)

Solving the equations, the values are V (1) = −0.6897, V (2) = 5.7551.

(ii) Now, the hero can choose to move down in the first round.
As Figure 1 (b) shows, when hero moves down, all following states have exactly the same
transition probabilities. Thus, if the value function converges, it should be a constant
value V ∗ for all states when t→∞. Using the Bellman equation, we have

V ∗ =
p

2
+ γ{(1− p)V ∗ + pV ∗} =⇒ V ∗ =

1/2 ∗ p
1− γ

=
0.5 ∗ 0.9
1− 0.95

= 9.

The following figure shows the expected long-term rewards (that is, V (2) and V ∗) for
moving right and down, respectively. It can be seen that for p ≥ 0.9316 the optimal
choice of the hero is to move right, otherwise, the optimal choice is to move down.

0.0 0.2 0.4 0.6 0.8 1.0
p

10

5

0

5

10

15

20

Values
right
down

4

3. Policy iteration

Consider an undiscountedMDP having three states, (1, 2, 3), with rewards -1, -2, 0, respectively.
State 3 is a terminal state. In states 1 and 2 there are two possible actions: a and b. The transition
model is as follows:

• In state 1, action a moves the agent to state 2 with probability 0.8 and makes the agent
stay put with probability 0.2.

• In state 2, action a moves the agent to state 1 with probability 0.8 and makes the agent
stay put with probability 0.2.

• In either state 1 or state 2, action b moves the agent to state 3 with probability 0.1 and
makes the agent stay put with probability 0.9.

Answer the following questions:

(i) Draw theMDP described above. What can be determined qualitatively about the optimal
policy in states 1 and 2?

(ii) Apply policy iteration, showing each step in full, to determine the optimal policy and
the values of states 1 and 2. Assume that the initial policy has action b in both states.

(iii) What happens to policy iteration if the initial policy has action a in both states? Does
discounting help? Does the optimal policy depend on the discount factor?

Solution

(i) Intuitively, the agent wants to get to state 3 as soon as possible, because it will pay a cost
for each time step it spends in state 1 and state 2. However, the only action that reaches
state 3 (action b) succeeds with low probability, so the agent should minimize the cost
it incurs while trying to reach the terminal state. This suggests that the agent should
definitely try action b in state 1; in state 2, it might be better to try action a to get to state
1 (which is the better place to wait for admission to state 3), rather than aiming directly
for state 3. The decision in state 2 involves a numerical tradeoff.

(ii) The application of policy iteration precedes in alternating steps of value determination
and policy update.

• Initialization: U ← ⟨−1,−2, 0⟩, P ← ⟨b, b⟩.
• Value determination: Write out the equations in terms of the values (rewards and
transition probabilities are known for a fixed policy π(x))

u(x) = r(x) +
∑
x′

P (x′|x, π(x))u(x′)

u1 = −1 + 0.1u3 + 0.9u1

u2 = −2 + 0.1u3 + 0.9u2

u3 = 0

5

Which have the solution, u1 = −10 and u2 = −20.
Policy update:
The reward is not dependent on the action, so it does not affect the maximization
problem and is neglected in the following. In state 1,∑

j

T (1, a, j)uj = 0.8×−20 + 0.2×−10 = −18

while ∑
j

T (1, b, j)uj = 0.1× 0 + 0.9×−10 = −9

so action b is preferred for state 1.
In state 2, ∑

j

T (1, a, j)uj = 0.8×−10 + 0.2×−20 = −12

while ∑
j

T (1, b, j)uj = 0.1× 0 + 0.9×−20 = −18

so action a is preferred for state 2. We set unchanged?← false and proceed.
• Value determination:

u1 = −1 + 0.1u3 + 0.9u1

u2 = −2 + 0.8u1 + 0.2u2

u3 = 0

once more, u1 = −10; now, u2 = −12.5.
Policy update:
In state 1, ∑

j

T (1, a, j)uj = 0.8×−12.5 + 0.2×−10 = −12

while ∑
j

T (1, b, j)uj = 0.1× 0 + 0.9×−10 = −9

so action b is still preferred for state 1.
In state 2, ∑

j

T (1, a, j)uj = 0.8×−10 + 0.2×−12.5 = −10.5

while ∑
j

T (1, b, j)uj = 0.1× 0 + 0.9×−12.5 = −11.25

so action a is still preferred for state 2. unchanged? remains true, andwe terminate.

6

Note that the resulting policy matches our intuition: when in state 2, try to move to state
1, and when in state 1, try to move to state 3.

(iii) An initial policy with action a in both states leads to an unsolvable problem. The initial
value determination problem has the form

u1 = −1 + 0.2u1 + 0.8u2

u2 = −2 + 0.8u1 + 0.2u2

u3 = 0

and the first two equations are inconsistent. If we were to try to solve them iteratively,
we would find the values tending to −∞.
Discounting leads towell-defined solutions by bounding the penalty (expected discounted
cost) an agent can incur at either state. For this problem, the discount factor γ does not
affect the optimal policy, as shown in the figure below. (For γ = 0, all policies are
optimal, since future rewards are completely disregarded.)

0.0 0.2 0.4 0.6 0.8 1.0
Discount

12

10

8

6

4

2

Optimal values
u1
u2

0.0 0.2 0.4 0.6 0.8 1.0
Discount

a

b
Optimal policies

p1
p2

7

4. Value iteration

In finite MDPs, the value function can be expressed as a vector that has as many entries as
states in the state space, X . Given a value vector V , we defined the Bellman update operator,
B(·), for every element of V as follows:

B(V (x)) = max
a

(
r(x, a) + γ

∑
x′

P (x′|x, a)V (x′)
)
. (17)

Show that the Bellman operator is a contraction with respect to ∥ · ∥∞, that is to say that, for
any V, V ′, holds that:

max
x∈X
|B(V (x))− B(V ′(x))| = ∥BV − BV ′∥∞ ≤ γ∥V − V ′∥∞. (18)

Solution

By considering a generic x ∈ X we can write |B(V (x))− B(V ′(x))| as:

|max
a

(
r(x, a) + γ

∑
x′

P (x′|x, a)V (x′)
)
−max

a

(
r(x, a) + γ

∑
x′

P (x′|x, a)V ′(x′)
)
|,

≤ |max
a

(
r(x, a) + γ

∑
x′

P (x′|x, a)V (x′)− r(x, a) + γ
∑
x′

P (x′|x, a)V ′(x′)
)
|,

= γ|max
a

(∑
x′

P (x′|x, a)(V (x′)− V ′(x′))
)
|,

= γ|
∑
x′

P (x′|x, a∗)(V (x′)− V ′(x′))|,

where a∗ is the action that attains the maximum. At this point, it is important to notice that
V (x′)−V ′(x′) <= ∥V −V ′∥∞ by definition. Furthermore, remember that P (x′|x, a) ≥ 0 for
every x′ ∈ X and that

∑
x′ P (x′|x, a) = 1. These statements allow us to say the following:

|B(V (x))− B(V ′(x))| ≤ γ|
∑
x′

P (x′|x, a∗)(V (x′)− V ′(x′))|,

≤ γ∥V − V ′∥∞|
∑
x′

P (x′|x, a∗)|,

= γ∥V − V ′∥∞.

We proved that this inequality holds for a generic x ∈ X . This means that it must hold in
particular for the value that attains the maximum of the left hand side of the inequality:

|∥BV − BV ′∥∞ = max
x∈X
|B(V (x))− B(V ′(x))| ≤ γ∥V − V ′∥∞. (19)

8

	Particle filter
	Hero in the maze
	Policy iteration
	Value iteration

