
Probabilistic Foundations of Artificial Intelligence

Problem Set 6

Dec 14, 2018

1. River Swim

Consider the MDP with states 1, . . . , S as illustrated below. �e agent starts in state 1 and tries
to swim up the river to reach the �nal state S. All states except for 1 and S have two actions

le� (L) and right (R). �e �rst state has only the R action, whereas the last state has only the

L action. In any state s = 1, . . . , S, the L action brings the agent to the previous state s − 1,
wheres the R action gets the agent to the next state s with probability p or the same state with

probability 1− p. �ere is a reward of +1 in state S and no reward in any of the other states.

�e episode ends when the learner reaches state S and we use a discount factor 0 < γ ≤ 1.

1 2 3
. . .

S

R,1-p R,1-p R,1-p R,1-p

R,p

L

R,p

L

R,p

L

R,p

L

(i) Compute the value function Vγ(s) for the policy that always picks the R action in any

state s = 1, . . . S.

(ii) Show that this policy is in fact the optimal policy for this problem.

(iii) What is the optimal average reward Vγ(1) for γ = 0, γ = 1 and p = 1 respectively? Do

the results you get make sense?

�e de�nition of the Q-function is Q(s, a) = r(s) + γ
∑

s′ P (s
′|a, s)Vγ(s′), where P (s′|a, s)

is the probability of going to state s′ when picking action a in state s. Remember that the

Q-functionQ∗ of the optimal policy satis�es the equation V ∗(s) = maxaQ
∗(s, a). �e idea of

Q-learning is to estimateQ∗(s, a) directly from sample transitions (s, a, r, s′). Given an initial

estimate Q̂(0)(s, a), we update our estimate according to

Q̂(i+1)(s, a) = (1− α)Q̂(i)(s, a) + α
(
r + γmax

a′
Q̂(i)(s

′, a′)
)
. (1)

(iv) Suppose you get the following transitions for the MDP above with S = 3 and γ = 1:
(1,R,0,2), (2,R,1,3), (1,R,0,1), (1,R,0,2), (2,R,1,3).

Compute the updates for Q̂(i), starting with the initialization Q̂(0)(s, a) = 0 for all s ∈
{1, 2, 3} and a ∈ {L,R}, and learning rate 0 < α < 1.

(v) In online Q-learning, the idea is to improve the current policy by choosing an action

ai+1 = argmaxa Q̂(i)(si, a). Assume that we start with the initialization Q̂(0)(s, L) = 1

and Q̂(0)(s,R) = 0 for all states s = 1, . . . , S. What sample trajectory does the policy

generate in the MDP above, and does the estimate Q̂(i) converge to the optimalQ-value?

Does this agent ever reach state S?

1

Solutions

(i) In the �nal state S, we have Vγ(S) = 1 which follows directly from the de�nition of the

value function. We make use of the Bellman equation for the value function to propagate

the value to the previous states. For S − 1 we get

Vγ(S − 1) = R(S − 1) + γ
(
pVγ(S) + (1− p)Vγ(S − 1)

)
.

Note that R(S − 1) = 0. Solving for Vγ(S − 1) yields

Vγ(S − 1) =
γp

1− γ(1− p)
Vγ(S) .

Propagating further yields for any state s = 1, . . . , S,

Vγ(s) =

(
γp

1− γ(1− p)

)S−s
Vγ(S) .

Remark: In general, we can solve the linear system given by the Bellman equation, ie

V = R+ γPV , where V ∈ RS is the value function and R ∈ Rd is the reward vector.

(ii) A policy is optimal if and only if it is greedy w.r.t. its induced value function. We check if

the policy chooses a ∈ argmaxa′ Q(s, a′) for Q(s, a′) = R(s) + γ
∑

s′ p(s
′|a′, s)Vγ(s′)

in any state s < S. We get

Q(s, L) = 0 + γVγ(s− 1) ,

Q(s,R) = 0 + γ(pVγ(s+ 1) + (1− p)Vγ(s)) .

With the previously computed values for Vγ , it is clear, that R is the greedy action. �ere-

fore the policy is optimal.

(iii) For γ = 0 we get V0(1) = 0. γ = 0 essentially makes the agent not care about future

rewards. For γ = 1, we get Vγ(0) = 1. Since there is no discounting, it doesn’t ma�er

how long the agent takes to reach state S. Finally, if p = 1, the R action becomes deter-

ministic. We have Vγ(1) = γS−1. �is we could have go�en directly from the de�nition

of Vγ(1) =
∑S

i=0 γ
iR(si).

(iv) We initialize for all s ∈ {1, 2, 3}, a ∈ {L,R},

Q̂(0)(s, a) = 0

Update on (1,R,0,2):

Q̂(1)(1,R) = (1− α)Q̂(0)(1,R) + α(0 + max
a′

Q̂(0)(2, a
′))

= (1− α)0 + α0 = 0

Update on (2,R,1,3):

Q̂(2)(2,R) = (1− α)Q̂(1)(2,R) + α(1 + max
a′

Q̂(1)(3, a
′))

= (1− α)0 + α1 = α

2

Update on (1,R,0,1):

Q̂(3)(1,R) = (1− α)Q̂(2)(1,R) + α(0 + max
a′

Q̂(2)(1, a
′))

= (1− α)0 + α0 = 0

Update on (1,R,0,2):

Q̂(4)(1,R) = (1− α)Q̂(3)(1,R) + α(0 + max
a′

Q̂(3)(2, a
′))

= (1− α)0 + α(0 + α) = α2

Update on (2,R,1,3):

Q̂(5)(2,R) = (1− α)Q̂(4)(2,R) + α(1 + max
a′

Q̂(4)(3, a
′))

= (1− α)α+ α(1 + 0) = α(2− α)

(v) We have initial values Q̂(0)(s, L) = 1 and Q̂(0)(s,R) = 0. Before we do the calculations,
note that if we act greedily w.r.t. this Q-function, we always prefer the L action over R.

�is is problematic, because using this policy, we will never reach state S, where we get
a reward. Formally, starting from s = 1, there is only the R action. �erefore we can

get the transition (1,R, 0, 1) or (1,R, 0, 2). �e former does not a�ect our estimate Q̂(i)

because Q̂(0)(s,R) = 0 and there is on Laction. For the case where we transit to state

s = 2, we update

Q̂(i+1)(1,R) = (1− α)Q̂(i)(1,R) + α(0 + max
a′

Q̂(3)(2, a
′))

= (1− α)Q̂(i)(1,R) + α(0 + 1) = (1− α)Q̂(i)(1,R) + α < 1

the last inequality follows inductively from the the initialization Q̂(i)(1,R) = 0. A�er
this update, the Laction is still be�er, therefore the agent goes back to state 0. From this

we see that initialization can ma�er a lot for exploration. O�en, an optimistic initializa-

tion, e.g. Q̂(0)(s, L) = 1 and Q̂(0)(s,R) = 1, avoids problems like this.

3

2. Deep Dive

We want to build a learning agent, which dives into the ocean to �nd a treasures hidden on

the seabed. Our problem is modeled the by a grid-world of sizeD×W as shown in the �gure

below. �e agent’s starting position is denoted by ‘A’. At each step, the agent can move to a

neighboring cell in any direction using the actions (L), (R), (U), (D) with the obvious limits at

the boundary. Transitions are deterministic. �e only reward of +1 is given when the agent

reaches the treasure ‘G’ in the bo�om row, and its exact position is not known to the agent.

We have the additional constraint that our agent can stay below the surface (a non-white cell)

for at most T steps, otherwise we receive a reward of -10 and the agent is reset to position ‘A’.

A

G

D×

W×

(i) �e condition that the agent can stay at most T steps below the surface is non-Markovian,
because it depends on the previous steps taken by the agent. However, by enlarging the

state-space we can o�en make such problemsMarkovian. Find an MDP withW ×D×T
states that models the problem described above, and fully specify its transition model

and reward function.

(ii) In order to learn a good policy, the agent needs to gather data by exploration. Perhaps

the simplest way of doing exploration is to take an random action in any state. What is

the main concern with this exploration strategy in this example, in particular if T ≈ 2D
and D is very large?

Suppose we run episodes of length (W + 2T). We de�ne the worst-case sample complexity of

this problem as the maximum expected number of episodes an agent needs to obtain a reward

of +1 for the �rst time in any con�guration of the environment. �e expectation is over the

randomness of the agent.

(iii) Show that the worst-case sample complexity of the random agent is lower bounded by

4W+2T−3
. To do so, you need to specify one instance of the environment, such that the

expected number of episodes the random agent takes to get +1 reward is 4W+2D−3
. For

simplicity, assume that T = 2D − 2, such that the only way of ge�ing to the treasure is

starting the dive directly above it. Hint:
∑∞

i=1 ix
i−1 = 1

(1−x)2 for 0 < x < 1.

continues next page…

4

In the lecture, you have seen the Rmax algorithm, which chooses an optimistic initialization of

the environment to achieve e�cient exploration. Inspired by this idea, we use the following

algorithm: First, we initialize an estimate of the reward function R̂(s) = 1 for all states s in
our MDP. In the ith episode, we then compute the optimal policy in the MDP with the current

estimate of reward function R̂, and follow this policy for the whole episode. We then use the

data from all visited states to update our reward function (the reward is deterministic).

(iv) Show that the worst-case sample complexity of this agent is upper bounded byW ·D ·T .
To do so, you need to show that for any instance of the environment, the agent takes at

mostW ·D · T episodes to achieve a reward of +1.

(v) (Bonus question.) Assume we want to avoid a negative reward at all cost. Can you �nd

a di�erent initialization, such that our Rmax algorithm still �nds the treasure, but never

stays below the surface for more than T steps?

Solutions

(i) We de�ne an extended state space by S = {(x, y, t) : x = 1, . . . ,W ; y = 1, . . . , D; t =
0, . . . T}. �e additional dimension allows to keep track of how long the agent stays

below the surface. �e starting state is (1, 1, 0) We de�ne the transitions as follows.

In any state (x, 1, 0), for x = 1, . . . ,W , we have

L (x− 1, 1, 0) (moving above the surface)

R (x+ 1, 1, 0) (moving above the surface)

D (x, 2, 1) (going below the surface)

U (x, 1, 0) (boundary)

In any state (x, 2, t), for x = 1, . . . ,W , and t = 1, . . . T , we have

L (x− 1, 2, t+ 1)

R (x+ 1, 2, t+ 1)

D (x, 3, t+ 1)

U (x, 1, 0) (reaching the surface)

In any state (x, y, t), for x = 1, . . . ,W , y = 3, . . . , D and t = 1, . . . T , we have

L (x− 1, y, t+ 1)

R (x+ 1, y, t+ 1)

D (x, y + 1, t+ 1)

U (x, y − 1, t+ 1)

And �nally, for any (x, y, T) any action leads to (1, 1, 0) (reset).

�e reward function is R(x, y, T) = −10 for all x = 1, . . .W and y = 1, . . . , D. If the

goal is at (x∗, y∗) in the 2d grid world, we set the reward of R(x∗, y∗, t) = +1 for any

t < T . All other states have zero reward.

5

Remark 1: By our transition model, not every state in S is reachable, e.g. the state

(1, D, 1) for D > 2 cannot be reached.

Remark 2: �ere is a catch the way the reward is generated in our extended state-space:

If an agent picks up the treasure at (x∗, y∗, t) it can get an additional reward by going

to a neighbouring cell and then back to the reward cell at (x∗, y∗, t + 2) to get another

reward of +1. To avoid this, one would have to introduce a further �ag to keep track of

whether the goal has been reached or not. �is can be done by using an extended state

space (x, y, t, f) where f indicates if the agent was at the position (x∗, y∗).

Remark 3: By using the whole history as state, it is possible to convert very general

reinforcement se�ings to an MDP. However this comes at the cost of a state-space which

is exponentially larger than the original state space.

(ii) �e random exploration strategy might take a very long time until it discovers the po-

sition of the treasure. In addition it does not actively avoid the cost of staying below

the surface for too long - something which is very likely to happen when doing random

exploration.

(iii) We place the treasure in the bo�om-right corner of the grid world. For T = 2D− 2, the
only path that leads to the treasure and avoids the -10 reward, is

R, . . . ,R︸ ︷︷ ︸
W−1×

,D, . . . ,D︸ ︷︷ ︸
D-1×

,U, . . . ,U︸ ︷︷ ︸
D-1×

.

In any episode, the probability that the agent takes this sequence of actions is p =(
1
4

)W+2D−3
. �e expected number of episodes needed is therefore

E[#episodes] =
∞∑
i=1

pi(1− p)i−1 = p

(1− (1− p))2
=

1

p
= 4W+2D−3

.

(iv) Each time the optimistic policy visits a state (x, y, t) with no reward, it updates the re-

ward estimate R̂(x, y, t) = 0. Consequently in the next episodes, the updated policy

(which is optimal for the estimated reward R̂) needs to visit at least one new state (since

for unvisited states, the reward estimate is still +1). Because there are only that many

states, a�erW ·D · T episodes, the Rmax algorithm has found the treasure.

(v) If we set R̂(x, y, T) = −10 from the beginning, the Rmax algorithm avoids staying below

the surface for too long, since any policy which stays above the surface has reward of 0.

If we additionally set all other states R̂(x, y, t) = +1, we still get the same exploration

incentive as in the previous part.

6

	River Swim
	Deep Dive

