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1 Bayesian Inference

To expose ideas of approximate inference, let us work with the following definition of infer-
ence.

Definition 1 (Inference). Inference is a quantitative statistical query about a quantity Q
with the knowledge of some data D and model M than relates Q and D.

An example of a query can be the most likely value of a quantity Q given the data D where
model M dictates the conditional probability relation (often P (D|Q)). In this case, a query
can be for example as,

qMAP = argmax
q

P (Q = q|D) (1)

The subscript MAP stands for maximum a-posterior, since often, when interpreting Q as
random variable and having a prior probability on the quantity Q, P (Q), we can derive
the posterior (given the realization of another random variable D) P (Q|D). Utilizing the
knowledge of the model that gives us P (D|Q), we can calculate the desired quantity using
Bayes’ rule,

P (Q|D) =
P (D|Q)P (Q)

P (D)
=

R(Q)

Z
(2)

where
Z = P (D) =

∑
q∈Ω

P (D|Q = q)P (Q = q)dq, (3)

and R(Q) = P (D|Q)P (Q).

As the model M dictates the conditional dependence P (D|Q) calculation of R(Q) is often
not challenging, however, integrating Z can be. Calculating this is not necessary for the
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query in (1), however different queries such as the following require the calculation of Z.

E[Q|D] =
∑
q∈Ω

qP (Q = q|D)dq =
1

Z

∑
q∈Ω

qP (D|Q = q)P (Q = q)dq (4)

Note that this way of inference can be contrasted with the so called frequentist inference,
where, for example, a parameter that maximizes the likelihood of the event D is chosen as
an estimator,

θML = argmaxP (D|Q).

1.1 Remark

When |Ω| < ∞, then a probability distribution can be represented as a histogram, or in
other words, as a vector.

Large portions of these notes are based on the excellent review of [Andrieu et al., 2003].

2 Monte Carlo (MC)

Monte Carlo is a colloquial name for an approximation of integrals using sampling from
probability distribution. It has its roots in Manhattan project [Andrieu et al., 2003]. It can
be used to answer queries where an expectation is required such as the above query E[Q|D]
or calculating the whole probability distribution P (Q|D) (not just argmax).

First, consider definition of expectation,

Eq∼p(q)[f(q)] :=
∑
q∈Ω

p(q)f(q)dq. (5)

Due to Law of Large Numbers, we know that expectation can be approximated using sample
mean µn,

µn =
n∑

i=1

f(qi) where qi ∼ p(q). (6)

In other words, we know that

µn → Eq∼p(q)[f(q)] as n → ∞
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Hence when faced with an inference problem where Z needs to be approximated we resort
to approximation of Z as,

Z =
∑
q∈Ω

P (D|Q = q)P (Q = q) = Eq∼P (Q)[P (D|Q = q)] ≈
n∑

i=1

P (D|Q = qi),

where qi ∼ P (Q). The estimate µn =
∑n

i P (D|Q = qi) might converge very slowly to
Eq∼P (Q)[P (D|Q)], since in some cases, as demonstrated in Figure 1, most of the probability
mass where the samples from P (Q) lie is elsewhere to where most of the mass of the integrand
P (D|Q) lies.

Figure 1: Importance sampling with π(Q). In Markov chain Monte Carlo we want to improve
our importance sampling distribution over the time in order to sample from the true posterior.

3 Importance Sampling1

Importance sampling is a step towards MCMC that we delineate here. It tackles again the
problem to approximate (3).

1Not examinable
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Importance sampling is a way to steer the sampling process of MC with a user defined
sampling distribution π(Q) by considering the following equivalent statements

Z =
∑
q∈Ω

P (D|Q = q)P (Q = q)dq (7)

=
∑
q∈Ω

P (D|Q = q)P (Q = q)

π(Q = q)
π(Q = q)dq (8)

=
∑
q∈Ω

w(Q = q)π(Q = q)dq (9)

= Eq∼π(Q)[w(Q)], (10)

where w(Q) = P (D|Q)P (Q)
π(Q)

. As the above can be expressed as expectation, we can use Monte
Carlo estimate again, but now with sampling according to a different distribution π(Q).

A natural questions arises, what is the optimal sampling distribution π(Q) such that our
estimate converges quickly to the true value. The answer, not surprisingly but unfortunately,
turns out to be the actual posterior distribution P (Q|D) that we try to estimate along this
procedure.

A way to bypass this obstacle is to use MCMC, where we successively try to improve the
quality of our distribution π(Q) such that it approaches the optimal sampling distribution
P (Q|D).

Remark 1. A probability distribution over a finite space Ω can be represented a vector
or length |Ω|, namely π ∈ R|Ω|, where sum of its entries is equal to 1. The probability of
an event (i ∈ Ω)can be associated to a component P (Q = i) = πi.

4 Markov Chain Monte Carlo (MCMC)

The idea of MCMC is to start with a importance sampling distribution π0, and create an
iterative procedure, whereby we improve our importance sampling distribution πt(Q) in each
iteration t → t+ 1.

With MCMC, we will be able to generate samples from a distribution πt which will eventually
approach the distribution πt → P (Q|D) as t → ∞. In order to define the transition from t
to t+ 1, we need a language and techniques from Markov chains.
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4.1 Markov Chains

Before we dwell into intricacies of Markov chain Monte Carlo, we need to first review basics of
Markov chains. For a comprehensive review, please have a look in the standard probability
textbooks (e.g. [Ross, 2009]). We cannot go into all technicalities here, however you are
recommended to review concepts of preriodicity, reducibility, ergodicity and ergodic theorem.

Definition 2 (Markov stochastic process). A stochastic process is a collection of random
variables {Qt}t∈I , where I is the ordered-index set.

A Markov stochastic process satisfies Markov property if

P(Qt′ |{Qt}t<t′) = P(Q′
t|Qt′−1). (11)

An associated object with a Markov stochastic process is so called transition kernel, or in
our case transition matrix. We denote it T . It tells us the probability that having observed
Qt = i, what is the probability that we observe a specific value of Qt+1 = j in the next step
of the chain. Specifically,

T (i, j) = P (Qt+1 = i|Qt = j) (12)
In finite probability space (|Ω| < ∞) we can view this as matrix T ∈ R|Ω|×|Ω|.

Lastly, we need to introduce a concept of a stationary distribution π∞.

Definition 3. Let {Qt} be a Markov process with T transition kernel. A stationary
distribution π∞ is a distribution which fulfills the following relation,

∑
q∈Ω

π∞(Qt = q)T (Qt+1, Qt = q)dq = π∞(Qt+1). (13)

This condition can be interpreted in matrix notation as

π∞T = π∞, (14)

which signalizes that π∞ represented as a vector is left eigenvector of the matrix T with
associated eigenvalue 1. If your Markov chain is irreducible and aperiodic the existence and
uniqueness of such eigenvector is guaranteed. If it is not aperiodic, the uniqueness needs to
be dropped.

A property of Markov chains that we will not review here is that given suitable conditions
they converge to stationary distributions. Please refer to [Ross, 2009]. Namely with matrix
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notation, this can be interpreted as
ϑT t → π∞

as t → ∞, where ϑ ∈ R|Ω| is a probability distribution.

4.2 Markov chain of probability distributions

The insight of MCMC is to stipulate that we know the limiting stationary distribution which
is π∞ = P (Q|D), and to find a transition kernel such that this is true. Then, we evolve
the kernel and use it to approximately sample from P (Q|D). In other words, the probability
distributions πt+1 = Tπt follow the Markov chain specified by the kernel T .

The difficulty here lies in ensuring that transition kernel T (or proposal distribution) satisfies
the eigenvector relation in Equation (14). It turns out there is a stronger condition that can
be imposed that is easier to handle.

4.3 Detailed Balance

We have seen that the requirement on the transition kernel T (Qt+1, Qt) is that it has a
stationary distribution equal to the true posterior P (Q|D). This condition is in some cir-
cumstances difficult assure directly. Instead, we can formulate a condition that necessary
implies that the stationary distribution is P (Q|D).

Definition 4 (Detailed Balance). Let {Qt}t be a Markov process with a transition kernel
T , and π∞ distribution, then if the following relation holds

π∞(Qt)T (Qt+1, Qt) = π∞(Qt+1)T (Qt, Qt+1) (15)

we say that the distribution π∞ under the transition kernel T satisfies the detailed balance
condition.

We see that we can make sure that P (Q|D) is stationary distribution for the Markov chain
with transition kernel T without knowing P (Q|D) exactly. The only required quantity is
R(Q) = P (D|Q)P (Q). Since,

R(Qt)

Z
T (Qt+1, Qt) =

R(Qt+1)

Z
T (Qt, Qt+1).

Claim 1. Detailed balance of π∞ and T implies that π∞ is stationary distribution for the
kernel T .
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Proof. We sum both sides of the equation (15) with respect to q.∑
q∈Ω

π∞(Qt = q)T (Qt+1, Qt = q)dq =
∑
q∈Ω

π∞(Qt+1)T (Qt = q,Qt+1)dq

As T (Qt+1, Qt) is valid probability distribution, it sums to one.∑
q∈Ω

π∞(Qt = q)T (Qt+1, Qt = q)dq = π∞(Qt+1).

4.4 Algorithm

We have nearly all ingredients to formulate a practical MCMC algorithm. First consider
the toy example, where we know that transition kernel T satisfies detailed balance (or the
stationarity condition) with the true posterior. Then the toy Algorithm 1 approximates
a sample from the true posterior P (Q|D). This algorithm is a way to produce a sample
qτ ∼ π(Q)τ .

Algorithm 1 Toy MCMC
Pick q(0) ∼ P (Q)
repeat t = 1, 2 . . . , τ

q(t) ∼ T (Q,Qt−1 = q(t−1))
until happy
return q(τ)

However, often in practice, we cannot guarantee that T satisfies the detailed balance. Instead,
we focus on the scenario, where we guarantee that T and the initial distribution and P (Q|D)
have the same support2, and then devise a universal procedure such that for any such T the
detailed balance holds. This leads to the famed Metropolis-Hastings Algorithm 2.

Let us now convince ourselves that the scheme in Algorithm 2 satisfies the detailed balance.
The procedure defines a new transition matrix T̄ . Indeed, the new transition kernel with the
help of notation A(Qt+1, Qt) =

T (Qt,Qt+1)R(Qt+1)
T (Qt+1,Qt)R(Qt)

can be written as

T̄ (Qt+1, Qt) = T (Qt+1, Qt)A(Qt, Qt+1)+δ(Qt+1−Qt)
∑
x∈Ω

T (Qt+1 = x,Qt) (1− A(Qt, Qt+1 = x)) dx.

The first terms is associated with the acceptance step and the second is associated with the
rejection step (δ(x) is a delta function where all of its mass is concentrated at 0 only). By
construction this satisfies the detailed balance.

2Often it is the whole domain
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Algorithm 2 Metropolis-Hastings algorithm
Require: R(Q) = R(D|Q)P (Q) proportional to the posterior,T transition kernel
Ensure:

Pick q(0) ∼ P (Q)
repeat t = 1, 2 . . . , τ

Sample u ∼ Uniform[0, 1]
Sample c(t) ∼ T (Q,Qt−1 = q(t−1))

if u < T (q(t−1),c(t))R(c(t))

T (c(t),q(t−1))R(q(t−1))
then

q(t) = c(t)

else
q(t) = q(t−1)

end if
until happy
return q(τ)
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