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Inference

Tree-structured:
• Variable elimination
• Belief propagation

Loopy networks:
• Loopy belief propagation
• Variational inference
• Gibbs sampling (Monte Carlo Sampling)



Stochastic Approximate Inference

• Algorithms that “randomize” to compute marginals as
expectations

• In contrast to the deterministic methods, guaranteed to
converge to right answer (if wait looong enough..)

• More exact, but slower than deterministic variants
• Also work for continuous distributions



Monte Carlo

Monte Carlo methods aim to find the expectation of some
function f (x) with respect to a probability distribution p(x):
• Draw samples x1, . . . , xN

• Compute f̂ = 1
N

∑N
i=1 f (xi )

For i.i.d from p(x) : f̂ is unbiased with variance 1
NE[(f − E(f ))2]

Basic samplings:
• Uniform Sampling
• Rejection Sampling
• Importance Sampling

Problem: can be very ineffective, particularly in high dimensions



Problem with Rejection sampling

If proposal distribution q(x) poorly matches our target distribution
p(x) – almost always rejects

Example: d-dimensional target p(x) = N(x ;µ, σ
2/d
p ) and the

proposal q(x) = N(x ;µ, σ
2/d
q ). Optimal acceptance rate can be

accomplished with k =
σq
σp
. With d = 1000 and σq = 1.01σp

k = 1/20000 resulting in a large waste in samples.



MC

Markov chains: random variables {x1, ., xN} n ∈ {1, . . . ,N − 1} :

p(xn+1|x1, . . . , xn) = p(xn+1|xn)

Transitional kernel: T (xn, xn+1) = p(xn+1|xn)
Stationary distribution π∞: π∞T = π∞

A given Markov chain may have many stationary distributions.
Example: T (x ′, x) = I(x ′ = x): any distribution is invariant.
Detailed balance: sufficient condition for ensuring π∞ is
stationary: choose T such that

π∞(x)T (x , x ′) = π∞(x ′)T (x ′, x)



MCMC: Metropolis-Hastings

• Aim to sample from p(x) (possibly unnormalized)
• Use easier distribution q(x∗|x) (opposed to q(x) and given as
a stochastic matrix) and acceptance test to sample

1 Initialize x0

2 Burn-in: for t ∈ {1, ., t0}:
x = x t

t = t + 1
sample u ∼ Unif (0, 1)
sample x∗ ∼ q(x∗|x):
if u ≤ A(x∗|x) = min{1, p(x

∗)q(x∗|x)
p(x)q(x|x∗) }: x t = x∗ (transition)

else: x t = x (stay in current state)
3 Draw samples

• This induces a transition matrix T (x∗|x) = q(x∗|x)A(x∗|x)
that satisfies detailed balance → after t0 sampling will lead to
sampling from stationary p(x)



Gibbs sampling: acceptance probability is 1
1 Initializing starting values for x1, ..., xn
2 Do until convergence:

• randomly pick xj
• x ∼ P(xj |x1, ., xj−1, xj+1, ., xn)
• xj = x

Note: given Markov Blanket of xj :

bl(xj) = pa(j) ∪ ch(j) ∪
v∈ch(i)

pa(v)

P(xj |x1, ., xj−1, xj+1, ., xn) = P(xj |bl(xj))



Computing Expectations via GS

One of the MCMC goals - compute the mean of f (x) with respect
to p(x) :

1 Use Gibbs Sampling to obtain T samples: {X t}t=T
t=1

2 Note: t0 samples for burn-in
3

E[f (x)|xB ] ≈
1

T − t0

T∑
t=t0+1

f (X t)



Exam 2016. HMM



Exam 2016. Sampling



Questions



Extra: why MH works


