Review Session - PAI 2018 - Temporal Models

January 24, 2019
Learning \& Adaptive Systems group
Institute of Machine Learning
ETH Zürich

Hidden Markov models

- Instead of assuming all variables are observed $\left(Y_{t}\right)$, we assume we have variables X_{t}, which we cannot observe.
- Assume: A graphical model for Hidden Markov Model (HMM)

- $\left\{X_{t}\right\}_{t}$ are called states and $\left\{Y_{t}\right\}_{t}$ are called observations.
- In this course: distributions assumed to be $P\left(X_{t} \mid X_{t+1}\right), P\left(Y_{t} \mid X_{t}\right)$ categorical or Gaussian mostly, however can be arbitrary.

- Bayesian Filtering

$$
P\left(X_{t} \mid Y_{1: t}\right)
$$

- Prediction

$$
P\left(X_{t+\tau} \mid Y_{1: t}\right) \text { where } \tau \geq 1
$$

- Smoothing (similar to filtering but on past data)

$$
P\left(X_{\tau} \mid Y_{1: t}\right) \text { where } \tau<t
$$

- Most Probable Explanation (MPE)

How to do it?

- Prior $P\left(X_{1}\right)$ needed.
- Bayesian Filtering - usually done recursively. Assume you have $P\left(X_{t} \mid Y_{1: t-1}\right)$, get $P\left(X_{t} \mid Y_{1: t}\right)$ using Markov property and observation probabilities.
- Prediction (for one step; can be generalized)

$$
P\left(X_{t+1} \mid Y_{1: t}\right)=\sum_{x} P\left(X_{t+1}, X_{t}=x \mid Y_{1: t}\right)=\sum_{x} P\left(X_{t+1} \mid X_{t}=x\right) P\left(X_{t} \mid Y_{1: t}\right)
$$

- Smoothing - can be recast as calculating a marginal! HMM being a polytree, we know that Belief propagation is applicable and converges fast with forward-backward passes!
- MPE - Sum product algorithm (search largest product).

Kalman Filter I - Basics

- A special case of HMM is Kalman filter, when X_{t} and Y_{t} are Gaussian with Linear dynamics and observation model.
- Motion model $=$ System dynamics $P\left(X_{t+1} \mid X_{t}\right)$ and is modeled using,

$$
X_{t+1}=\mathbf{F} X_{t}+\epsilon_{t}
$$

where, $\epsilon_{t} \sim \mathcal{N}\left(0, \Sigma_{x}\right)$. N.B.: Sum of Normal $R V$ is a Normal $R V$!

- Sensor model $=$ Observations $P\left(Y_{t} \mid X_{t}\right)$,

$$
Y_{t}=\mathbf{H} X_{t}+\nu_{t}
$$

where, $\nu_{t} \sim \mathcal{N}\left(0, \Sigma_{x}\right)$. N.B.: ϵ_{t} and ν_{t} are multivariate normals!

Kalman Filter II - How to?

- In general, this is the same as previously; but now the domain is different. Previously categorical distributions - now continuous.
- Filtering:

$$
P\left(X_{t} \mid Y_{t}=y_{1: t}\right)=\frac{1}{Z} P\left(X_{t} \mid Y_{t-1}=y_{1: t-1}\right) P\left(Y_{t}=y_{t} \mid X_{t}\right)
$$

- Prediction:

$$
P\left(X_{t+1} \mid Y_{1: t}=y_{1: t}\right)=\int P\left(X_{t+1} \mid X_{t}=x\right) P\left(X_{t}=x \mid Y_{1: t}=y_{1: t}\right) d x
$$

- All these are Gaussian integrals; that can be solved exactly.
- We can calculate the Kalman filter uncertainty offline. Independent of $y_{1: t}$.
- Review my multivariate Gaussians!

$$
\begin{aligned}
& \mu_{A \mid B}=\mu_{A}+\Sigma_{A B} \Sigma_{B B}^{-1}\left(\mathbf{x}_{B}-\mu_{B}\right) \\
& \Sigma_{A \mid B}=\Sigma_{A A}-\Sigma_{A B} \Sigma_{B B}^{-1} \Sigma_{B A}
\end{aligned}
$$

Particle Filters I

- What if the "motion" model is nonlinear? - For example Particle filters.
- Idea: Pick samples $\left\{x_{i}\right\}$ that are propagated through the dynamics and then produce a histogram! Samples: $\left\{x_{t, i}\right\}_{i=1}^{N}$ from distribution $P\left(X_{t} \mid y_{1: t}\right) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x, x_{t, i}}$.
- Propagate particles $x_{i}^{\prime} \sim P\left(X_{t+1} \mid X_{t}, x_{t, i}\right)$, calculate weights $w_{i}=\frac{1}{Z} P\left(y_{t+1} \mid x_{i}^{\prime}\right)$ (transition model known).
- Next step $x_{i, t+1} \sim \frac{1}{N} \sum_{i=1}^{N} w_{i} \delta_{x, x_{t, i}}$
- Why this re-weighting? If we do not do it; we have a mode collapse (out of scope of the course).

Exam 2013 Problem 5-I

5 [12 points] Temporal Models: Exploratory Rover

An exploratory rover is navigating through planet Vulcan, a deserted planet scattered with volcanic vents and radioactive valleys. The rover is equipped with a thermometer that registers only two levels, hot and cold. The rover sends back thermal responses $E=$ hot when it is at a Volcanic vent (V), or a Radioactive valley (R), and $E=$ cold when it is at Normal area (N). There is no chance of a mistaken reading.

The rover can only stay in one area on any given day. It travels around according to the following transition probabilities:

	$P\left(X_{t} \mid X_{t-1}=N\right)$	$P\left(X_{t} \mid X_{t-1}=V\right)$	$P\left(X_{t} \mid X_{t-1}=R\right)$
$X_{t}=N$	0.7	0.6	0.2
$X_{t}=V$	0.2	0.3	0.2
$X_{t}=R$	0.1	0.1	0.6

Exam 2013 Problem 5-II

1. Define $\mathbf{X}_{t}=\left(P\left(X_{t}=N\right), P\left(X_{t}=V\right), P\left(X_{t}=R\right)\right)$

$$
\mathbf{T}=\left(\begin{array}{ccc}
0.7 & 0.6 & 0.2 \\
0.2 & 0.3 & 0.2 \\
0.1 & 0.1 & 0.6
\end{array}\right) \text {, then } \mathbf{X}_{t} \mathbf{T}=\mathbf{X}_{t+1} \text {. }
$$

2. Further, we know that observation model for Y as well.

$$
\begin{aligned}
& P\left(E_{t}=\operatorname{hot} \mid X_{t}=V\right)=P\left(E_{t}=\text { hot } \mid X_{t}=R\right)=1 \text { and } \\
& P\left(E_{t}=\operatorname{cold} \mid X_{t}=N\right)=1 . \text { So very simple model. }
\end{aligned}
$$

3. a) Observe $\{$ cold, hot hot $\}$, what is

$$
P\left(X_{1: 3}=(N N N) \mid E_{1: 3}=(C H H)\right) ?
$$

Using d-separation rules

$$
\begin{aligned}
& P\left(X_{1: 3} \mid E_{1: 3}\right)=\underbrace{}_{\underbrace{P\left(E_{3} \mid X_{3}\right) P\left(X_{3} \mid X_{2}\right) / P\left(X_{2}, E_{3}\right)} P P\left(X_{3} \mid X_{2}, E_{3}\right)} P\left(X_{2} \mid X_{1}, E_{2: 3}\right) P\left(X_{1} \mid E_{1: 3}\right) \\
& P\left(E_{3}=\text { hot } \mid X_{3}=N\right)=0 \text {, so the overall probability is zero. }
\end{aligned}
$$

Exam 2013 Problem 5-III

- b) Given $E\{$ cold,hot,hot,cold $\}$ what is the most likely $\left\{X_{1: 4}\right\}$. Hint: Not many calculations.

This is a MPE query, in other words,

$$
X_{1: 4}=\arg \max _{\hat{X}_{1: 4}} P\left(\hat{X}_{1: 4} \mid Y_{1: 4}\right)
$$

Given that in cold state can be only observed when $X_{i}=N$, means that $X_{1}=N, X_{4}=N$. Now, we need to look which state is more probable for the middle points: $V V, V R, R V, R R$. We can calculate these probabilities using the transition matrix \mathbf{T} i.e.
$P\left(X_{2}=V, X_{3}=R, X_{1}=N, X_{4}=N\right)=P\left(X_{2}=V \mid X_{1}=N\right) P\left(X_{3}=\right.$
$\left.R \mid X_{2}=V\right) P\left(X_{4}=N \mid X_{3}=R\right)$

Exam 2013 Problem 5 - IV

- c) We use particle filter with $N=8$ particles.
- $5 \mathrm{~N}(i \in 1, \ldots 5)$
- $2 \mathrm{~V}(i \in 6,7)$
- $1 \mathrm{R}(i=8)$

The rover sends back $E=$ hot. What are the weights for the next sampling?

From the previous slides, we know

$$
w_{i} \propto P\left(E=\operatorname{hot} \mid X=x_{i}\right)
$$

For example for $w_{1} \propto P(E=$ hot $\mid X=N)=0$. Similar for others.
Weights need to sum to 1 so we can normalize them.

