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Hidden Markov models

Instead of assuming all variables are observed (Y;), we assume we

have variables X;, which we cannot observe.

Assume: A graphical model for Hidden Markov Model (HMM)

TUTTTY

{X:}+ are called states and {Y;}; are called observations.

In this course: distributions assumed to be P(X;:|X:11), P(Ye| Xt)
categorical or Gaussian mostly, however can be arbitrary.
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e Bayesian Filtering
P(X¢|Y1:t)

e Prediction
P(Xt+7—|Y]_;t) where 7 Z 1

e Smoothing (similar to filtering but on past data)
P(X:|Y1.t) where 7 < t

e Most Probable Explanation (MPE)

. . A~
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How to do it?

e Prior P(X1) needed.

e Bayesian Filtering - usually done recursively. Assume you have
P(Xt| Y1.t—1), get P(X:|Y1.t) using Markov property and observation
probabilities.

e Prediction (for one step; can be generalized)

P(Xep1lYaie) = D P(Xepr, Xe = x| Yaie) = D P(Xea|Xe = x)P(Xe| Yi:t)

e Smoothing - can be recast as calculating a marginal!l HMM being a
polytree, we know that Belief propagation is applicable and
converges fast with forward-backward passes!

e MPE - Sum product algorithm (search largest product).
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Kalman Filter | - Basics

e A special case of HMM is Kalman filter, when X; and Y; are
Gaussian with Linear dynamics and observation model.

e Motion model = System dynamics P(X;.1|X:) and is modeled
using,
Xey1 = FXi + e

where, €; ~ N(0,X,). N.B.: Sum of Normal RV is a Normal RV!

e Sensor model = Observations P(Y;|X;),
Yt = HXt —+ vt

where, vy ~ N(0,X). N.B.: ¢; and vy are multivariate normals!
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Kalman Filter Il - How to?

e In general, this is the same as previously; but now the domain is
different. Previously categorical distributions - now continuous.
e Filtering:

1
'D(Xt‘yt = }’1:t) = ?P(Xt“/t—l = _yl:t—l)'D(Yt = }/t|Xt)

e Prediction:

P(Xesa| Yie = yie) = / P(Xesa| X = X)P(X: = x| Yot = yre)dx

e All these are Gaussian integrals; that can be solved exactly.
e We can calculate the Kalman filter uncertainty offline. Independent
of Vi
e Review my multivariate Gaussians!

fap = pa +SapSpp(xe — pup)

YA =Ya4 — LaBS55584
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Particle Filters |

e What if the "motion" model is nonlinear? - For example Particle
filters.

e Idea: Pick samples {x;} that are propagated through the dynamics

and then produce a histogram! Samples: {x;;}", from distribution
N o

P(Xf|y12t) ~ %z/ 1 ()X-Yi it

e Propagate particles x/ ~ P(X¢y1|Xe, x¢.;), calculate weights
w; = L P(ye41/x!) (transition model known).

o Next step Xj i1 ~ & SN | Widyx,

e Why this re-weighting? If we do not do it; we have a mode collapse
(out of scope of the course).
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Exam 2013 Problem 5 - |

e

5 [12 points] Temporal Models: Exploratory Rover

An exploratory rover is navigating through planet Vulcan, a deserted planet scattered with
voleanic vents and radioactive valleys. The rover is equipped with a thermometer that re
only two levels, hot and cold. The rover sends back thermal responses E = hot when it is at
nt (V), or a Radioactive valley (R}, and E = cold when it is
(N}. There is no chance of a mistaken reading.

a Voleanic at Normal area

The rover can only stay in one area on any given day. It travels around according to the
following transition probabilities:

PN, =N | PN [ X =V) [P X =R)
0.7 0.6 0.2
0.2 0.3 0.2
Xi=FR 0.1 0.1 0.6

TV
®O6
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Exam 2013 Problem 5 - Il

1. Define X; = (P(X; = N), P(X; = V), P(X; = R))
0.7 0.6 02
T=102 03 0.2], then X;T = X¢41.
0.1 0.1 0.6
2. Further, we know that observation model for Y as well.
P(E; = hot|X; = V) = P(E; = hot|X; = R) = 1 and
P(E: = cold|X; = N) = 1. So very simple model.
3. a) Observe {cold, hot hot}, what is
P(X13 = (NNN)|Ey.3 = (CHH))?

Using d-separation rules
P(X13|E13) = P(X3| X2, E3) P(Xa| X1, E2:3) P(X1|E1:3)
————
P(Es|X3)P(X3|X2)/P(X2,E3)
P(Es = hot|X3 = N) = 0, so the overall probability is zero.
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Exam 2013 Problem 5 - Il

e b) Given E{cold,hot,hot,cold} what is the most likely {X3.4}. Hint:
Not many calculations.

This is a MPE query, in other words,

X1:4 = arg r)r)(ax P()A<1;4‘ Y1:4)

Given that in cold state can be only observed when X; = N, means
that X; = N, X4 = N. Now, we need to look which state is more
probable for the middle points: VV,VR,RV,RR. We can calculate
these probabilities using the transition matrix T i.e.

PXo=V, X3 =R, X1 =N, Xy =N)=P(Xo=V|X1 =N)P(X5 =
R|Xa = V)P(Xy = N|X3 = R)
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Exam 2013 Problem 5 - IV

e c) We use particle filter with N = 8 particles.
e 5N (iel,...5)
e 2V (i€6,7)
e 1R (i =8)
The rover sends back E = hot. What are the weights for the next
sampling?

From the previous slides, we know
w; x P(E = hot|X = x;)
For example for wy o< P(E = hot|X = N) = 0. Similar for others.

Weights need to sum to 1 so we can normalize them.
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