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Hidden Markov models

• Instead of assuming all variables are observed (Yt), we assume we
have variables Xt , which we cannot observe.

• Assume: A graphical model for Hidden Markov Model (HMM)

• {Xt}t are called states and {Yt}t are called observations.

• In this course: distributions assumed to be P(Xt |Xt+1),P(Yt |Xt)

categorical or Gaussian mostly, however can be arbitrary.
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What Inference Questions can we ask?

• Bayesian Filtering
P(Xt |Y1:t)

• Prediction
P(Xt+τ |Y1:t) where τ ≥ 1

• Smoothing (similar to filtering but on past data)

P(Xτ |Y1:t) where τ < t

• Most Probable Explanation (MPE)

X1:t = arg max
X̂1:t

P(X̂1:t |Y1:t)
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How to do it?

• Prior P(X1) needed.

• Bayesian Filtering - usually done recursively. Assume you have
P(Xt |Y1:t−1), get P(Xt |Y1:t) using Markov property and observation
probabilities.

• Prediction (for one step; can be generalized)

P(Xt+1|Y1:t) =
∑
x

P(Xt+1,Xt = x |Y1:t) =
∑
x

P(Xt+1|Xt = x)P(Xt |Y1:t)

• Smoothing - can be recast as calculating a marginal! HMM being a
polytree, we know that Belief propagation is applicable and
converges fast with forward-backward passes!

• MPE - Sum product algorithm (search largest product).
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Kalman Filter I - Basics

• A special case of HMM is Kalman filter, when Xt and Yt are
Gaussian with Linear dynamics and observation model.

• Motion model = System dynamics P(Xt+1|Xt) and is modeled
using,

Xt+1 = FXt + εt

where, εt ∼ N (0,Σx). N.B.: Sum of Normal RV is a Normal RV!

• Sensor model = Observations P(Yt |Xt),

Yt = HXt + νt

where, νt ∼ N (0,Σx). N.B.: εt and νt are multivariate normals!
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Kalman Filter II - How to?

• In general, this is the same as previously; but now the domain is
different. Previously categorical distributions - now continuous.

• Filtering:

P(Xt |Yt = y1:t) =
1
Z
P(Xt |Yt−1 = y1:t−1)P(Yt = yt |Xt)

• Prediction:

P(Xt+1|Y1:t = y1:t) =

∫
P(Xt+1|Xt = x)P(Xt = x |Y1:t = y1:t)dx

• All these are Gaussian integrals; that can be solved exactly.
• We can calculate the Kalman filter uncertainty offline. Independent

of y1:t .
• Review my multivariate Gaussians!
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Particle Filters I

• What if the "motion" model is nonlinear? - For example Particle
filters.

• Idea: Pick samples {xi} that are propagated through the dynamics
and then produce a histogram! Samples: {xt,i}Ni=1 from distribution
P(Xt |y1:t) ≈ 1

N

∑N
i=1 δx,xt,i .

• Propagate particles x ′i ∼ P(Xt+1|Xt , xt,i ), calculate weights
wi = 1

Z P(yt+1|x ′i ) (transition model known).

• Next step xi,t+1 ∼ 1
N

∑N
i=1 wiδx,xt,i

• Why this re-weighting? If we do not do it; we have a mode collapse
(out of scope of the course).
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Exam 2013 Problem 5 - I
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Exam 2013 Problem 5 - II

1. Define Xt = (P(Xt = N),P(Xt = V ),P(Xt = R))

T =

0.7 0.6 0.2
0.2 0.3 0.2
0.1 0.1 0.6

, then XtT = Xt+1.

2. Further, we know that observation model for Y as well.
P(Et = hot|Xt = V ) = P(Et = hot|Xt = R) = 1 and
P(Et = cold|Xt = N) = 1. So very simple model.

3. a) Observe {cold, hot hot}, what is
P(X1:3 = (NNN)|E1:3 = (CHH))?

Using d-separation rules
P(X1:3|E1:3) = P(X3|X2,E3)︸ ︷︷ ︸

P(E3|X3)P(X3|X2)/P(X2,E3)

P(X2|X1,E2:3)P(X1|E1:3)

P(E3 = hot|X3 = N) = 0, so the overall probability is zero.
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Exam 2013 Problem 5 - III

• b) Given E{cold,hot,hot,cold} what is the most likely {X1:4}. Hint:
Not many calculations.

This is a MPE query, in other words,

X1:4 = arg max
X̂1:4

P(X̂1:4|Y1:4)

Given that in cold state can be only observed when Xi = N, means
that X1 = N, X4 = N. Now, we need to look which state is more
probable for the middle points: VV ,VR,RV ,RR. We can calculate
these probabilities using the transition matrix T i.e.
P(X2 = V ,X3 = R,X1 = N,X4 = N) = P(X2 = V |X1 = N)P(X3 =

R|X2 = V )P(X4 = N|X3 = R)
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Exam 2013 Problem 5 - IV

• c) We use particle filter with N = 8 particles.
• 5 N (i ∈ 1, . . . 5)
• 2 V (i ∈ 6, 7)
• 1 R (i = 8)

The rover sends back E = hot. What are the weights for the next
sampling?

From the previous slides, we know

wi ∝ P(E = hot|X = xi )

For example for w1 ∝ P(E = hot|X = N) = 0. Similar for others.
Weights need to sum to 1 so we can normalize them.
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