Review Session

Thursday 24 January 2019

Index

Markov Decision Process Review

Exam 2014: Who wants to Be a Hundredaire?

Markov Decision Process

- MDPs are defined by a quintuple $(\mathcal{S}, \mathcal{A}, r, P(\cdot \mid \cdot, \cdot), \gamma)$
- Objective: Find a stationary policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$ that maximizes the sum of cumulative rewards.
- Value of a state given a policy: sum of cumulative rewards, given that the initial state is this state.

$$
\begin{aligned}
V^{\pi}(s) & =\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(s_{t}, \pi\left(s_{t}\right), s_{t+1}\right) \mid s_{0}=s\right] \\
& =\sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right] \\
& =r(s, \pi(s))+\gamma \sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, \pi(s)\right) V^{\pi}\left(s^{\prime}\right)
\end{aligned}
$$

- This equality is called bellman equation. It can used to evaluate the value of a state given a policy.
- What happens when $\gamma=1$?

Optimality in MDPs

Bellman Optimality Theorem

- A policy π is optimal \Longleftrightarrow it is greedy with respect to its own value function:

$$
\begin{aligned}
V^{\star}(s)=V^{\pi^{\star}}(s) & =\max _{a \in \mathcal{A}}\left[r(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, a\right) V^{\pi^{\star}}\left(s^{\prime}\right)\right] \\
\pi^{\star}(s) & =\arg \max _{a \in \mathcal{A}}\left[r(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, a\right) V^{\pi^{\star}}\left(s^{\prime}\right)\right]
\end{aligned}
$$

How To Solve MDPs

Policy Iteration

1. Start with a policy $\pi_{0}(\cdot)$.
2. Evaluate the policy $V^{\pi_{0}}(\cdot)$.
3. Optimize π as

$$
\pi_{k}=\arg \max _{a \in \mathcal{A}}\left[r(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, a\right) V^{\pi_{k-1}}\left(s^{\prime}\right)\right] .
$$

Value Iteration

1. Start with a value $V_{0}(\cdot)$.
2. Optimize V as

$$
V_{k}=\max _{a \in \mathcal{A}}\left[r(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} P\left(s^{\prime} \mid s, a\right) V_{k-1}\left(s^{\prime}\right)\right] .
$$

3. Recover the optimal policy upon convergence.

Index

Markov Decision Process Review

Exam 2014: Who wants to Be a Hundredaire?

Exercise

- The participant has at the beginning of each question the option to answer the next question, or leave.
- If she decides to leave, the reward is 0 and leaves with the total money she has until know.
- If she decides to answer, she can answer correctly and obtain money that accumulates in her pot, else she leaves the game and loses all money.
- There are three questions in sequence worth $1 \mathrm{CHF}, 10 \mathrm{CHF}$, and 100 CHF . The probability of answering correctly are 0.5 , 0.2 , and 0.05 respectively.

MDP Scheme

$$
\mathcal{S}=\{0,1,2, T\}, \mathcal{A}=\{A, L\} . \text { Arrows have }\left(a, r, P\left(s^{\prime} \mid s, a\right)\right) .
$$

Value Iteration

Initialization: $V_{0}(s)=0$.

$$
\begin{aligned}
& V_{1}(0)=\max _{a \in L, A}\left[0 ; \frac{1}{2}\left(1+V_{0}(1)\right)+\frac{1}{2}(0+0)\right]=\max _{a \in L, A}\left[0 ; \frac{1}{2}\right]=1 \\
& V_{1}(1)=\max _{a \in L, A}\left[0 ; \frac{1}{5}\left(10+V_{0}(2)\right)+\frac{4}{5}(-1+0)\right]=\max _{a \in L, A}\left[0 ; \frac{6}{5}\right]=\frac{6}{5} \\
& V_{1}(2)=\max _{a \in L, A}\left[0 ; \frac{1}{20}(100+0)+\frac{19}{20}(-11+0)\right]=\max _{a \in L, A}\left[0 ;-\frac{109}{100}\right]=0
\end{aligned}
$$

$$
V_{2}(0)=\max _{a \in L, A}\left[0 ; \frac{1}{2}\left(1+V_{1}(1)\right)+\frac{1}{2}(0+0)\right]=\max _{a \in L, A}\left[0 ; \frac{11}{10}\right]=\frac{11}{10}
$$

$$
V_{2}(1)=\max _{a \in L, A}\left[0 ; \frac{1}{5}\left(10+V_{1}(2)\right)+\frac{4}{5}(-1+0)\right]=\max _{a \in L, A}\left[0 ; \frac{6}{5}\right]=\frac{6}{5}
$$

$$
V_{2}(2)=\max _{a \in L, A}\left[0 ; \frac{1}{20}(100+0)+\frac{19}{20}(-11+0)\right]=\max _{a \in L, A}\left[0 ;-\frac{109}{100}\right]=0
$$

Value Iteration

$$
\begin{aligned}
& V_{3}(0)=\max _{a \in L, A}\left[0 ; \frac{1}{2}\left(1+V_{2}(1)\right)+\frac{1}{2}(0+0)\right]=\max _{a \in L, A}\left[0 ; \frac{11}{10}\right]=\frac{11}{10} \\
& V_{3}(1)=\max _{a \in L, A}\left[0 ; \frac{1}{5}\left(10+V_{2}(2)\right)+\frac{4}{5}(-1+0)\right]=\max _{a \in L, A}\left[0 ; \frac{6}{5}\right]=\frac{6}{5} \\
& V_{3}(2)=\max _{a \in L, A}\left[0 ; \frac{1}{20}(100+0)+\frac{19}{20}(-11+0)\right]=\max _{a \in L, A}\left[0 ;-\frac{109}{100}\right]=0
\end{aligned}
$$

Converged (this is rare $\gamma=1$) as $V_{2}(s)=V_{3}(s)$. Policy:

$$
\begin{aligned}
& \pi(0)=\arg \max _{a \in L, A}\left[0 ; \frac{1}{2}\left(1+V_{3}(1)\right)+\frac{1}{2}(0+0)\right]=A \\
& \pi(1)=\arg \max _{a \in L, A}\left[0 ; \frac{1}{5}\left(10+V_{3}(2)\right)+\frac{4}{5}(-1+0)\right]=A \\
& \pi(2)=\arg \max _{a \in L, A}\left[0 ; \frac{1}{20}(100+0)+\frac{19}{20}(-11+0)\right]=L
\end{aligned}
$$

Policy Iteration

Initialization: $\pi_{0}(s)=A$. Evaluation:

$$
\begin{aligned}
& V^{\pi_{0}}(0)=\frac{1}{2}\left(1+V^{\pi_{0}}(1)\right)+\frac{1}{2}(0+0)=\frac{11}{200} \\
& V^{\pi_{0}}(1)=\frac{1}{5}\left(10+V^{\pi_{0}}(2)\right)+\frac{4}{5}(-1+0)=\frac{11}{100} \\
& V^{\pi_{0}}(2)=\frac{1}{20}(100+0)+\frac{19}{20}(-11+0)=\frac{-109}{20}
\end{aligned}
$$

Optimization:

$$
\begin{aligned}
& \pi_{1}(0)=\arg \max _{a \in L, A}\left[0, \frac{11}{200}\right]=A \\
& \pi_{1}(1)=\arg \max _{a \in L, A}\left[0, \frac{11}{100}\right]=A \\
& \pi_{2}(2)=\arg \max _{a \in L, A}\left[0, \frac{-109}{20}\right]=L
\end{aligned}
$$

Policy Iteration

Evaluation:

$$
\begin{aligned}
& V^{\pi_{1}}(0)=\frac{1}{2}\left(1+V^{\pi_{1}}(1)\right)+\frac{1}{2}(0+0)=\frac{11}{10} \\
& V^{\pi_{1}}(1)=\frac{1}{5}\left(10+V^{\pi_{1}}(2)\right)+\frac{4}{5}(-1+0)=\frac{6}{5} \\
& V^{\pi_{1}}(2)=0
\end{aligned}
$$

Optimization:

$$
\begin{aligned}
& \pi_{2}(0)=\arg \max _{a \in L, A}\left[0, \frac{11}{10}\right]=A \\
& \pi_{2}(1)=\arg \max _{a \in L, A}\left[0, \frac{6}{5}\right]=A \\
& \pi_{2}(2)=\arg \max _{a \in L, A}\left[0, \frac{-109}{20}\right]=L
\end{aligned}
$$

Converged!

