PAI Review Session

Reinforcement Learning

Johannes Kirschner January 24, 2019

Markov Decision Processes

MDP:

S (finite) set of states A (finite) set of actions P(s'|s, a) probability of going from s to s' with action a. R(s) or R(s, a) or R(s, a, s'): Reward function

MDP:

S (finite) set of states A (finite) set of actions P(s'|s, a) probability of going from s to s' with action a. R(s) or R(s, a) or R(s, a, s'): Reward function

Policy:

 $\pi(a|s)$ probability of selecting action a in state s

Value functions - or when do we get the reward?

If we run a policy π starting from a state s_0 , we get a sequence: $s_0, a_0, r_0, s_1, a_1, r_1, s_2, \ldots$

Value functions - or when do we get the reward?

If we run a policy π starting from a state s_0 , we get a sequence: $s_0, a_0, r_0, s_1, a_1, r_1, s_2, \ldots$ $a_i \sim \pi(\cdot|s_i)$ $s_{i+1} \sim p(\cdot|s_i, a_i)$ $r_i = r(s_i, a_i, s_{i+1})$

Value functions - or when do we get the reward?

If we run a policy π starting from a state s_0 , we get a sequence: $s_0, a_0, r_0, s_1, a_1, r_1, s_2, \ldots$ $a_i \sim \pi(\cdot|s_i)$ $s_{i+1} \sim p(\cdot|s_i, a_i)$ $r_i = r(s_i, a_i, s_{i+1})$

A tuple (s_i, a_i, r_i, s_{i+1}) is called a *transition*.

If we run a policy π starting from a state s_0 , we get a sequence: $s_0, a_0, r_0, s_1, a_1, r_1, s_2, \ldots$ $a_i \sim \pi(\cdot|s_i)$ $s_{i+1} \sim p(\cdot|s_i, a_i)$ $r_i = r(s_i, a_i, s_{i+1})$

A tuple (s_i, a_i, r_i, s_{i+1}) is called a *transition*. Value function: $V^{\pi}(s_0) = \mathbb{E}[\sum_{i=0}^{T} \gamma^i r_i] = \mathbb{E}[\sum_{i=0}^{T} \gamma^i r(s_i, a_i, s_{i+1})]$ If we run a policy π starting from a state s_0 , we get a sequence: $s_0, a_0, r_0, s_1, a_1, r_1, s_2, \ldots$ $a_i \sim \pi(\cdot|s_i)$ $s_{i+1} \sim p(\cdot|s_i, a_i)$ $r_i = r(s_i, a_i, s_{i+1})$

A tuple (s_i, a_i, r_i, s_{i+1}) is called a *transition*. **Value function**: $V^{\pi}(s_0) = \mathbb{E}[\sum_{i=0}^{T} \gamma^i r_i] = \mathbb{E}[\sum_{i=0}^{T} \gamma^i r(s_i, a_i, s_{i+1})]$ After picking action a_i , we observe (r_i, s_{i+1}) .

Value function: $V^{\pi}(s_0) = \mathbb{E}[\sum_{i=0}^{T} \gamma^i r_i]$

Value function: $V^{\pi}(s_0) = \mathbb{E}[\sum_{i=0}^{T} \gamma^i r_i]$

 \triangleright $T = \infty$: Continuous setting (agent interacts forever with env.)

Episodes

- Value function: $V^{\pi}(s_0) = \mathbb{E}[\sum_{i=0}^{T} \gamma^i r_i]$
 - \triangleright $T = \infty$: Continuous setting (agent interacts forever with env.)
 - \triangleright T = finite: Episodic setting (game ends after T steps)
 - ▷ can use multiple episodes for learning

- Value function: $V^{\pi}(s_0) = \mathbb{E}[\sum_{i=0}^{T} \gamma^i r_i]$
 - $\triangleright \quad \mathcal{T}=\infty: \text{ Continuous setting (agent interacts forever with env.)}$
 - \triangleright T =finite: Episodic setting (game ends after T steps)
 - ▷ can use multiple episodes for learning

Terminal states: Special states where game 'ends'.

▷ Can replace by additional, 'looping' state with no reward

Optimal Policy: π^* is optimal if $V^{\pi^*} = \max_{\pi} V^{\pi}$

Optimal Policy: π^* is optimal if $V^{\pi^*} = \max_{\pi} V^{\pi}$

Planning

- \rightarrow find π^* given the MDP
 - ▷ Value iteration
 - Policy iteration

Learning

- \rightarrow find π^* with unknown MDP
 - ▷ *Model based* RL (R-max)
- *Model free* RL (Q-learning, Policy Search)

- ▷ Learn MDP, then use it to find optimal policy
- ▷ Need an exploration policy (random, Rmax) to gather data

- \triangleright For simplicity, assume we know the transitions.
 - \triangleright For general version refer to lecture slides.

- \triangleright $\;$ For simplicity, assume we know the transitions.
 - ▷ For general version refer to lecture slides.

Algorithm (Rmax) (episodic setting)

- 1: $\hat{R}_0(s,a) = R_{max}$
- 2: For episodes $i=1,2,\ldots$
- 3: Compute optimal policy π_i in MDP with \hat{R}_{i-1}
- 4: Use policy π_i for episode *i*
- 5: Use data to update \hat{R}_i

- \triangleright $\;$ For simplicity, assume we know the transitions.
 - ▷ For general version refer to lecture slides.

Algorithm (Rmax) (episodic setting)

- 1: $\hat{R}_0(s,a) = R_{max}$
- 2: For episodes $i=1,2,\ldots$
- 3: Compute optimal policy π_i in MDP with \hat{R}_{i-1}
- 4: Use policy π_i for episode *i*
- 5: Use data to update \hat{R}_i
 - Systematically rules out suboptimal policies

- \triangleright Q-function $Q^{\pi}(s, a) = \mathbb{E}[r(s, a, s') + \gamma V^{\pi}(s')]$
- \triangleright Q*-function: Q^{π^*}

- \triangleright Q-function $Q^{\pi}(s, a) = \mathbb{E}[r(s, a, s') + \gamma V^{\pi}(s')]$
- \triangleright Q*-function: Q^{π^*}
- $\begin{array}{ll} \triangleright & \text{Bellman's Theorem: Policy is optimal} \iff \text{ it is greedy on } Q \\ \quad \triangleright & \pi^*(a|s) = \arg\max_a Q^{\pi}(a,s) \\ \quad \triangleright & V^{\pi^*}(s) = \max_a Q^*(s,a) \end{array}$

- $\triangleright \quad \text{Q-function } Q^{\pi}(s,a) = \mathbb{E}[r(s,a,s') + \gamma V^{\pi}(s')]$
- \triangleright Q*-function: Q^{π^*}
- $\begin{tabular}{ll} \begin{tabular}{ll} & \end{tabular} \\ \end{tabular} \\ \begin{tabular}{ll} & \end{tabular} \\ \bed{tabular} \\ \begin{tabular}{ll} & \end{tabular} \\ \begin{tabular}$
 - $\triangleright \quad V^{\pi^*}(s) = \max_a Q^*(s,a)$
 - ho
 ightarrow If we know the Q^* function, we know the optimal policy

- \triangleright Q-function $Q^{\pi}(s, a) = \mathbb{E}[r(s, a, s') + \gamma V^{\pi}(s')]$
- \triangleright Q*-function: Q^{π^*}
- ▷ Bellman's Theorem: Policy is optimal ⇒ it is greedy on Q
 ▷ π*(a|s) = arg max_a Q^π(a, s)
 ▷ V^{π*}(s) = max_a Q^{*}(s, a)
 ▷ → If we know the Q* function, we know the optimal policy

Q-learning = estimating Q^* from transitions $\{(s, a, r, s')\}$ Update-rule: $Q_{i+1}(s, a) = (1 - \alpha)Q_i(s, a) + \alpha(r + \max_{a'} \gamma Q_i(s', a'))$