PAIl Review Session

Reinforcement Learning

Johannes Kirschner
January 24, 2019

Markov Decision Processes

MDP:

S (finite) set of states

A (finite) set of actions

P(s'|s, a) probability of going from s to s’ with action a.
R(s) or R(s,a) or R(s,a,s’) : Reward function

Markov Decision Processes

MDP:

S (finite) set of states

A (finite) set of actions

P(s'|s, a) probability of going from s to s’ with action a.
R(s) or R(s,a) or R(s,a,s’) : Reward function

Policy:
7(als) probability of selecting action a in state s

Value functions - or when do we get the reward?

If we run a policy m starting from a state sy, we get a sequence:
50, 40, 10, 51, 41, 11, 52, - - -

Value functions - or when do we get the reward?

If we run a policy m starting from a state sy, we get a sequence:
S0, 4o, o, 51,41, 1,52, ...

aj ~ m(-|s)

siv1 ~ p(-lsi; ai)

ri = I’(S,', aj, 5/'+1)

Value functions - or when do we get the reward?

If we run a policy m starting from a state sy, we get a sequence:
S0, 4o, o, 51,41, 1,52, ...

aj ~ m(-|s)

sis1 ~ p(-|si, i)

ri = r(s;, aj,Si+1)

A tuple (s;, aj, rj, si11) is called a transition.

Value functions - or when do we get the reward?

If we run a policy m starting from a state sy, we get a sequence:
50, 40, 10, 51, 41, 11, 52, - - -
aj ~ m(-|s)
Siy1 p('|5i7 ai)
ri = r(s;, aj,Si+1)
A tuple (s;, aj, rj, si11) is called a transition.
. T T 7
Value function: V7 (sp) =E[> ._ 'l =E[>_._7'r(si, ai, si+1)]

Value functions - or when do we get the reward?

If we run a policy m starting from a state sy, we get a sequence:
50, 405 10, 51, 41, 11, 525 - - -
a1 ~ (1)
Siy1 p('|5i7 ai)
ri = r(s;, aj,Si+1)
A tuple (s;, aj, rj, si11) is called a transition.
: T T
Value function: V7 (sp) =E[> ._ 'l =E[>_._7'r(si, ai, si+1)]
After picking action a;, we observe (r;,s;1).

Value function: V7"(sp) =]E[Z,TZO v'r]

Value function: V7"(sp) =]E[Z,TZO v'r]

> T = oo: Continuous setting (agent interacts forever with env.)

Value function: V7"(sp) = E[Z,T:o Vir]
> T = oo: Continuous setting (agent interacts forever with env.)

> T = finite: Episodic setting (game ends after T steps)
> can use multiple episodes for learning

Value function: V7"(sp) = E[Z,T:o Vir]
> T = oo: Continuous setting (agent interacts forever with env.)

> T = finite: Episodic setting (game ends after T steps)
> can use multiple episodes for learning

Terminal states: Special states where game ‘ends’.

> Can replace by additional, ‘looping’ state with no reward

Reinforcement Learning

Optimal Policy: 7* is optimal if V™ = max, V™

Reinforcement Learning

Optimal Policy: 7* is optimal if V™ = max, V™

Planning Learning

— find 7* given the MDP — find 7* with unknown MDP
> Value iteration > Model based RL (R-max)
> Policy iteration > Model free RL (Q-learning,

Policy Search)

Model-Based RL

> Learn MDP, then use it to find optimal policy
> Need an exploration policy (random, Rmax) to gather data

> For simplicity, assume we know the transitions.
> For general version refer to lecture slides.

> For simplicity, assume we know the transitions.
> For general version refer to lecture slides.

Algorithm (Rmax) (episodic setting)

1: Ry(s,a) = Rmax

2: For episodes i=1,2,. ..

3 Compute optimal policy 7; in MDP with R,
4: Use policy 7; for episode i

5 Use data to update R;

> For simplicity, assume we know the transitions.
> For general version refer to lecture slides.

Algorithm (Rmax) (episodic setting)

1: Ry(s,a) = Rmax

2: For episodes i=1,2,. ..

3 Compute optimal policy 7; in MDP with R,
4: Use policy 7; for episode i

5 Use data to update R;

> Systematically rules out suboptimal policies

> Q-function Q(s, a) = E[r(s,a,s’) + yV™(s)]
> Q*-function: Q™

> Q-function Q(s, a) = E[r(s,a,s’) + yV™(s)]
> Q*-function: Q™

> Bellman’s Theorem: Policy is optimal <= it is greedy on Q
> 7*(a|s) = arg max, Q™(a, s)
> V7™ (s) = max, Q*(s, a)

> Q-function Q(s, a) = E[r(s,a,s’) + yV™(s)]
> Q*-function: Q™

> Bellman’s Theorem: Policy is optimal <= it is greedy on Q
> 7*(a|s) = arg max, Q™(a, s)
> V7™ (s) = max, Q*(s, a)
> — If we know the Q* function, we know the optimal policy

> Q-function Q(s, a) = E[r(s,a,s’) + yV™(s)]
> Q*-function: Q™

> Bellman’s Theorem: Policy is optimal <= it is greedy on Q
> 7*(a|s) = arg max, Q™(a, s)
> V7™ (s) = max, Q*(s, a)
> — If we know the Q* function, we know the optimal policy

Q-learning = estimating Q* from transitions {(s, a, r,s’)}
Update-rule: Qi11(s,a) = (1 — a)Qi(s, a) + a(r + maxy yQ;(s, &))

