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Markov Decision Processes

MDP:

S (finite) set of states

A (finite) set of actions

P(s ′|s, a) probability of going from s to s ′ with action a.

R(s) or R(s, a) or R(s, a, s ′) : Reward function

Policy:

π(a|s) probability of selecting action a in state s
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Value functions - or when do we get the reward?

If we run a policy π starting from a state s0, we get a sequence:

s0, a0, r0, s1, a1, r1, s2, . . .

ai ∼ π(·|si)
si+1 ∼ p(·|si , ai)
ri = r(si , ai , si+1)

A tuple (si , ai , ri , si+1) is called a transition.

Value function: V π(s0) = E[
∑T

i=0 γ
i ri ] = E[

∑T
i=0 γ

i r(si , ai , si+1)]

After picking action ai , we observe (ri , si+1).
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Episodes

Value function: V π(s0) = E[
∑T

i=0 γ
i ri ]

. T =∞: Continuous setting (agent interacts forever with env.)

. T = finite: Episodic setting (game ends after T steps)

. can use multiple episodes for learning

Terminal states: Special states where game ‘ends’.

. Can replace by additional, ‘looping’ state with no reward
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Reinforcement Learning

Optimal Policy: π∗ is optimal if V π∗ = maxπ V
π

Planning

→ find π∗ given the MDP

. Value iteration

. Policy iteration

Learning

→ find π∗ with unknown MDP

. Model based RL (R-max)

. Model free RL (Q-learning,

Policy Search)
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Model-Based RL

. Learn MDP, then use it to find optimal policy

. Need an exploration policy (random, Rmax) to gather data
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Rmax

. For simplicity, assume we know the transitions.

. For general version refer to lecture slides.

Algorithm (Rmax) (episodic setting)

1: R̂0(s, a) = Rmax

2: For episodes i=1,2,. . .

3: Compute optimal policy πi in MDP with R̂i−1

4: Use policy πi for episode i

5: Use data to update R̂i

. Systematically rules out suboptimal policies
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Q-learning

. Q-function Qπ(s, a) = E[r(s, a, s ′) + γV π(s ′)]

. Q*-function: Qπ∗

. Bellman’s Theorem: Policy is optimal ⇐⇒ it is greedy on Q

. π∗(a|s) = arg maxaQ
π(a, s)

. V π∗(s) = maxaQ
∗(s, a)

. → If we know the Q∗ function, we know the optimal policy

Q-learning = estimating Q∗ from transitions {(s, a, r , s ′)}
Update-rule: Qi+1(s, a) = (1− α)Qi(s, a) + α(r + maxa′ γQi(s

′, a′))
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