PAI. Exact and Approximate Inference Anastasia Makarova

ETH Zürich

2.11.2018

Inference

Tree-structured:

- Variable elimination
- Belief propagation

Loopy networks:

- Loopy belief propagation
- Variational inference
- Gibbs sampling (Monte Carlo Sampling)

Variable elimination

Homework problem 1

				C D	$g_{3}(C, D)$
A	$g_{1}(A)$	A) C	$g_{2}(C)$	$f \quad f$	0.10
f	0.7	7 f	0.4	$f \quad t$	0.90
t	0.3	t	0.6	$t \quad f$	0.25
				$t \quad t$	0.75
B	E	$g_{4}(B, E)$	A	$B C$	$g_{5}(A, B, C)$
f	f	0.8	f	$f \quad f$	0.8
f	t	0.2	f	$f t$	0.2
t	f	0.6	f	$t \quad f$	0.2
t	t	0.4			
		D	F	$g_{6}(D, E, F)$	
			f	0.05	
		f	t	0.95	

Variable elimination

Sum factor

$$
\begin{equation*}
g_{7}(D, E)=\sum_{f} \prod_{j \in\{6\}} g_{j}=\sum_{f} g_{6}(D, E, f) \tag{1}
\end{equation*}
$$

Table: Intermediate factor $g_{7}(D, E)$

D	E	$g_{7}(D, E)$
f	f	$0.05+0.95=1$
f	t	$0.00+1.00=1$
t	f	$1.00+0.00=1$
t	t	$0.75+0.25=1$

Variable elimination

Product factor

$$
\begin{equation*}
g_{8}(B, D)=\sum_{e} g_{4}(B, e) g_{7}(D, e)=\sum_{e} f_{1}(B, D, e) \tag{2}
\end{equation*}
$$

Table: Product factor $f_{1}(B, D, E)$

B	D	E	$f_{1}(B, D, E)$
f	f	f	$1 \times 0.8=0.8$
f	f	t	$1 \times 0.2=0.2$
f	t	f	$1 \times 0.8=0.8$
f	t	t	$1 \times 0.2=0.2$
t	f	f	$1 \times 0.6=0.6$
t	f	t	$1 \times 0.4=0.4$
t	t	f	$1 \times 0.6=0.6$
t	t	t	$1 \times 0.4=0.4$

Belief propagation

$$
P(A, B, C, D, E) \propto \phi_{1}(A, B, C) \phi_{2}(B, D) \phi_{3}(B, E)
$$

All random variables are binary and the factors are defined as follows:

$$
\begin{aligned}
& \phi_{1}(A=a, B=b, C=c)= \begin{cases}0 & \text { if } c=0 \\
a+b+c & \text { if } c=1\end{cases} \\
& \phi_{2}(B=b, D=d)=b+d \\
& \phi_{3}(B=b, E=e)=b+e
\end{aligned}
$$

Assume that at the t-th iteration of the belief propagation algorithm the messages shown in the figure below are exchanged between variable and factor nodes in the graph. Each vector (v_{0}, v_{1}) defines an (unnormalized) message, for which v_{0} corresponds to value 0 and v_{1} corresponds to value 1 . For example, $\mu_{\phi_{1} \rightarrow B}^{(t)}(0)=3, \mu_{\phi_{1} \rightarrow B}^{(t)}(1)=2$, and $\mu_{B \rightarrow \phi_{1}}^{(t)}(0)=1, \mu_{B \rightarrow \phi_{1}}^{(t)}(1)=2$.

Belief propagation

Will belief propagation converge on the factor graph?
Solution:
(1) The most important observation here is that the tree is acyclic and connected, which makes it a tree.
(2) Belief propagation always converges to the exact marginals when the factor graph is a tree.
(3) Therefore, for this factor graph belief propagation will converge.

Belief propagation

From the provided messages compute the approximate marginal distribution of B.

Solution:
(1) From the belief propagation equations, we have:

$$
\begin{array}{r}
P^{(t)}(B) \propto \prod_{\phi_{i} \in N(B)} \mu_{\phi_{i} \rightarrow B}^{(t)}(B) \\
P^{(t)}(B) \propto \mu_{\phi_{1} \rightarrow B}^{(t)}(B) \mu_{\phi_{2} \rightarrow B}^{(t)}(B) \mu_{\phi_{3} \rightarrow B}^{(t)}(B)
\end{array}
$$

(2) We proceed to calculate the product of the messages for both values of B.

Belief propagation

Solution:
(1) For $B=0$:

$$
\begin{array}{r}
\hat{P}^{(t)}(0)=\mu_{\phi_{1} \rightarrow B}^{(t)}(0) \mu_{\phi_{2} \rightarrow B}^{(t)}(0) \mu_{\phi_{3} \rightarrow B}^{(t)}(0) \\
\hat{P}^{(t)}(0)=3 \times 4 \times 1=12
\end{array}
$$

(2) For $B=1$:

$$
\begin{array}{r}
\hat{P}^{(t)}(1)=\mu_{\phi_{1} \rightarrow B}^{(t)}(1) \mu_{\phi_{2} \rightarrow B}^{(t)}(1) \mu_{\phi_{3} \rightarrow B}^{(t)}(1) \\
\hat{P}^{(t)}(1)=2 \times 1 \times 2=4
\end{array}
$$

(3) Normalizing:

$$
P^{(t)}(B)=\frac{(12,4)}{Z}=(0.75,0.25)
$$

Belief propagation

Compute the message $\mu_{B \rightarrow \phi_{2}}^{(t+1)}$.
Solution:
(1) From the belief propagation equations:

$$
\begin{array}{r}
\mu_{B \rightarrow \phi_{2}}^{(t+1)}(B)=\prod_{\phi_{i} \in N(B) \backslash\left\{\phi_{2}\right\}} \mu_{\phi_{i} \rightarrow B}^{(t)}(B) \\
\mu_{B \rightarrow \phi_{2}}^{(t+1)}(B)=\mu_{\phi_{1} \rightarrow B}^{(t)}(B) \mu_{\phi_{3} \rightarrow B}^{(t)}(B)
\end{array}
$$

(2) Again we calculate for both values of B. No need to normalize in the case of a factor.

Belief propagation

Solution:

(1) For $B=0$:

$$
\mu_{B \rightarrow \phi_{2}}^{(t+1)}(0)=\mu_{\phi_{1} \rightarrow B}^{(t)}(0) \mu_{\phi_{3} \rightarrow B}^{(t)}(0)=3 \times 1=3
$$

(2) For $B=1$:

$$
\mu_{B \rightarrow \phi_{2}}^{(t+1)}(1)=\mu_{\phi_{1} \rightarrow B}^{(t)}(1) \mu_{\phi_{3} \rightarrow B}^{(t)}(1)=2 \times 2=4
$$

(3) The message is:

$$
\mu_{B \rightarrow \phi_{2}}^{(t+1)}(B)=(3,4)
$$

Belief propagation

Compute the message $\mu_{\phi_{1} \rightarrow B}^{(t+1)}$.
Solution:
(1) From the belief propagation equations:

$$
\begin{array}{r}
\mu_{\phi_{1} \rightarrow B}^{(t+1)}(B)=\sum_{v^{*} \in \boldsymbol{v}_{\phi_{1} \backslash\{B\}} \phi_{1}\left(v_{\phi_{1}}\right) \prod_{v^{*} \in N\left(\phi_{1} \backslash\{B\}\right.} \mu_{v^{*} \rightarrow \phi_{1}}^{(t)}\left(v^{*}\right)}^{\mu_{\phi_{1} \rightarrow B}^{(t+1)}(B)=\sum_{a} \sum_{c} \phi_{1}(a, B, c) \mu_{A \rightarrow \phi_{1}}^{(t)}(a) \mu_{C \rightarrow \phi_{1}}^{(t)}(c)} .
\end{array}
$$

(2) In this case we have to marginalize over A and C which means the summation has 4 terms, and we do this for both values of B.

Belief propagation

Solution:
(1) For $B=0$:

$$
\begin{aligned}
\mu_{\phi_{1} \rightarrow B}^{(t+1)}(0)= & \\
& \phi_{1}(0,0,0) \mu_{A \rightarrow \phi_{1}}^{(t)}(0) \mu_{C \rightarrow \phi_{1}}^{(t)}(0)+ \\
& \phi_{1}(0,0,1) \mu_{A \rightarrow \phi_{1}}^{(t)}(0) \mu_{C \rightarrow \phi_{1}}^{(t)}(1)+ \\
& \phi_{1}(1,0,0) \mu_{A \rightarrow \phi_{1}}^{(t)}(1) \mu_{C \rightarrow \phi_{1}}^{(t)}(0)+ \\
& \phi_{1}(1,0,1) \mu_{A \rightarrow \phi_{1}}^{(t)}(1) \mu_{C \rightarrow \phi_{1}}^{(t)}(1)
\end{aligned}
$$

(2) Note that $\phi_{1}(A, B, C)=0$ if $C=0$, therefore we just need to sum 2 terms.

$$
\mu_{\phi_{1} \rightarrow B}^{(t+1)}(0)=1 \times 1 \times 5+2 \times 1 \times 5=15
$$

Belief propagation

Solution:
(1) For $B=1$:

$$
\begin{aligned}
\mu_{\phi_{1} \rightarrow B}^{(t+1)}(1)= & \\
& \phi_{1}(0,1,0) \mu_{A \rightarrow \phi_{1}}^{(t)}(0) \mu_{C \rightarrow \phi_{1}}^{(t)}(0)+ \\
& \phi_{1}(0,1,1) \mu_{A \rightarrow \phi_{1}}^{(t)}(0) \mu_{C \rightarrow \phi_{1}}^{(t)}(1)+ \\
& \phi_{1}(1,1,0) \mu_{A \rightarrow \phi_{1}}^{(t)}(1) \mu_{C \rightarrow \phi_{1}}^{(t)}(0)+ \\
& \phi_{1}(1,1,1) \mu_{A \rightarrow \phi_{1}}^{(t)}(1) \mu_{C \rightarrow \phi_{1}}^{(t)}(1)
\end{aligned}
$$

(2) Note that the product of the messages from A and C didn't change, only the value of $\phi_{1}(A, B, C)$.

$$
\mu_{\phi_{1} \rightarrow B}^{(t+1)}(1)=2 \times 1 \times 5+3 \times 1 \times 5=25
$$

(3) Finally:

$$
\mu_{\phi_{1} \rightarrow B}^{(t+1)}(B)=(15,25)
$$

Gibbs sampling

Recap

Gibbs sampling

Assume that we are running a Gibss sampler on the same factor graph and the last sample we drew is
($A=0, B=0, C=1, D=1, E=1$). Compute the distribution from which we should draw the new value of A.

Solution:
(1) Remember that a Gibbs sampler uses a conditional distribution, i.e. it samples from:

$$
\begin{equation*}
P\left(A^{(t+1)} \mid B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)}\right) \tag{3}
\end{equation*}
$$

(2) Then remember the bayes theorem:

$$
\begin{align*}
& P\left(A^{(t+1)} \mid B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)}\right)= \tag{4}\\
& \frac{P\left(A^{(t+1)}, B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)}\right)}{P\left(B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)}\right)} \tag{5}
\end{align*}
$$

Gibbs sampling

Solution:

(1) Note that for sampling A, the denominator in equation 5 is a constant, therefore we have:

$$
\begin{align*}
& P\left(A^{(t+1)} \mid B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)}\right) \propto \tag{6}\\
& \quad P\left(A^{(t+1)}, B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)}\right) \tag{7}
\end{align*}
$$

(2) And from the factor graph we have

$$
\begin{array}{r}
P\left(A^{(t+1)}, B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)}\right) \propto \\
\phi_{1}\left(A^{(t+1)}, B^{(t)}, C^{(t)}\right) \phi_{2}\left(B^{(t)}, D^{(t)}\right) \phi_{3}\left(B^{(t)}, E^{(t)}\right) \tag{9}
\end{array}
$$

Gibbs sampling

Solution:

(1) Finally, we only care about the factors that include A, the others are constants:

$$
\begin{equation*}
P\left(A^{(t+1)}, B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)}\right) \propto \phi_{1}\left(A^{(t+1)}, B^{(t)}, C^{(t)}\right) \tag{10}
\end{equation*}
$$

(2) We can now replace with both possible values of A.

$$
\begin{aligned}
& P\left(A^{(t+1)}=0 \mid B^{(t)}=0, C^{(t)}=1\right) \propto \phi_{1}(0,0,1)=1 \\
& P\left(A^{(t+1)}=1 \mid B^{(t)}=0, C^{(t)}=1\right) \propto \phi_{1}(1,0,1)=2
\end{aligned}
$$

(3) After normalizing, we find that we must draw A from the following distribution:

$$
\begin{equation*}
\hat{P}(A)=(0.333,0.667) \tag{11}
\end{equation*}
$$

