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Inference

Tree-structured:
e Variable elimination

e Belief propagation

Loopy networks:
e Loopy belief propagation
e Variational inference

e Gibbs sampling (Monte Carlo Sampling)



Variable elimination
Homework problem 1

¢ D g3(C,D)
Al gi(A) C | &(0) f f 0.10
f 0.7 f 0.4 f t 0.90
t 0.3 t 0.6 t f 0.25
t ot 0.75
B E | g(B,E) A B C|g(ABC)
f f 0.8 f f f 0.8
fot 0.2 f f t 0.2
t f 0.6 f t f 0.2
t ot 0.4

D E F|g(DE,F)
f f f 0.05
f f t 0.95




Sum factor

Variable elimination

=2 &= &£

f je{6}

Table: Intermediate factor g7(D, E)

D E g?(Dv E)

f f]005+09=1
f t|000+1.00=1
t f[100+0.00=1
t t|075+025=1




Variable elimination
Product factor

gs(B,D) = au(B,e)gr(D,e) =) fi(B,D,e)  (2)

Table: Product factor f(B, D, E)

B D E| A(B,D,E)
f f Ff|1x08=08
f f t|1x02=02
f t f|1x08=08
f ot t|1x02=02
t f f|1x06=06
t f t|1x04=04
t t f|1x06=0.6
t t t|1x04=04




Belief propagation

P(A,B,C,D,E) x ¢1(A, B,C)¢o(B,D)3(B, E).
All random variables are binary and the factors are defined as follows:

0 ife=0
a+b+c ifc=1
¢o(B=b,D=d)=b+d
d3(B=bFE=¢)=b+e.

m(A:a,B:b,C:c):{

Assume that at the -th iteration of the belief propagation algorithm the messages shown in the figure
below are exchanged between variable and factor nodes in the graph. Each vector (vg, v1) defines
an (unnormalized) message, for which vy corresponds to value 0 and vy corresponds to value 1. For

2xample, ug‘)‘m([)) =3, /15;])43(1) =2,and /‘%Lm 0)=1, ;1$§L¢l(l) =2




Belief propagation

Will belief propagation converge on the factor graph?

Solution:
@ The most important observation here is that the tree is acyclic
and connected, which makes it a tree.

® Belief propagation always converges to the exact marginals
when the factor graph is a tree.

© Therefore, for this factor graph belief propagation will
converge.



Belief propagation

From the provided messages compute the approximate
marginal distribution of B.
Solution:

@ From the belief propagation equations, we have:

P(B H ”¢,—>B
$i€EN(B

P(t)(B) 08 UE;&?%B(B)/“Lfﬁz)ﬁB(B)'u’Eﬁa)ﬁB(B)

® We proceed to calculate the product of the messages for both
values of B.



Belief propagation

Solution:
® For B=0:
IS(t)(O) N((;St]_)—)B(O)Méz—)B(O)M¢3—>B(O)
P(0)=3x4x1=12
® For B=1:
POM) = ), gl s ()6 (1)
PO(1)=2x1x2=4
©® Normalizing:

(12,4)

P(t)(B) =

= (0.75,0.25)



Belief propagation

Compute the message “(Bf:zz'

Solution:
@ From the belief propagation equations:
1
metmB)= I wgle(8)
dieN(B)\{¢2}
1
i p(B) = 1 5(B)i) - (B)

® Again we calculate for both values of B. No need to normalize
in the case of a factor.



Belief propagation

Solution:

® For B=0:
1
et ,(0) = ) p(0)ul) p(0) =3x1=3
® For B=1:
1
'ugiﬁb)z(l) = Mgl)aB(l)“Eﬁ?ﬁ\B(l) =2x2=4

© The message is:
et (B) = (3.4)



Belief propagation

Compute the message ugﬁié

Solution:
@ From the belief propagation equations:
1 *
“Ezat;?a(B) = Y ailve) ] ult )_>¢1( )
vieve, \{B} vreN($1)\{B}

+l t
gﬁB ZZ¢1 a,B,c “Aaqsl( )“(CL@(C)

® In this case we have to marginalize over A and C which means
the summation has 4 terms, and we do this for both values of
B.



Belief propagation

Solution:
® For B=0:
pEER(0) =
$1(0,0,0)u¥). ., (0)u, . (0)+
1Y, Y, IU’A_>¢1 /’LC—>¢1
61(0,0, 1)y, 5, (O, (1)+
¢1(17 07 O)/”L(At)—>¢1(1)ru’(Ct)—>¢1 (0)+
61(1,0, 1)1y, (Vu,, (1)

® Note that ¢1(A, B, C) =0 if C =0, therefore we just need to
sum 2 terms.

pET0) =1x1x5+2x1x5=15



Belief propagation

Solution:
® For B=1:
ugl:lfs(l) =
$1(0, 1, O)MA_>¢1(O)NC_>¢1(O)+
¢1(0,1, 1)MA—>¢1(0)NC—>¢1(1)+
o1 (1, 1,0)MA%1(1)MCH¢1(0)+
$1(1, 1, 1)/~LA%¢1(1)MCQ¢1(1)

® Note that the product of the messages from A and C didn't
change, only the value of ¢1(A, B, C).

PSR =2x1x5+3x1x5=25

© Finally:
iR (B) = (15,25)



Gibbs sampling

Recap



Gibbs sampling
Assume that we are running a Gibss sampler on the same
factor graph and the last sample we drew is
(A=0,B=0,C=1,D=1E =1). Compute the distribution
from which we should draw the new value of A.

Solution:

@ Remember that a Gibbs sampler uses a conditional
distribution, i.e. it samples from:
P(AEH) | (1) ¢c(®) pt) () (3)

® Then remember the bayes theorem:

P(AED | g1 c(®) pl) g6y = (4)
P(A(t+1)’ B ¢ pt) E(t))
P(BW®. C(, D1, E(0) (5)




Gibbs sampling

Solution:

@ Note that for sampling A, the denominator in equation 5 is a

constant, therefore we have:

P(AEH) | g1 c(®) pl) E(6))
P(AE) B ) p(&) E(t)
® And from the factor graph we have

PAED B () pt) )y
¢1(A(t+1)’ B(t)7 C(t))¢2(3(t)’ D(t))¢3(3(t)’ E(t))



Gibbs sampling

Solution:

@ Finally, we only care about the factors that include A, the
others are constants:

P(A(Hl) B® c® p E t)) oc ¢1(A(t+1 BW ¢ t)) (10)
® We can now replace with both possible values of A.
P(A(t+1) =0 ’ B(t) = O7 C(t) = ]_) X ¢1(0,0, ]-) =
PAUT) =1 BM =0, =1) o $2(1,0,1) =2

© After normalizing, we find that we must draw A from the
following distribution:

P(A) = (0.333,0.667) (11)



