PAI. Exact and Approximate Inference Anastasia Makarova

ETH Zürich

2.11.2018

Inference

Tree-structured:

- Variable elimination
- Belief propagation

Loopy networks:

- Loopy belief propagation
- Variational inference
- Gibbs sampling (Monte Carlo Sampling)

Variable elimination

Homework problem 1

								С	D	$g_3(C,D)$
Α	g1($\overline{\mathfrak{g}_1(A)}$		g	$g_2(C)$			f	f	0.10
f	0.7		f	0.4				f	t	0.90
t	0.	0.3		0.6				t	f	0.25
								t	t	0.75
В	Ε	g ₄ (B	, E)	-	-	1	В	С	g	$_{5}(A,B,C)$
f	f	0.	8	-	1	ſ	f	f		0.8
f	t	0.	0.2		1	5	f	t		0.2
t	f	0.	0.6		f		t	f		0.2
t	t	0.	4							
		Ľ) E	Ξ	F	g ₆	(D,	, <i>E</i> , 1	F)	
		f	· 1	f	f		0.	05		
		f	· 1	f	t		0.	95		

. . .

Variable elimination

Sum factor

$$g_7(D, E) = \sum_f \prod_{j \in \{6\}} g_j = \sum_f g_6(D, E, f)$$
(1)

Table: Intermediate factor $g_7(D, E)$

D	E	g ₇ (D, E)
f	f	0.05 + 0.95 = 1
f	t	0.00 + 1.00 = 1
t	f	1.00 + 0.00 = 1
t	t	0.75 + 0.25 = 1

Variable elimination

Product factor

$$g_8(B,D) = \sum_e g_4(B,e)g_7(D,e) = \sum_e f_1(B,D,e)$$
 (2)

Table: Product factor $f_1(B, D, E)$

В	D	Ε	$f_1(B, D, E)$
f	f	f	1 imes 0.8 = 0.8
f	f	t	$1 \times 0.2 = 0.2$
f	t	f	$1 \times 0.8 = 0.8$
f	t	t	$1 \times 0.2 = 0.2$
t	f	f	1 imes 0.6 = 0.6
t	f	t	$1 \times 0.4 = 0.4$
t	t	f	1 imes 0.6 = 0.6
t	t	t	$1 \times 0.4 = 0.4$

 $P(A, B, C, D, E) \propto \phi_1(A, B, C)\phi_2(B, D)\phi_3(B, E).$

All random variables are binary and the factors are defined as follows:

$$\begin{split} \phi_1(A=a,B=b,C=c) &= \begin{cases} 0 & \text{if } c=0 \\ a+b+c & \text{if } c=1 \end{cases} \\ \phi_2(B=b,D=d) &= b+d \\ \phi_3(B=b,E=e) &= b+e. \end{split}$$

Assume that at the t-th iteration of the belief propagation algorithm the messages shown in the figure below are exchanged between variable and factor nodes in the graph. Each vector (v_0, v_1) defines an (unnormalized) message, for which v_0 corresponds to value 0 and v_1 corresponds to value 0. The product $v_{0,red} = 0$ and $\mu_{0,red}^{(t)}(0) = 1$, $\mu_{\beta \to \phi_1}^{(t)}(0) = 2$.

Will belief propagation converge on the factor graph?

Solution:

- The most important observation here is that the tree is acyclic and connected, which makes it a tree.
- 2 Belief propagation always converges to the exact marginals when the factor graph is a tree.
- S Therefore, for this factor graph belief propagation will converge.

From the provided messages compute the approximate marginal distribution of B.

Solution:

1 From the belief propagation equations, we have:

$$egin{aligned} \mathcal{P}^{(t)}(B) \propto \prod_{\phi_i \in \mathcal{N}(B)} \mu^{(t)}_{\phi_i o B}(B) \ \mathcal{P}^{(t)}(B) \propto \mu^{(t)}_{\phi_1 o B}(B) \mu^{(t)}_{\phi_2 o B}(B) \mu^{(t)}_{\phi_3 o B}(B) \end{aligned}$$

We proceed to calculate the product of the messages for both values of B.

Solution:

1 For B = 0: $\hat{P}^{(t)}(0) = \mu^{(t)}_{\phi_1 \to B}(0)\mu^{(t)}_{\phi_2 \to B}(0)\mu^{(t)}_{\phi_3 \to B}(0)$ $\hat{P}^{(t)}(0) = 3 \times 4 \times 1 = 12$ **2** For B = 1: $\hat{P}^{(t)}(1) = \mu^{(t)}_{\phi_1 \to B}(1)\mu^{(t)}_{\phi_2 \to B}(1)\mu^{(t)}_{\phi_3 \to B}(1)$ $\hat{P}^{(t)}(1) = 2 \times 1 \times 2 = 4$

8 Normalizing:

$$P^{(t)}(B) = \frac{(12,4)}{Z} = (0.75, 0.25)$$

Compute the message $\mu_{B \to \phi_2}^{(t+1)}$.

Solution:

1 From the belief propagation equations:

$$\mu_{B \to \phi_2}^{(t+1)}(B) = \prod_{\substack{\phi_i \in \mathcal{N}(B) \setminus \{\phi_2\}}} \mu_{\phi_i \to B}^{(t)}(B)$$
$$\mu_{B \to \phi_2}^{(t+1)}(B) = \mu_{\phi_1 \to B}^{(t)}(B) \mu_{\phi_3 \to B}^{(t)}(B)$$

2 Again we calculate for both values of B. No need to normalize in the case of a factor.

Solution:

1 For B = 0: $\mu_{B \to \phi_2}^{(t+1)}(0) = \mu_{\phi_1 \to B}^{(t)}(0)\mu_{\phi_3 \to B}^{(t)}(0) = 3 \times 1 = 3$ 2 For B = 1: $\mu_{B \to \phi_2}^{(t+1)}(1) = \mu_{\phi_1 \to B}^{(t)}(1)\mu_{\phi_3 \to B}^{(t)}(1) = 2 \times 2 = 4$ 3 The message is:

$$\mu_{B \to \phi_2}^{(t+1)}(B) = (3,4)$$

Compute the message $\mu_{\phi_1 \to B}^{(t+1)}$.

Solution:

1 From the belief propagation equations:

$$\mu_{\phi_1 \to B}^{(t+1)}(B) = \sum_{\substack{v^* \in \mathbf{v}_{\phi_1} \setminus \{B\}}} \phi_1(v_{\phi_1}) \prod_{\substack{v^* \in \mathcal{N}(\phi_1) \setminus \{B\}}} \mu_{v^* \to \phi_1}^{(t)}(v^*)$$
$$\mu_{\phi_1 \to B}^{(t+1)}(B) = \sum_{a} \sum_{c} \phi_1(a, B, c) \mu_{A \to \phi_1}^{(t)}(a) \mu_{C \to \phi_1}^{(t)}(c)$$

In this case we have to marginalize over A and C which means the summation has 4 terms, and we do this for both values of B.

Solution:

• For B = 0: $\mu_{\phi_1 \to B}^{(t+1)}(0) = \phi_1(0, 0, 0) \mu_{A \to \phi_1}^{(t)}(0) \mu_{C \to \phi_1}^{(t)}(0) + \phi_1(0, 0, 1) \mu_{A \to \phi_1}^{(t)}(0) \mu_{C \to \phi_1}^{(t)}(1) + \phi_1(1, 0, 0) \mu_{A \to \phi_1}^{(t)}(1) \mu_{C \to \phi_1}^{(t)}(0) + \phi_1(1, 0, 1) \mu_{A \to \phi_1}^{(t)}(1) \mu_{C \to \phi_1}^{(t)}(1)$

Note that \(\phi_1(A, B, C) = 0\) if \(C = 0\), therefore we just need to sum 2 terms.

$$\mu^{(t+1)}_{\phi_1
ightarrow B}(0)=1 imes1 imes5+2 imes1 imes5=15$$

Solution:

• For
$$B = 1$$
:

$$\mu_{\phi_1 \to B}^{(t+1)}(1) = \phi_1(0, 1, 0) \mu_{A \to \phi_1}^{(t)}(0) \mu_{C \to \phi_1}^{(t)}(0) + \phi_1(0, 1, 1) \mu_{A \to \phi_1}^{(t)}(0) \mu_{C \to \phi_1}^{(t)}(1) + \phi_1(1, 1, 0) \mu_{A \to \phi_1}^{(t)}(1) \mu_{C \to \phi_1}^{(t)}(0) + \phi_1(1, 1, 1) \mu_{A \to \phi_1}^{(t)}(1) \mu_{C \to \phi_1}^{(t)}(1)$$

2 Note that the product of the messages from A and C didn't change, only the value of $\phi_1(A, B, C)$.

$$\mu^{(t+1)}_{\phi_1
ightarrow B}(1)=2 imes 1 imes 5+3 imes 1 imes 5=25$$

3 Finally:

$$\mu^{(t+1)}_{\phi_1 o B}(B) = (15, 25)$$

Recap

Gibbs sampling

Assume that we are running a Gibss sampler on the same factor graph and the last sample we drew is (A = 0, B = 0, C = 1, D = 1, E = 1). Compute the distribution from which we should draw the new value of A.

Solution:

 Remember that a Gibbs sampler uses a conditional distribution, i.e. it samples from:

$$P(A^{(t+1)} | B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)})$$
(3)

2 Then remember the bayes theorem:

$$P(A^{(t+1)} | B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)}) =$$
(4)

$$\frac{P(A^{(t+1)}, B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)})}{P(B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)})}$$
(5)

Gibbs sampling

Solution:

• Note that for sampling *A*, the denominator in equation 5 is a constant, therefore we have:

$$P(A^{(t+1)} | B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)}) \propto$$
(6)

$$P(A^{(t+1)}, B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)})$$
(7)

2 And from the factor graph we have

$$P(A^{(t+1)}, B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)}) \propto$$
 (8)

$$\phi_1(A^{(t+1)}, B^{(t)}, C^{(t)})\phi_2(B^{(t)}, D^{(t)})\phi_3(B^{(t)}, E^{(t)})$$
(9)

Gibbs sampling

Solution:

1 Finally, we only care about the factors that include A, the others are constants:

$$P(A^{(t+1)}, B^{(t)}, C^{(t)}, D^{(t)}, E^{(t)}) \propto \phi_1(A^{(t+1)}, B^{(t)}, C^{(t)})$$
 (10)

2 We can now replace with both possible values of A.

$$P(A^{(t+1)} = 0 \mid B^{(t)} = 0, C^{(t)} = 1) \propto \phi_1(0, 0, 1) = 1$$

$$P(A^{(t+1)} = 1 \mid B^{(t)} = 0, C^{(t)} = 1) \propto \phi_1(1, 0, 1) = 2$$

3 After normalizing, we find that we must draw A from the following distribution:

$$\hat{P}(A) = (0.333, 0.667)$$
 (11)