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Inference

Tree-structured:
• Variable elimination
• Belief propagation

Loopy networks:
• Loopy belief propagation
• Variational inference
• Gibbs sampling (Monte Carlo Sampling)



Variable elimination
Homework problem 1

A g1(A)

f 0.7
t 0.3

C g2(C )

f 0.4
t 0.6

C D g3(C ,D)

f f 0.10
f t 0.90
t f 0.25
t t 0.75

B E g4(B,E )

f f 0.8
f t 0.2
t f 0.6
t t 0.4

A B C g5(A,B,C )

f f f 0.8
f f t 0.2
f t f 0.2
. . .

D E F g6(D,E ,F )

f f f 0.05
f f t 0.95
. . .



Variable elimination

Sum factor

g7(D,E ) =
∑
f

∏
jε{6}

gj =
∑
f

g6(D,E , f ) (1)

Table: Intermediate factor g7(D,E )

D E g7(D,E )

f f 0.05+ 0.95 = 1
f t 0.00+ 1.00 = 1
t f 1.00+ 0.00 = 1
t t 0.75+ 0.25 = 1



Variable elimination
Product factor

g8(B,D) =
∑
e

g4(B, e)g7(D, e) =
∑
e

f1(B,D, e) (2)

Table: Product factor f1(B,D,E )

B D E f1(B,D,E )

f f f 1× 0.8 = 0.8
f f t 1× 0.2 = 0.2
f t f 1× 0.8 = 0.8
f t t 1× 0.2 = 0.2
t f f 1× 0.6 = 0.6
t f t 1× 0.4 = 0.4
t t f 1× 0.6 = 0.6
t t t 1× 0.4 = 0.4



Belief propagation



Belief propagation

Will belief propagation converge on the factor graph?

Solution:

1 The most important observation here is that the tree is acyclic
and connected, which makes it a tree.

2 Belief propagation always converges to the exact marginals
when the factor graph is a tree.

3 Therefore, for this factor graph belief propagation will
converge.



Belief propagation

From the provided messages compute the approximate
marginal distribution of B.

Solution:

1 From the belief propagation equations, we have:

P(t)(B) ∝
∏

φi∈N(B)

µ
(t)
φi→B(B)

P(t)(B) ∝ µ(t)φ1→B(B)µ
(t)
φ2→B(B)µ

(t)
φ3→B(B)

2 We proceed to calculate the product of the messages for both
values of B .



Belief propagation

Solution:

1 For B = 0:

P̂(t)(0) = µ
(t)
φ1→B(0)µ

(t)
φ2→B(0)µ

(t)
φ3→B(0)

P̂(t)(0) = 3× 4× 1 = 12

2 For B = 1:

P̂(t)(1) = µ
(t)
φ1→B(1)µ

(t)
φ2→B(1)µ

(t)
φ3→B(1)

P̂(t)(1) = 2× 1× 2 = 4

3 Normalizing:

P(t)(B) =
(12, 4)
Z

= (0.75, 0.25)



Belief propagation

Compute the message µ(t+1)
B→φ2

.

Solution:

1 From the belief propagation equations:

µ
(t+1)
B→φ2

(B) =
∏

φi∈N(B)\{φ2}

µ
(t)
φi→B(B)

µ
(t+1)
B→φ2

(B) = µ
(t)
φ1→B(B)µ

(t)
φ3→B(B)

2 Again we calculate for both values of B . No need to normalize
in the case of a factor.



Belief propagation

Solution:

1 For B = 0:

µ
(t+1)
B→φ2

(0) = µ
(t)
φ1→B(0)µ

(t)
φ3→B(0) = 3× 1 = 3

2 For B = 1:

µ
(t+1)
B→φ2

(1) = µ
(t)
φ1→B(1)µ

(t)
φ3→B(1) = 2× 2 = 4

3 The message is:
µ
(t+1)
B→φ2

(B) = (3, 4)



Belief propagation

Compute the message µ(t+1)
φ1→B .

Solution:

1 From the belief propagation equations:

µ
(t+1)
φ1→B(B) =

∑
v∗∈vφ1\{B}

φ1(vφ1)
∏

v∗∈N(φ1)\{B}

µ
(t)
v∗→φ1

(v∗)

µ
(t+1)
φ1→B(B) =

∑
a

∑
c

φ1(a,B, c)µ
(t)
A→φ1

(a)µ
(t)
C→φ1

(c)

2 In this case we have to marginalize over A and C which means
the summation has 4 terms, and we do this for both values of
B .



Belief propagation

Solution:

1 For B = 0:

µ
(t+1)
φ1→B(0) =

φ1(0, 0, 0)µ
(t)
A→φ1

(0)µ(t)C→φ1
(0)+

φ1(0, 0, 1)µ
(t)
A→φ1

(0)µ(t)C→φ1
(1)+

φ1(1, 0, 0)µ
(t)
A→φ1

(1)µ(t)C→φ1
(0)+

φ1(1, 0, 1)µ
(t)
A→φ1

(1)µ(t)C→φ1
(1)

2 Note that φ1(A,B,C ) = 0 if C = 0, therefore we just need to
sum 2 terms.

µ
(t+1)
φ1→B(0) = 1× 1× 5+ 2× 1× 5 = 15



Belief propagation
Solution:

1 For B = 1:

µ
(t+1)
φ1→B(1) =

φ1(0, 1, 0)µ
(t)
A→φ1

(0)µ(t)C→φ1
(0)+

φ1(0, 1, 1)µ
(t)
A→φ1

(0)µ(t)C→φ1
(1)+

φ1(1, 1, 0)µ
(t)
A→φ1

(1)µ(t)C→φ1
(0)+

φ1(1, 1, 1)µ
(t)
A→φ1

(1)µ(t)C→φ1
(1)

2 Note that the product of the messages from A and C didn’t
change, only the value of φ1(A,B,C ).

µ
(t+1)
φ1→B(1) = 2× 1× 5+ 3× 1× 5 = 25

3 Finally:
µ
(t+1)
φ1→B(B) = (15, 25)



Gibbs sampling

Recap



Gibbs sampling
Assume that we are running a Gibss sampler on the same
factor graph and the last sample we drew is
(A = 0,B = 0,C = 1,D = 1,E = 1). Compute the distribution
from which we should draw the new value of A.

Solution:

1 Remember that a Gibbs sampler uses a conditional
distribution, i.e. it samples from:

P(A(t+1) | B(t),C (t),D(t),E (t)) (3)

2 Then remember the bayes theorem:

P(A(t+1) | B(t),C (t),D(t),E (t)) = (4)

P(A(t+1),B(t),C (t),D(t),E (t))

P(B(t),C (t),D(t),E (t))
(5)



Gibbs sampling

Solution:

1 Note that for sampling A, the denominator in equation 5 is a
constant, therefore we have:

P(A(t+1) | B(t),C (t),D(t),E (t)) ∝ (6)
P(A(t+1),B(t),C (t),D(t),E (t)) (7)

2 And from the factor graph we have

P(A(t+1),B(t),C (t),D(t),E (t)) ∝ (8)
φ1(A

(t+1),B(t),C (t))φ2(B
(t),D(t))φ3(B

(t),E (t)) (9)



Gibbs sampling
Solution:

1 Finally, we only care about the factors that include A, the
others are constants:

P(A(t+1),B(t),C (t),D(t),E (t)) ∝ φ1(A
(t+1),B(t),C (t)) (10)

2 We can now replace with both possible values of A.

P(A(t+1) = 0 | B(t) = 0,C (t) = 1) ∝ φ1(0, 0, 1) = 1
P(A(t+1) = 1 | B(t) = 0,C (t) = 1) ∝ φ1(1, 0, 1) = 2

3 After normalizing, we find that we must draw A from the
following distribution:

P̂(A) = (0.333, 0.667) (11)


