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Abstract

We consider an online linear optimization problem over the set of permutations
under some precedence constraints. In this problem, the player is supposed to
predict a permutation ofn fixed objects at each trial, under the constraints that
some objects have higher priority than other objects in each permutation. This
problem is naturally motivated by a scheduling problem whose objective is to
minimize the sum of completion times ofn sequential tasks under precedence
constraints. We propose an online linear optimization algorithm which predicts
almost as well as the best known offline approximation algorithms in hindsight.
Furthermore, our algorithm runs inO(n4) time for each trial.

1 Introduction

Problems of learning and predicting of permutations appear in many contexts such as ranking, rec-
ommendation, and scheduling tasks. More precisely, a permutationσ over the set[n] = {1, . . . , n}
of n fixed objects is a bijective function from[n] to [n]. Another representation of a permutationσ
over the set[n] is to describe it as an-dimensional vector in[n]n, defined asσ = (σ(1), . . . , σ(n)).
E.g.,(3, 4, 2, 1) is a representation of a permutation forn = 4. LetSn be the set of all permutations
over [n], i.e.,Sn = {σ ∈ [n]n| σ is a permutation over[n]}. In particular, the convex hull of all
permutations is called permutahedron, denoted asPn.

We assume a set of precedence constraints in permutations. The setA of precedence constraints is
given asA = {(ik, jk) ∈ [n]× [n] | ik ̸= jk, k = 1, . . . ,m}, meaning that objectik is preferred to
objectjk. The setA induces the set defined by linear constraintsPrecons(A) = {p ∈ Rn

+ | pi ≥
pj for (i, j) ∈ A}. We further assume that there exits a linear ordering consistent withA. In other
words, we assume there exists a permutationσ ∈ Sn ∩ Precons(A).

In this paper, we consider the following online linear optimization problem overSn ∩ Precons(A).
For each trialt = 1, . . . , T , (i) the player predicts a permutationσt ∈ Sn ∩ Precons(A), (ii) the
adversary returns a loss vectorℓt ∈ [0, 1]n, and (iii) the player incurs lossσt · ℓt. The goal of the
player is to minimize theα-regret for some smallα ≥ 1:

α-Regret=
T∑

t=1

σt · ℓt − α min
σ∈Sn∩Precons(A)

T∑
t=1

σ · ℓt.

This problem is motivated by an online version of job scheduling with a single processor under some
precedence constraints. Assume that there is a single processor andn fixed jobs. Every dayt, we
determine a schedule represented by a permutationσt in Sn ∩ Precons(A). Then, after processing
all n jobs according to the schedule, the processing timeℓt,i ∈ [0, 1] of each jobi is revealed.
The goal is to to minimizethe sum of the completion timeover all jobs andT days, under the
fixed precedence constraints, where the completion time of jobi at dayt is the sum of processing
times of jobs prior toi and the processing time of jobi. For example, at dayt, we process4 jobs
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according to a permutationσt = (3, 2, 1, 4) ∈ Sn ∩ Precons(A) and each processing time is given
asℓt = (ℓt,1, ℓt,2, ℓt,3, ℓt,4). Note that the componentσt,i of each permutationσt represents the
priority of each jobi. That is, jobs with higher priority are processed earlier. Therefore, jobs4, 1, 2,
and3 are processed sequentially. The completion time of jobsi = 4, 1, 2, 3 areℓt,4, ℓt,4 + ℓt,1,
ℓt,4 + ℓt,1 + ℓt,2, andℓt,4 + ℓt,1 + ℓt,2 + ℓt,3, respectively. So, lossσt · ℓt exactly corresponds to
the sum of the completion time at dayt.

In this paper, we propose an online linear optimization algorithm overPn ∩ Precons(A) whose
α-regret isO(n2

√
T ) for α = 2 − 2/(n + 1). For each trial, our algorithm runs in polynomial

time in n andm. Further, we show that the lower bound of the1-regret isΩ(n2
√
T ). In addition,

we prove that there is no polynomial time algorithm withα-regretpoly(n,m)
√
T with α < 2 −

2/(n + 1) unless there exists a randomized approximation algorithm with approximationα < 2 −
2/(n+1) for the corresponding offline problem (which we discuss later). So far, the state-of-the-art
approximation algorithms have approximation ratio2− 2/(n+ 1) and it is an open problem to find
an approximation algorithm with better ratio [18]. Therefore, our algorithm is optimal among any
polynomial algorithms unless the open problem is positively solved.

The corresponding offline problem has been extensively investigated in the literature. The problem
is, given a loss vectorℓ ∈ [0, 1]n and the set of precedence constraintsA as inputs, to output
a permutationσ ∈ Sn ∩ Precons(A) which minimizes the inner productσ · ℓ, i.e., the sum of
completion times. More generally, the problem of minimizing the weighted sum of completion times
are typically considered. It is known that the problem is NP-hard [10, 11]. Several2 − O(1/n)-
approximation algorithms are proposed ( Schulz [15], Hall et al. [8], Chudak and Hochbaum [4],
Margot et al. [13], and Chekuri and Motwani [3]). For further developments, see, e.g., [6, 2].

There are related researches on online optimization over the permutahedron. The first result without
precedence constraints is proposed by Yasutake et al. [19]. Ailon proposed another online opti-
mization algorithm with an improved regret bound[1]. Suehiro et al. [17] extended Yasutake et al.’s
result to the submodular base polyhedron which can be used for not only permutations, but also
other combinatorial objects such as spanning trees.

It is possible to obtain online optimization algorithms using “offline-to-online” conversion tech-
niques. By using conversion method of Kakade et al. [9] or Fujita et al. [7], we can construct online
optimization algorithms withα-regret close to ours. But, with the method of Kakade et al. [9], the
resulting algorithm takes time linear inT , which is not desirable. With the method of Fujita et al.
[7], the running time per trial ispoly(n, 1/ε) which is independent ofT but depends on1/ε and its
α-regret is proved forα = 2− 2/(n+ 1) + ε, which is inferior to ours.

2 Online Linear Optimization Algorithm over the Permutations

In this section, we propose our algorithm PermLearnPrec and prove itsα-regret bound.

2.1 Main Structure

The description of PermLearnPrec is shown in Algorithm1. The algorithm maintains a weight vector
pt in Rn

+, which represents a “mixture” of permutations inSn. At each trialt, it “rounds” a vectorpt

into a permutationσt so thatσt ≤ αpt for someα > 0. This procedure is done by Rounding, which
we will show the details in the next section. After the loss vectorℓt is given, PermLearnPrec updates
the weight vectorpt in an additive way and projects it onto the set of linear constraints representing
precedence constraintsPrecons(A) and the intersection of the permutahedronPn andPrecons(A)
successively.

The main structure of our algorithm itself is built on a standard online convex optimization algorithm
Online Gradient Descent (OGD) [20] in online learning literature. OGD consists of the additive
update of weight vectors and the projection to some convex set of interest. In our case, the convex
set isPn ∩ Precons(A). Using these procedures, the regret bound of OGD can be proved to be
O(n2

√
T ). So, apparently, our successive projections seem redundant and only one projection to

Pn ∩ Precons(A) would suffice. The problem of the standard approach is that the projection onto
Pn ∩Precons(A) looks not tractable since it deals exponentially many linear constraints. Later, we
will show that the successive projections are the keys to an efficient implementation of our algorithm.
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Algorithm 1 PermLearnPrec

1. Let p1 = ((n+ 1)/2, . . . , (n+ 1)/2) ∈ [0, n]n.

2. For t = 1, . . . , T

(a) RunRounding(pt) and getσt ∈ Sn such thatσt ≤ (2− 2/(n+ 1))pt.
(b) Incur a lossσt · ℓt.
(c) Updatept+ 1

3
aspt+ 1

3
= pt − ηℓt.

(d) Let pt+ 2
3

be the Euclidean projection onto the setPrecons(A), .i.e., pt+ 2
3

=

argminp∈Precons(A) ∥p− pt+ 1
3
∥22.

(e) Let pt+1 be the projection ofpt+ 2
3

onto the setPn ∩ Precons(A), that is,pt+1 =

arg infp∈Pn∩Precons(A) ∥p− pt+ 2
3
∥22.

We start the analysis of PermLearnPrec with the following lemma. The lemma guarantees the
“progress “ ofpt towards any vector inPn ∩ Precons(A), which is measured by Euclidean norm
squared.

Lemma 1. For anyq ∈ Pn ∩ Precons(A) and for anyt ≥ 1,

∥q − pt∥22 − ∥q − pt+1∥22 ≥ 2η(q − pt) · ℓt − η2∥ℓt∥22.

Lemma 2 (Cf. Zinkevich [20]). For anyT ≥ 1 andη = (n+ 1)/(2
√
T ),

T∑
t=1

pt · ℓt ≤ min
p∈Pn∩Precons(A)

T∑
t=1

p · ℓt +
n(n+ 1)

2

√
T .

3 Efficient Implementations of Projection and Rounding

In this section, we propose efficient algorithms for successive projections ontoPrecons(A) and
Pn ∩ Precons(A). Then we show an implementation of the procedure Rounding.

3.1 Projection onto the SetPrecons(A) of Precedence Constraints

The problem of projection ontoPrecons(A) is described as follows:

min
p∈Rn

∥p− q∥22

sub.to: pi ≥ pj , for (i, j) ∈ A.

This problem is known as the isotonic regression problem [14, 16, 12]. Previously known algorithms
for the isotonic regression run inO(mn2 log n) orO(n4) time see [14, 16, 12] for details.

3.2 Projection ontoPn ∩ Precons(A)

Now we show an efficient algorithm Projection for computing the projection onto the intersection
of the permutahedronPn and the setPrecons(A) of precedence constraints. In fact, we will show
that the problem can be reduced to projection ontoPn only. So, we will just use the algorithm of
Suehiro et al. [17] for finding the projection ontoPn.
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Algorithm 2 Rounding

Input: p ∈ Pn ∩ Precons(A) satisfying thatp1 ≥ p2 ≥ · · · ≥ pn and the transitive closureA∗ of
A
Output: Permutationσ ∈ Sn ∩ Precons(A)

1. Sort elements ofp in the descending order, where for elementsi, j such thatpi = pj , i is
larger thanj if (i, j) ∈ A∗, otherwise beak the tie arbitrarily.

2. Output the permutationσ s.t. σi = (n + 1) − ri, whereri is the ordinal ofi in the above
order.

Formally, the problem is stated as follows:

min
p∈Rn

∥p− q∥22

sub. to:
∑
j∈S

pj ≤
|S|∑
j=1

(n+ 1− j), for anyS ⊂ [n],

n∑
j=1

pj =
n(n+ 1)

2
,

pi ≥ pj , for (i, j) ∈ A.

Without loss of generality, we may assume that elements inq are sorted in descending order, i.e.,
q1 ≥ q2 ≥ · · · ≥ qn. This can be achieved in timeO(n log n) by sortingq. First, we show that this
projection preserves the order inq.

Lemma 3 (Order Preserving Lemma (Suehiro et al.[17])). Let p∗ be the projection ofq s.t. q1 ≥
q2 ≥ ... ≥ qn andA′ is the set of violating constraints w.r.t.q. Then the projectionp∗ satisfies that
p∗1 ≥ p∗2 ≥ ... ≥ p∗n.

Further, we show that the projection ontoPn preserves equality as well.

Lemma 4 (Equality Preserving Lemma). Let p∗ be the projection ofq. Then the projectionp∗

satisfies thatpi = pj if qi = qj .

Now we are ready to show one of our main technical lemmas.

Lemma 5. For anyq ∈ Precons(A),

arg min
p∈Pn

∥p− q∥ = arg min
p∈Pn∩Precons(A)

∥p− q∥.

So, by Lemma5, when a vectorq ∈ Precons(A) is given, we can compute the projection ofq
ontoPn ∩ Precons(A) by computing the projection ofq ontoPn only. By applying the projection
algorithm of Suehiro et al. [17] for the base polyhedron (which generalizes the permutahedron), we
obtain the following result.

Theorem 1. There exists an algorithm, with inputq ∈ Precons(A), outputs the projection ofq onto
Pn ∩ Precons(A) in timeO(n2) and spaceO(n).

3.3 Rounding

We show an algorithm for Rounding in Algorithm2. The algorithm is simple. Roughly speaking,
if the inputp ∈ Pn ∩ Precons(A) is sorted asp1 ≥ · · · ≥ pn, the algorithm outputsσ such that
σ1 ≥ · · · ≥ σn, i.e.,σ = (n, n − 1, . . . , 1). Note that we need to break ties inp to constructσ.
Let A∗ be the transitive closure ofA. So, given an equivalence set{j | pi = pj}, we break ties so
that if (i, j) ∈ A∗, σi ≥ σj . This can be done by, e.g., quicksort. First, we show that the rounding
guarantees thatσ ≤ (2− 2/(n+ 1)). Then we discuss time complexity of Rounding.

We prove the following lemma on Rounding.

Lemma 6. For anyp ∈ Pn ∩ Precons(A) s.t. p1 ≥ · · · ≥ pn, the outputσ of Rounding givenp
satisfies that for anyi ∈ [n], σi ≤ (2− 2/(n+ 1))pi.
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For computing Rounding, we need to construct the transitive closureA∗ of A before the protocol
starts. It is well known that a transitive closure can be computed by using algorithms for all-pairs
shortest pathes. For this problem, Floyd-Warshall algorithm can be used and it runs in timeO(n3)
and spaceO(n2) (see, e.g., [5]). WhenA is small, for example,m << n2, we can use Johnson’s
algorithm running in timeO(n2 log n+ nm) and spaceO(m2).

The time complexity of Rounding isO(n2), which is due to the sorting. The space complexity is
O(n2), if we use Floyd-Warshall algorithm with a adjacency matrix. The space complexity can be
reduced toO(m2) if we employ Johnson’s algorithm, which uses an adjacency list. On the other
hand, we need an extraO(logm) factor in the time complexity since we needO(logm) time to
check if(i, j) ∈ A∗ whenA∗ is given as an adjacency list.

3.4 Main Result

Now we are ready to prove the main result. By Lemma5, 6 and Theorem1, we get the following
theorem immediately.

Theorem 2. There exists an online linear optimization algorithm overPn ∩ Precons(A) such that

1. its (2− 2/(n+ 1))-regret isO(n2
√
T ), and

2. its running time isO(n4) time per trial.

4 Lower Bound

In this section, we derive a lower bound of the regret for our online prediction problem over the
permutahedronPn. Here we consider the special case where no precedence constraint is given.

Theorem 3. For our prediction problem over the permutahedronPn, for sufficiently largeT , the
1-regret isΩ(n2

√
T ).

In fact, this lower bound on1-regret is tight in general, since there are online algorithms which
achieve1-regretO(n2

√
T ) ([17, 1]).

Now it is natural to ask if the(2−2/(n+1))-regretO(n2
√
T ) is tight under precedence constraints.

So far, we have no lower bound for this case. But, we give an alternative argument that our algorithm
is optimal unless there are an offline algorithm with approximation ratioα < 2.

Theorem 4. If there exists a polynomial time online linear optimization algorithm withα-regret
poly(n,m)

√
T , then there also exists a randomized polynomial time algorithm for the offline prob-

lem with approximation ratioα.
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