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Abstract

We consider an online linear optimization problem over the set of permutations
under some precedence constraints. In this problem, the player is supposed to
predict a permutation of fixed objects at each trial, under the constraints that
some objects have higher priority than other objects in each permutation. This
problem is naturally motivated by a scheduling problem whose objective is to
minimize the sum of completion times af sequential tasks under precedence
constraints. We propose an online linear optimization algorithm which predicts
almost as well as the best known offline approximation algorithms in hindsight.
Furthermore, our algorithm runs @(n*) time for each trial.

1 Introduction

Problems of learning and predicting of permutations appear in many contexts such as ranking, rec-
ommendation, and scheduling tasks. More precisely, a permutataver the sefn] = {1,...,n}

of n fixed objects is a bijective function frofn] to [n]. Another representation of a permutation

over the sefn] is to describe it as a-dimensional vector ifn]”, defined agr = (o(1),...,0(n)).
E.g.,(3,4,2,1) is a representation of a permutation for= 4. Let S,, be the set of all permutations
over|n], i.e., S, = {o € [n]"| o is a permutation ovejn]}. In particular, the convex hull of all
permutations is called permutahedron, denotef,as

We assume a set of precedence constraints in permutations. THeo§erecedence constraints is
given asA = {(ix, jr) € [n] X [n] | ix # Jjk, k = 1,...,m}, meaning that objea}, is preferred to
object;j,. The setd induces the set defined by linear constraittscons(A) = {p € R} | p; >
p; for (i,75) € A}. We further assume that there exits a linear ordering consistentdwith other
words, we assume there exists a permutatian.S,, N Precons(.A).

In this paper, we consider the following online linear optimization problem Syen Precons(.A).
For each triak = 1,...,T, (i) the player predicts a permutatien € S,, N Precons(A), (ii) the
adversary returns a loss vecire [0, 1]™, and (iii) the player incurs loss; - ¢,. The goal of the
player is to minimize the-regret for some smatk > 1:

T T
a-Regret= Zat by — min )Zo- -y
t=1

P €S, NPrecons(A

This problem is motivated by an online version of job scheduling with a single processor under some
precedence constraints. Assume that there is a single processoffiaad jobs. Every day, we
determine a schedule represented by a permutation S,, N Precons(.A). Then, after processing

all n jobs according to the schedule, the processing timec [0, 1] of each jobi is revealed.

The goal is to to minimizeéhe sum of the completion tinmver all jobs andl” days, under the

fixed precedence constraints, where the completion time of gtdayt is the sum of processing
times of jobs prior ta and the processing time of jab For example, at day, we procesd jobs



according to a permutatiom;, = (3,2, 1,4) € S,, N Precons(.4) and each processing time is given
asly = (by1,%2,%3,¢,4). Note that the component, ; of each permutatios, represents the
priority of each jobi. That is, jobs with higher priority are processed earlier. Therefore 4obh2,
and3 are processed sequentially. The completion time of jobs4,1,2,3 arel; 4, £ 4 + 411,
lea+ 0l + b o, andly g + 0y 1 + 4o + Uy 3, rESpectively. So, loss; - £; exactly corresponds to
the sum of the completion time at day

In this paper, we propose an online linear optimization algorithm @¥en Precons(.A) whose
a-regret isO(n?V/T) for a = 2 — 2/(n + 1). For each trial, our algorithm runs in polynomial
time inn andm. Further, we show that the lower bound of theegret isQ(n?v/T). In addition,

we prove that there is no polynomial time algorithm witfregretpoly(n, m)v/T with o < 2 —

2/(n + 1) unless there exists a randomized approximation algorithm with approximatior2 —
2/(n+ 1) for the corresponding offline problem (which we discuss later). So far, the state-of-the-art
approximation algorithms have approximation r&ie 2/(n + 1) and it is an open problem to find

an approximation algorithm with better ratidg]. Therefore, our algorithm is optimal among any
polynomial algorithms unless the open problem is positively solved.

The corresponding offline problem has been extensively investigated in the literature. The problem
is, given a loss vectof € [0,1]" and the set of precedence constraidtsas inputs, to output

a permutatioro € S,, N Precons(.A) which minimizes the inner produet - ¢, i.e., the sum of
completion times. More generally, the problem of minimizing the weighted sum of completion times
are typically considered. It is known that the problem is NP-hafj 11]. Several2 — O(1/n)-
approximation algorithms are proposed ( Schalg|[Hall et al. [8], Chudak and Hochbaund],

Margot et al. L3], and Chekuri and Motwani]). For further developments, see, e.6.,7].

There are related researches on online optimization over the permutahedron. The first result without
precedence constraints is proposed by Yasutake etHE3]. Pilon proposed another online opti-
mization algorithm with an improved regret boufid[Suehiro et al. 17] extended Yasutake et al.’s

result to the submodular base polyhedron which can be used for not only permutations, but also
other combinatorial objects such as spanning trees.

It is possible to obtain online optimization algorithms using “offline-to-online” conversion tech-
niques. By using conversion method of Kakade et@lof Fujita et al. [7], we can construct online
optimization algorithms withy-regret close to ours. But, with the method of Kakade etl.the
resulting algorithm takes time linear i, which is not desirable. With the method of Fujita et al.
[7], the running time per trial ipoly(n, 1/<) which is independent df but depends om/e and its
a-regret is proved fooe = 2 — 2/(n + 1) 4 ¢, which is inferior to ours.

2 Online Linear Optimization Algorithm over the Permutations
In this section, we propose our algorithm PermLearnPrec and prowerégret bound.

2.1 Main Structure

The description of PermLearnPrec is shown in AlgorithriThe algorithm maintains a weight vector

p: iR, which represents a “mixture” of permutationsdp. At each trialt, it “rounds” a vectorp;,

into a permutatiowr; so thato; < ap, for somen > 0. This procedure is done by Rounding, which
we will show the details in the next section. After the loss veétas given, PermLearnPrec updates
the weight vectop, in an additive way and projects it onto the set of linear constraints representing
precedence constrainisecons(.A) and the intersection of the permutahedf@nandPrecons(.A)
successively.

The main structure of our algorithm itself is built on a standard online convex optimization algorithm
Online Gradient Descent (OGD2()] in online learning literature. OGD consists of the additive
update of weight vectors and the projection to some convex set of interest. In our case, the convex
set is P, N Precons(A). Using these procedures, the regret bound of OGD can be proved to be
O(n?VT). So, apparently, our successive projections seem redundant and only one projection to
P, N Precons(.A) would suffice. The problem of the standard approach is that the projection onto
P, N Precons(A) looks not tractable since it deals exponentially many linear constraints. Later, we
will show that the successive projections are the keys to an efficient implementation of our algorithm.



Algorithm 1 PermLearnPrec

1. Letp; = ((n+1)/2,...,(n+1)/2) € [0,n]™.

2. Fort=1,...,T
(a) RunRounding(p;) and geto, € S,, such tha, < (2 —2/(n+1))p;.
(b) Incur a losso - £;.
(©) Updatept+% asp,, 1 =Pt — .
(d) Let p,, 2 be the Euclidean projection onto the sSetecons(A), .i.e., p, 2 =

arg Milpeprecons(A) 1P — Pry 1113

(e) Let p,11 be the projection op,, 2 onto the set?, N Precons(A), that is,p;4+1 =

arg infpePanPrecons(A) ”p - pt+% ”%

We start the analysis of PermLearnPrec with the following lemma. The lemma guarantees the
“progress “ ofp, towards any vector i, N Precons(.A), which is measured by Euclidean norm
squared.

Lemma 1. Foranyq € P,, N Precons(A) and for anyt > 1,

g —pell3 = lg — pes1ll3 > 2n(q — pe) - € — n?||€.]3.

Lemma 2 (Cf. Zinkevich [20]). ForanyT > 1andn = (n + 1)/(2VT),

d d nn+1)
Zpt-ﬁtg min Zp-£t+ VT.
t=1

pE€ P, NPrecons(A) —1 2

3 Efficient Implementations of Projection and Rounding

In this section, we propose efficient algorithms for successive projectionsRantons(.A) and
P,, N Precons(.A). Then we show an implementation of the procedure Rounding.

3.1 Projection onto the SefPrecons(.A) of Precedence Constraints

The problem of projection ontBrecons(.A) is described as follows:

: 2
oin |lp - ql2

sub.to: p; > p;, for (i,j) € A.

This problem is known as the isotonic regression problen6, 12]. Previously known algorithms
for the isotonic regression run (mn?logn) or O(n*) time see 14, 16, 12] for details.

3.2 Projection onto P, N Precons(.A)

Now we show an efficient algorithm Projection for computing the projection onto the intersection
of the permutahedrof,, and the sePrecons(.A) of precedence constraints. In fact, we will show
that the problem can be reduced to projection aRtoonly. So, we will just use the algorithm of
Suehiro et al. 17] for finding the projection ontd,.



Algorithm 2 Rounding
Input: p € P, N Precons(A) satisfying thap; > ps > --- > p,, and the transitive closutd™* of
A

Output: Permutatiors € S,, N Precons(.A)

1. Sort elements op in the descending order, where for elemengssuch thaip; = p;, i is
larger thary if (i, 5) € A*, otherwise beak the tie arbitrarily.

2. Output the permutatiosr s.t. o; = (n + 1) — r;, wherer; is the ordinal ofi in the above
order.

Formally, the problem is stated as follows:

. 2
Igrelﬁg}lllp qllz
El

sub. t0:) "p; <> (n+1—j), foranyS c [n],

j€eS j=1

= n(n +1)
j=1

pi > p;, for(i,j) € A.

Without loss of generality, we may assume that elementgsane sorted in descending order, i.e.,
g1 > g2 > -+ > qn. This can be achieved in tim@(n log n) by sortingq. First, we show that this
projection preserves the ordergn

Lemma 3 (Order Preserving Lemma (Suehiro et &f])). Letp* be the projection of s.t. ¢; >

g2 > ... > g, and A’ is the set of violating constraints w.rg¢. Then the projectiop* satisfies that
Pl 2P 2 e 2 Py

Further, we show that the projection onftg preserves equality as well.

Lemma 4 (Equality Preserving Lemma)Let p* be the projection of;. Then the projectiop*
satisfies thap; = p; if ¢; = g;.

Now we are ready to show one of our main technical lemmas.
Lemma 5. For anyq € Precons(A),

arg min — =ar min —ql|.
gpekrlllp q| gpepmprlecons(fl)llp ql

So, by Lemmab, when a vectoiy € Precons(A) is given, we can compute the projection @f
onto P,, N Precons(.A) by computing the projection af onto P,, only. By applying the projection
algorithm of Suehiro et al.1[7] for the base polyhedron (which generalizes the permutahedron), we
obtain the following result.

Theorem 1. There exists an algorithm, with inpgte Precons(.A), outputs the projection af onto
P, N Precons(A) in time O(n?) and space)(n).

3.3 Rounding

We show an algorithm for Rounding in Algorithéhr The algorithm is simple. Roughly speaking,

if the inputp € P, N Precons(A) is sorted ag;, > --- > p,, the algorithm outputs such that

o1 > > op, 6,0 = (n,n—1,...,1). Note that we need to break tiesginto constructo.

Let A* be the transitive closure od. So, given an equivalence sgt | p, = p, }, we break ties so
that if (¢, j) € A*, 0; > ;. This can be done by, e.g., quicksort. First, we show that the rounding

guarantees that < (2 — 2/(n + 1)). Then we discuss time complexity of Rounding.

We prove the following lemma on Rounding.

Lemma 6. For anyp € P, N Precons(A) s.t. p; > --- > p,, the outputo of Rounding givemp
satisfies that for any € [n], o; < (2 —2/(n + 1))p;.



For computing Rounding, we need to construct the transitive cladtiref A before the protocol
starts. It is well known that a transitive closure can be computed by using algorithms for all-pairs
shortest pathes. For this problem, Floyd-Warshall algorithm can be used and it runs ®(tirhe

and spac®(n?) (see, e.g.,9]). When A is small, for exampleyn << n?, we can use Johnson’s
algorithm running in timed (n? log n + nm) and spac&(m?).

The time complexity of Rounding i©(n?), which is due to the sorting. The space complexity is
O(n?), if we use Floyd-Warshall algorithm with a adjacency matrix. The space complexity can be
reduced toO(m?) if we employ Johnson’s algorithm, which uses an adjacency list. On the other
hand, we need an ext@(logm) factor in the time complexity since we neét{logm) time to
check if(i, j) € A* when A* is given as an adjacency list.

3.4 Main Result

Now we are ready to prove the main result. By Lembn& and Theorend, we get the following
theorem immediately.

Theorem 2. There exists an online linear optimization algorithm o¥&rn Precons(.A) such that

1. its (2 — 2/(n + 1))-regret isO(n>v/T), and

2. its running time i0(n*) time per trial.

4 Lower Bound

In this section, we derive a lower bound of the regret for our online prediction problem over the
permutahedroi®,,. Here we consider the special case where no precedence constraint is given.

Theorem 3. For our prediction problem over the permutahedréy, for sufficiently largeT’, the
1-regret isQ(n>vV/T).

In fact, this lower bound on-regret is tight in general, since there are online algorithms which
achievel -regretO(n?v/T) ([17, 1]).

Now it is natural to ask if th€2 —2/(n + 1))-regretO(n2+/T)) is tight under precedence constraints.
So far, we have no lower bound for this case. But, we give an alternative argument that our algorithm
is optimal unless there are an offline algorithm with approximation ratio 2.

Theorem 4. If there exists a polynomial time online linear optimization algorithm withegret
poly(n, m)\/T, then there also exists a randomized polynomial time algorithm for the offline prob-
lem with approximation ratiov.
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