
Submodular Surrogates for Value of Information

Yuxin Chen
ETH Zürich
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Abstract

How should we gather information to make effective decisions? A classical an-
swer to this fundamental problem is given by the decision-theoretic value of in-
formation. Unfortunately, optimizing this objective is intractable, and myopic
(greedy) approximations are known to perform poorly. In this paper, we introduce
DIRECT, an efficient yet near-optimal algorithm for nonmyopically optimizing
value of information. Crucially, DIRECT uses a novel surrogate objective that is
(1) aligned with the value of information problem; (2) efficient to evaluate and
(3) adaptive submodular. This latter property enables us to utilize efficient greedy
optimization while providing strong approximation guarantees. We extensively
demonstrate the utility of our approach on three diverse case-studies: active learn-
ing for interactive content search, optimizing value of information in conservation
management, and touch-based robotic localization. On the latter application, we
demonstrate DIRECT in closed-loop on an actual robotic platform.

1 Introduction
In many real-world decision making tasks we must adaptively choose among informative but
expensive tests. As an illustrative example, consider medical diagnosis [1], where many medical
tests are available, each with a different cost. It is important to administer tests that will enable us
to provide the most effective treatment. In such systems, the reward of making a decision depends
on some unknown hidden state (e.g., the patient’s condition). Generally, it is impossible to observe
this hidden state directly, but one can choose to perform tests – observe the outcome of variables
correlated with the hidden state – but at some cost. The task is then to find a policy to select the
most informative tests, so that we can gather enough information to make effective decisions, while
minimizing the cost of testing. Similar problems arise in numerous other domains, ranging from
optimal experimental design [2] to recommender systems [3] to policy making [4].

Related work A classical approach to information gathering for decision making is the decision-
theoretic value of information [5]. Here, we seek policies that maximize the increase in the
maximum expected utility that the decision maker could obtain when acting upon the acquired
information. Optimizing this criterion in general probabilistic models is NPPP -complete [6].
Consequently, greedy heuristics that myopically select the next test are employed. It is known [7]
that these heuristics can perform arbitrarily poorly; unfortunately exact algorithms for non-myopic
value of information have so far been restricted to simple probabilistic models [6].

The problem of selecting information gathering tests for purely reducing uncertainty about some
hidden variable (ignoring utilities of decision making) is studied in the context of active learning
[8, 9, 10, 11] and (Bayesian) experimental design [2]. Deriving optimal policies is generally NP-
hard [12], but some approximation results are known. In particular, if tests are noise-free (i.e., deter-
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ministic functions of the hidden state), the problem is known as the Optimal Decision Tree (ODT)
problem, and a simple greedy algorithm, called generalized binary search (GBS), is guaranteed to
produce a bounded approximation to the optimal policy in terms of the cost [13].

Recently, these results have been brought closer to decision making by associating each hidden state
with some optimal decision(s), and seeking policies that reduce the uncertainty about the hidden
state only to the extent to make the right decision. Two algorithms, namely equivalence class edge
cutting (EC2) [14] and hyperedge cutting (HEC) [3] provide approximation guarantees for this
problem. Since our approach builds on these techniques, we review them in more detail in Section 1.

Our contributions In this paper, we provide a principled framework for a class of non-myopic
value of information problems: We seek a policy of minimal cost, which guarantees that upon
termination, a near-optimal decision – one that provides almost as much utility as achievable by
carrying out all tests – is identified. Instead of optimizing the classical decision-theoretic value
of information, we propose DIRECT, an efficient surrogate objective function. We show that
it exhibits adaptive submodularity [15], a natural diminishing returns property, generalizing the
classical notion of submodularity to adaptive policies. This result allows us to greedily maximize
the surrogate, while still maintaining a strong theoretical guarantee. Experimental results show that
our algorithm significantly outperforms myopic value of information in most settings. Moreover,
our algorithm is exponentially faster than HEC in theory, significantly faster (often by orders of
magnitude) in practice, while offering similar empirical performance.

2 Background and Problem Statement

The Value of Information and Decision Region Determination Problem. Assume that there
is some unknown hidden discrete random variable Y ∈ Y upon which we want to make a decision.
In our medical diagnostics example, Y may represent the condition of the patient. We are given a
set T = {1, . . . , n} of possible (e.g., medical) tests; performing each test t ∈ T incurs a certain
cost of c(t) > 0 and produces an outcome that is correlated with Y . We model the outcome of
each test t by a discrete random variable Xt ∈ X and denote its observed outcome by xt. Hereby,
xA ∈ XA is a vector of outcomes indexed by a set of tests A ⊆ T that we have performed, and y is
the realized value of the hidden variable Y . Further assume that there is a known prior distribution
P [Y,X1, . . . , Xn] over the hidden variable and test outcomes admitting efficient inference, i.e., we
can compute the posterior distribution P [Y = y | xA] efficiently after having observed any xA.

Suppose there is a finite set D of decisions to choose from. After performing a set of tests and
observing their outcomes, we want to make the best decision given our belief about the hidden
variable Y (e.g., we must decide how to treat the patient). Formally, we quantify the benefit of
making a decision d ∈ D for any y ∈ Y by a utility function u : Y ×D → R≥0. The expected value
of a decision d after observing xA is U(d | xA) = Ey[u(y, d) | xA]. The value of a specific set of
observations xA is then defined as: VoI(xA) = maxd∈D U(d | xA), i.e., the maximum expected
utility achievable when acting upon observations xA.

Consider performing all tests, receiving outcomes xT , and making the most informed decision
possible. This would achieve a value of VoI(xT ). However, it may be possible to achieve
nearly VoI(xT ) with far fewer tests. Our goal is to adaptively select the cheapest tests to do
so. Formally, we define the regret of a decision d given observations xA by R(d | xA) =
maxxT :P[xT |xA]>0[VoI(xT ) − U(d | xT )]. This regret bounds our loss in expected utility by stop-
ping upon observing xA and committing to action d. Our goal is to find a policy π of minimum
cost with regret of at most ε. Formally, a policy is a partial mapping from observation vectors xA
to tests, specifying which test to run next (or that we should stop testing if xA is not in the domain
of π) for any observation vector xA. If variables X1, . . . , Xn would result in outcomes xT , we will
obtain a set of observations, denoted as S(π,xT ) ⊆ T × X , by running policy π until termination
(likely before exhausting all tests). The expected cost of a policy π is cost(π) = ExT [c(S(π,xT ))],
where c(S(π,xT )) is the total cost of all tests run by π in the event xT . Fix some small tolerance
ε ≥ 0. We seek a policy π∗ with minimum cost, such that upon termination, π∗ will suffer regret of
at most ε:

π∗ ∈ arg min
π

cost(π), s.t.∀xT ∃d : R(d | S(π,xT )) ≤ ε whenever P [xT ] > 0. (1)

In other words, we require that each feasible policy satisfies the following condition: Upon
termination, we must be able to commit to a decision, such that we lose at most ε expected utility,
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compared to the optimal decision we could have made if we had also observed all remaining
unobserved variables (assuming they are consistent with our observations). We call Problem (1) the
nonmyopic value of information problem for achieving near-maximal utility (NVOI-NMU).

Importantly, this problem reduces1 to a problem known as the Decision Region Determination
(DRD) problem [3]. In DRD, we are given (1) a set of hypothesesH = {h1, . . . , hN}; (2) a random
variable H distributed overH with known distribution P; (3) a set of tests modeled as deterministic
functions f1, . . . fn : H → X ; (4) a cost function c : {1, . . . , n} → R+ and (5) a collection of
subsets R1, . . . ,Rm ⊆ H called decision regions. We seek a policy π∗ of minimum cost, which
adaptively picks tests i, observes their outcomes Xi = fi(H), where H ∈ H is the unknown
hypothesis, such that upon termination, there exists at least one decision region that contains all
hypotheses consistent with the observations made by the policy. That is, we seek

π∗ ∈ arg min
π

cost(π), s.t. ∀h ∃d : H(S(π, h)) ⊆ Rd. (2)

Hereby h ∈ H, and H(xA) = {h′ ∈ H : (i, x) ∈ xA ⇒ fi(h
′) = x} is the set of hypotheses

consistent with xA. To reduce the NVOI-NMU Problem (1) to DRD (2), we interpret every
outcome vector xT with positive probability as a hypothesis h. The interpretation of the prior,
tests, and costs are immediate. It remains to define the decision regions. For each decision d,
we set Rd to be the set of outcome vectors, for which d is an ε-optimal action, or formally,
Rd = {xT : U(d | xT ) ≥ VoI(xT )− ε}.

Existing approaches for solving the DRD problem. As a special case of the DRD problem,
the Equivalence Class Determination (ECD) problem [14] only allows disjoint decision regions,
i.e., Ri ∩ Rj = ∅ for i 6= j. The EC2 algorithm [14] considers hypotheses as nodes in a
graph G = (V,E), and defines weighted edges between hypotheses in different decision regions:
E = ∪i 6=j{{h, h′} : h ∈ Ri, h′ ∈ Rj}, where the weight of an edge is defined as w({h, h′}) =
P [h] · P [h′]; similarly, the weight of a set of edges is w(E′) =

∑
e∈E′ w(e). A test t with outcome

xt is said to cut edges E(xt) = {{h, h′} ∈ E : ft(h) 6= xt ∨ ft(h′) 6= xt}. We aim to cut all edges
that are incident to inconsistent hypotheses while minimizing the expected cost incurred.

The EC2 objective is defined as the total weight of edges cut: fEC(xA) := w
(
∪t∈A E(xt)

)
.

EC2 is known to be near-optimal for the ECD problem. This result relies on the fact that fEC is
adaptive submodular, and strongly adaptive monotone [15]. Let xA and xB be two observation
vectors. We call xA a subrealization of xB, denoted as xA � xB, if the index set A ⊆ B and
P [xB | xA] > 0. A function f : 2T ×X → R is called adaptive submodular w.r.t. a distribution
P, if for any xA � xB and any test t it holds that ∆(t | xA) ≥ ∆(t | xB), where ∆(t | xA) :=
Ext

[
f(xA∪{t})− f(xA) | xA

]
(i.e., “adding information earlier helps more”). Further, function f

is called strongly adaptively monotone w.r.t. P, if for allA, t /∈ A, and xt ∈ X , it holds that f(xA) ≤
f(xA∪{t}) (i.e., “adding information never hurts”). For decision problems satisfying adaptive sub-
modularity and strongly adaptive monotonicity, the policy that greedily, upon having observed xA,
selects the test t∗ ∈ arg maxt ∆(t | xA)/c(t), is guaranteed to attain near-minimal cost [15].

EC2 crucially relies on the fact that decision regions are disjoint. In the presence of overlapping
regions, there is no principled way to apply EC2. Recently, the HEC algorithm [3] was proposed for
solving the general DRD problem. It does so by creating an alternate representation – a hypergraph
for splitting decision regions. The computational bottleneck for HEC lies in the construction of
this hypergraph, where computation cost grows exponentially with the hyperedge cardinality, which
depends on the maximum number of optimal decisions one can make for a hypothesis. Thus, when
we have large overlap between regions – the common case for NVOI-NMU, in particular with
larger ε – HEC becomes intractable.

3 The Decision Region Edge Cutting Algorithm
We now develop an efficient yet near-optimal criterion, namely Decision Region Edge Cutting (DI-
RECT), for solving the DRD – and hence the NVOI-NMU – problem.

The Noisy-OR Construction Suppose there are m possible decisions: |D| = m. Our strategy
will be to reduce the DRD problem to O(m) instances of the ECD problem, such that solving

1The NVOI-NMU and DRD problems are in fact equivalent.

3



R1

R2

R3

h1

h2

h3

h4

R1

R2

R3 R1

R2

R3R1

R2

R3

_ _
t :

Xt = 0

Xt = 1 Edges cut by t

Xt = 1

Xt = 0
always

EC2 Graph 1 EC2 Graph 2 EC2 Graph 3The DRD problem

Subregions

Figure 1: A toy DRD problem with three decision regions {R1,R2,R3}, and four possible hypotheses
{h1, h2, h3, h4}. t is a test with two possible outcomes: ft(h1) = ft(h3) = 1 and ft(h2) = ft(h4) = 0.
For each possible decision we can make, we construct a separate ECD problem: The three figures on the right
illustrate the EC2 graphs for each of the ECD problems. We can successfully make an optimal decision once
one of the graphs is fully cut: e.g., if Xt = 0, graph 2 is fully cut, and we identify the optimal decision d2.

any one of them is sufficient for solving the DRD problem. Concretely, we construct m different
graphs, one for each decision. The role of graph i is to determine whether the unknown hypothesis
h∗ is contained in decision region Ri or not. Thus we aim to distinguish all the hypotheses in this
decision region from the rest. To achieve this, we model graph i as an ECD problem, with one
of the decision regions being Ri. Further, we partition the remaining set of hypotheses H \ Ri
into a collection of subregions, such that within each subregion, all hypotheses are contained in
exactly the same collection of decision regions from the original DRD problem. All the subregions
are disjoint by definition, and hence we have a well-defined ECD problem. Solving this problem
amounts to cutting all the edges betweenRi and the subregions. See Figure 1 for illustration.

Notice that in this ECD problem, once all the edges are cut, either i is the optimal decision, or one
of the subregions encodes the optimal decision. Therefore, optimizing the ECD problem associated
with one of the m graphs is a sufficient condition for identifying the optimal decision.

Further notice that, among the m ECD problems associated with the m graphs, at least one of them
has to be solved (i.e., all edges cut) before we uncover the optimal decision. Therefore, we get a
necessary condition of the DRD constraints: we have to cut all the edges in at least one of the m
graphs. This motives us to apply a logical OR operation on the m optimization problems. Denote
the EC2 objective function for graph i as f iEC , and normalize them so that f iEC(∅) = 0 corresponds
to observing nothing and f iEC(xT ) = 1 corresponds to all edges being cut. We combine the
objective functions f1EC , . . . , f

m
EC using a Noisy-OR formulation:

fDRD(xA) = 1−
m∏
i

(
1− f iEC(xA)

)
(3)

Note that by design fDRD(xA) = 1 iff f iEC(xA) = 1 for at least one i. Thus, the DRD (and hence
NVOI-NMU) Problem is formally equivalent to the following problem:

π∗ ∈ arg min
π

cost(π), s.t.∀xT : fDRD(S(π,xT )) ≥ 1 whenever P [xT ] > 0. (4)

The crucial advantage of this new formulation is given by the following Lemma:
Lemma 1. fDRD is is strongly adaptive monotone, and adaptive submodular w.r.t. P.

That is, the Noisy-OR formulation for multiple EC2 functions preserves adaptive submodu-
larity2. The proof of this result can be found in the supplemental material. These properties
make fDRD amenable for efficient greedy optimization. Formally, let ∆fDRD

(t | xA) :=
Ext

[
fDRD(xA∪{t})− fDRD(xA) | xA

]
be the expected marginal benefit in fDRD by adding

test t to xA. With fDRD, we can associate a greedy algorithm: It starts with the empty set, and
at each iteration, having already observed xA, selects the test t∗ with the largest benefit-to-cost
ratio: t∗ ∈ arg maxt ∆fDRD

(t | xA)/c(t). Since fDRD is adaptive submodular, we can use lazy
evaluation [15] to speed up the greedy selection process, while having the following guarantee:
Theorem 2. Let m be the number of decisions, and πDRD be the adaptive greedy policy w.r.t. the
objective function Eq. (3). Then it holds that cost(πDRD) ≤ (2m ln (1/pmin) + 1) cost(π∗), where
pmin = minh∈H P [h] is the minimum prior probability of any set of observations, and π∗ is the
optimal policy for Problem (4), and hence also the NVOI-NMU and DRD Problems.

2Similar constructions have been used for classical submodular set functions [16, 17], utilizing the fact that
f = 1 −

∏m
i (1− fi) is submodular if each fi is submodular. However, the function f is not necessarily

adaptive submodular, even when each fi is adaptive submodular and strongly adaptively monotone.
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Figure 2: Reducing the cost upper bound via graph coloring. We only need to construct 3 ECD instances to
compute fDRD , instead of 6. The middle figure shows a possible coloring assignment on the decision graph of
the DRD problem. On the right, we show one example ECD problem instancew with 7 disjoint (sub)regions.

This result follows from Lemma 1 and the general performance analysis of the greedy policy for
adaptive submodular problems by [15]. The bound of the greedy algorithm is linear in the number
of decision regions. Here the factor m is a result of taking the product of m EC2 instances. In the
following, we show how this bound can often be improved.

Improving the bound via Graph Coloring For certain applications, the number of decisions
m can be large. Instead of constructing one ECD problem for each possible optimal decision
separately, we can construct one ECD problem for several non-overlapping decision regions at
once. Problem 4 remains to be equivalent to the DRD problem, as long as every decision region is
accounted for by at least one of the ECD problems. See Figure 2 for illustration.

Formally, we construct an undirected graph G := {D, E} over all decision regions, where we
establish an edge between any pair of overlapping decision regions. Finding a minimal set of
non-overlapping decision region sets that covers all the decisions is equivalent to solving a graph
coloring problem, where the goal is to color the vertices of the graph G, such that no two adjacent
vertices share the same color, using as few colors as possible. Thus, we can construct one ECD prob-
lem for all the decision regions of the same color, resulting in r different instances, and then use the
Noisy-OR formulation to assemble these objective functions. That gives us the following theorem:
Theorem 3. Let πDRD be the adaptive greedy policy w.r.t. the objective function Eq. (3), which is
computed over ECD problem instances obtained via graph coloring. Let r be the number of colors
used. Then it holds that cost(πDRD) ≤ (2r ln (1/pmin) + 1) cost(π∗), where pmin is the minimum
prior probability of any set of observations, and π∗ is the optimal policy.

While obtaining minimum graph colorings is NP-hard in general, one can show that every graph
can be efficiently colored with at most one more color than the maximum vertex degree, denoted
by deg, using a greedy coloring algorithm [18]: consider the vertices in descending order according
to the degree; we assign to a vertex the smallest available color not used by its neighbours, adding
a fresh color if needed. In the DRD setting, deg is the maximal number of decision regions that
any decision region can be overlapped with. In practice, greedy coloring needs much less colors
than the upper bound. Thus DIRECT is potentially more efficient. In particular, when regions are
disjoint, deg = 0, and DIRECT reverts back to the EC2 algorithm.

4 Experimental Results
We now consider three instances of the general non-myopic value of information problem. We com-
pare DIRECT against several existing approaches. The first baseline is myopic optimization of the
decision-theoretic value of information (VOI) [5]. At each step we greedily choose the test that max-
imizes the expected value given the current observations xA, i.e., t ∈ arg maxt Ext

[
U(xA∪{x})

]
.

The second baseline is the recently proposed objective for addressing the DRD problem, HEC [3].
We also compare with algorithms designed for special cases of the DRD problem: GBS and EC2.
We compare with two versions of these algorithms: one with their original stopping criteria; and one
with the stopping criteria of the DRD problem, which is referred to as GBS-DRD and EC2-DRD.
Comparison-based preference learning. A comparison-based movie recommendation system
[19] learns a user’s movie preference (e.g., the favorable genre) by sequentially showing the user
pairs of candidate movies, and letting her choose which one she prefers. We use the MovieLens
100k dataset [20], which consists a matrix of 1 to 5 ratings of 1682 movies from 943 users. For
fair comparison with baselines, we adopt the same parameters as reported in [3]. That is, for each
movie we extract a 10-d feature representation from the rating matrix through SVD. To generate
decisions, we cluster movies using k-means, and assign each movie to the r closest cluster centers.
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Figure 3: Experimental results

We demonstrate the performance of DIRECT on MovieLens in Figure 3a and 3b. We fix the number
of clusters (i.e., decision regions) to 12, and vary r, the number of assigned regions for each hypoth-
esis, from 1 to 6. Note that r controls the hyperedge cardinality in HEC, which crucially affects
the computational complexity. As we can observe, while the query complexity (i.e., the number of
queries needed till identifying the target region) of DIRECT is slightly higher than HEC (but uni-
versally lower than all other baselines), it is significantly faster to compute (for r = 5, HEC did not
complete within a reasonable amount of time).

Active touch-based localization. Our second application is a robotic manipulation task of pushing
a button, with uncertainty over the target’s pose. We gather information with guarded moves [21],
where the end effector moves along a path until contact is sensed. Those hypotheses which would
not have produced contact at that location (e.g., they are far away) can be eliminated. Decisions
correspond to putting the end effector at a particular location and moving forward. The coinciding
decision region consists of all object poses where the button would successfully be pushed. Our
goal is to concentrate all consistent hypotheses within a single decision region using the fewest tests.

We run DIRECT on both simulated data and a real robot platform. In the simulated experiments, we
first sample an initial set of 20000 hypotheses, and then randomly generate decision regions, varying
|D| while fixing |T | = 250. Results are plotted in Figure 3c. Note that HEC cannot be computed
in this experiment, as the overlap r becomes very large and HEC quickly becomes intractable. We
see that DIRECT generally outperforms other baselines. Here, myopic VOI performs comparably
– likely because the problem is solved within a short horizon.

Adaptive management for biodiversity conservation Our third application is a real-world value
of information problem in natural resource management, where one needs to determine which
management action should be undertaken for wild-life conservation. Specifically, the task is to
preserve the Eastern Migration Population of whooping cranes (EMP Cranes). An expert panel
came up with 8 hypotheses for possible causes of reproductive failure, along with 7 management
strategies (as decisions). The decision-hypothesis utility matrix is specified in Table 5 of [4]. Tests
aim to resolve specific sources of uncertainty. Our goal is to find the best conservation strategy
using the minimal number of tests.

We assume that ε-optimal decisions are allowed for each hypothesis, where ε is the tolerance
threshold. We further assume tests to be noisy, i.e., the test outcome of a particular hypothesis can
be flipped. Maximally 1 flip is allowed for each outcome vector, which amounts to a total of 37
“noisy” hypotheses. When multiple hypotheses are consistent with a outcome vector, we assign the
most probable one to that outcome. Results are plotted in Figure 3d. We see that HEC and DIRECT
perform comparably well, while significantly outperforming myopic VOI and all other baselines.

5 Conclusion
We have proposed DIRECT, an efficient surrogate for the problem of nonmyopically optimizing
value of information to achieve near-maximal utility. We prove that DIRECT is adaptive submod-
ular, making it amenable for efficient greedy optimization. We demonstrated the efficiency and
effectiveness of DIRECT extensively on three real-world applications, and showed that it compares
favorably with existing approaches, while being significantly faster than competing methods.
We believe that our results provide an important step towards solving challenging real-world
information gathering problems.
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A Table of Notations Defined in the Main Paper

We summarize the notations used in the main paper in Table 1.

Table 1: A reference table of notations used in the main paper

n total number of tests
N total number of hypotheses in the DRD problem
m total number of decision regions
r number of EC2 instances needed after applying graph coloring
k bounded number of label flips in the restricted noise model
T set of all available tests
A subset of tests
t test
X domain of test observations
Xt (observable) random variable associated with a test t
xt observed value of a test t
xA vector of observations of tests in A
xT vector of observations of all tests
P [xT ] probability of a specific realization
pmin the minimum prior probability of any set of observations
Y domain of the hidden states
Y random variable associated with a hidden state
y value of the hidden state Y
D set of decisions that can be made
d decision
Rd the decision region indexed by d
u(d, y) utility function quantifying the benefit of making a decision d ∈ D for

any y ∈ Y
U(d | xA) the expected value of a decision d after observing xA
VoI(xA) the value of a specific set of observations xA
R(d | xA) the regret of a decision d given observations xA
ε tolerance, maximal regret allowed
π policy, i.e., a partial mapping from observation vectors to tests
S(π,xT ) the set of observations obtained by playing policy policy π, under real-

ization xT
c(t) the cost of performing a test t ∈ T
c(xA) the cost of performing a sequence of tests xA ∈ XA
cost(π) the expected cost of a policy π
H set of hypotheses in the DRD problem
h hypothesis
H a random variable distributed overH.
ft(h) the realization of test t under hypothesis h
G = (V,E) EC2 graph
w(h, h′) weight of edge (h, h′) ∈ E in the EC2 graph G
fEC the EC2 objective function
∆fEC

the expected marginal benefit in fEC by adding test t to xA
fDRD the DIRECT objective function
∆fDRD

(t | xA) the expected marginal benefit in fDRD by adding test t to xA
G = {D, E} (undirected) graph over D; edges are drawen between overlapped deci-

sion regions
deg the maximal degree of G
Θ latent (nuisance) variable that models the noise of a hidden state
θ value of latent variable Θ

δ(h, ĥ) the total number of label (i.e, test outcome) flips from h to ĥ
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B Efficient Computation of DIRECT

Essentially, DIRECT is built upon a collection of EC2 objectives. In this section, we show that EC2

(and thus DIRECT) can be computed in linear time in the number of hypotheses.

Recall the definition of edge weight in EC2: w({h, h′}) = P [h] ·P [h′]. Let P [Ri] be the total prior
probability mass of all hypotheses h in Ri. Then the weight of edges between distinct (disjoint)
decision regionsRi,Rj is

w(Ri ×Rj) =
∑

h∈Ri,h′∈Rj

P [h]P [h′] =
( ∑
h∈Ri

P [h]
)( ∑

h′∈Rj

P [h′]
)

= P [Ri]P [Rj ] ,

and the total weight is 1
2

∑
i 6=j w(Ri×Rj) = 1

2

(∑
i P [Ri]

)2
−∑i P [Ri]2 = 1

2

(
1−∑i P [Ri]2

)
.

Since the EC2 objective (i.e., the weight reduction) could be computed as the total weight of edges
subtracting the remaining weight3, we can thus compute it efficiently through the following equation
[7]:

fEC(xA) =
1

2

[
1−

∑
i

P [Ri]2 +
∑
i

P [Ri ∩H(xA)]
2 −

(∑
i

P [Ri ∩H(xA)]
)2]

,

where P [Ri ∩H(xA)] is the mass of all hypotheses h inRi consistent with observations xA.

C Proofs

C.1 Proof of Lemma 1

In the following, we show that the function defined in the form of Eq. 3 is strongly adaptive mono-
tone and adaptive submodular.

Proof of Lemma 1. We first show fDRD is strongly adaptively monotone: We know that each indi-
vidual f iEC is strongly adaptively monotone. Moreover, the partial derivative of fDRD w.r.t. each
f iEC is non-negative. Applying the chain rule of derivatives, we know that fDRD is strongly adap-
tively monotone.

To proof adaptive submodularity, we need to prove that for all xA � xB and t ∈ T , it holds that
∆fDRD

(t | xA) ≥ ∆fDRD
(t | xB). First we introduce several auxiliary notations, as shown in

Table 2. Let na(xA) =
∑
i ni,a(xA) be the number of hypotheses in the current hypotheses space

given xA and Xt = a, and nT (xA) = |H(xA)| be the number of hypotheses that are consistent
with the observation xA (See Table 2 for a list of notations used in this proof).

Table 2: A reference table of auxiliary notations

nT (xA) |H(xA)|, the number of hypotheses that are consistent with the observation xA.
ni(xA) |H(xA) ∩Ri|, the number of hypotheses inRi that are consistent with xA.
na(xA)

∑
i ni,a(xA),

the number of hypotheses in the current version space given xA and Xt = a.
ni,a(xA) |{h : h ∈ H(xA, Xt = a) ∩Ri}|,

the number of hypotheses inRi that are consistent with the observation xA and Xt = a.
n(xA) the vector consisting of ni,a(xA) for all i and a.
φ the expected marginal benefit of a test given some observations.

3Essentially, EC2 is efficiently computed as elementary symmetric polynomials. The general strategy is to
compute the sum of all edge weights between hypotheses, and then subtract those that share a region. The same
technique is also used in [3] for efficient implementation of HEC. We refer interested reader to [3] for more
details.
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As of [7], we can represent the marginal gain of fEC on each graph as a function φ(·) only depending
on n(xA):

∆fEC
(t | xA) = φ(n(xA)) =

1

2

∑
i 6=j

∑
a6=b

ni,a(xA) · nj,b(xA) +
∑
a

na
nT
· 1

2

∑
i 6=j

∑
b 6=a

ni,b · nj,b

(5)

Now let nk,c be the number of hypotheses in auxiliary equivalence class k, which are consistent
with the observation Xt = c. From [7], we get ∂φ/∂nk,c ≥ 0 for any choice of k and c.

To show that ∆fDRD
(t | xA) = φfDRD

(n(xA)) is monotone decreasing with more observations,
we need to show that for any k and c, it holds that ∂φfDRD

(n(xA))/∂nk,c ≥ 0. Denote the set
A ∪ {t} as A+ t. By the definition of ∆(t | xA), we know

∆fDRD
(t | xA)

=E

[(
1−

m∏
i

(
1− f iEC(xA+t))

))
−
(

1−
m∏
i

(
1− f iEC(xA)

))]

=E

(1− f1EC(xA)) ·
m∏
i 6=1

(
1− f iEC(xA)

)
− (1− f1EC(xA+t)) ·

m∏
i6=1

(
1− f iEC(xA+t))

) (6)

We first show for the simple case, where there are only two regions, the objective f (2)EC is adaptive
submodular w.r.t. uniform priors. For discussion simplicity we drop the normalization constants Qi
from the analysis.

Define δi(xt | xA) = f iEC(xA+t)− f iEC(xA). If there are two regions, i.e., m = 2, Eq 6 becomes

∆EC(t | xA)

=E
[
(1− f1EC(xA)) · (1− f2EC(xA))− (1− f1EC(xA+t)) · (1− f2EC(xA+t))

]
=E

[
f1EC(xA+t)− f1EC(xA) + f2EC(xA+t)− f2EC(xA)−

(
f1EC(xA+t)f

2
EC(xA+t)− f1EC(xA)f2EC(xA

)]
=E

[
δ1(xt | xA) + δ2(xt | xA)− (δ1(xt | xA)f2EC(xA+t) + δ2(xt | xA)f1EC(xA)) | xA

]
=E

[
(1− f1EC(xA))δ2(xt | xA) | xA

]
+ E

[
(1− f2EC(xA+t))δ1(xt | xA) | xA

]
=
(
1− f1EC(xA)

)
E [δ2(xt | xA) | xA] + E

[(
1− f2EC(xA+t)

)
δ1(xt | xA) | xA

]
(7)

For the first term on the R.H.S. of Eq. 7, we have(
1− f1EC(xA)

)
E [δ2(xt | xA) | xA] ≥

(
1− f1EC(xB)

)
E [δ2(xt | xB) | xB] (8)

Let the second term be θ(n), and denote h(n) = 1 − f2EC(xA+t). In the following, we will show
that ∂θ(n)/∂nk,c ≥ 0 for all nk,c.

θ(n) = E [h(n)δ1(xt | xA) | xA]

=
∑
a

h(n)
na
nT
· 1

2

∑
i 6=j

∑
b6=d

ni,b(xA) · nj,d(xA) +
∑
i6=j

∑
b 6=a

ni,b(xA) · nj,b(xA)


Taking the partial derivative of θ(n) w.r.t. nk,c, we have

∂θ(n)

∂nk,c
=
∑
a

∂h(n)

∂nk,c
· na
nT
· 1

2

∑
i 6=j

∑
b 6=d

ni,b(xA) · nj,d(xA) +
∑
i 6=j

∑
b6=a

ni,b(xA) · nj,b(xA)


+
∑
a

h(n) · ∂

∂nk,c

{
na

2nT
·
∑
i 6=j

∑
b 6=d

ni,b(xA) · nj,d(xA) +
na

2nT
·
∑
i 6=j

∑
b6=a

ni,b(xA) · nj,b(xA)

}
(9)

Since f2EC(xA+t) is monotone decreasing w.r.t. nk,c, h(n) is monotone increasing, and thus
∂h/∂nk,c ≥ 0. Therefore, the first term on the R.H.S. of Eq. 9 is nonnegative.
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Let p = 1
2

∑
i6=j,b 6=d ni,bnj,d, and qa = 1

2

∑
i 6=j,b 6=a ni,bnj,b. For simplicity we drop the dependency

of variables on xA. Then the second term on the R.H.S. of Eq. 9 is

∑
a

h(n) · ∂

∂nk,c

{
na ·

1

nT
· p+ na ·

1

nT
· qa
}

=h(n) · ∂

∂nk,c

{
nc ·

1

nT
· p+ nc ·

1

nT
· qc
}

︸ ︷︷ ︸
1

+
∑
a 6=c

h(n) · ∂

∂nk,c

{
na ·

1

nT
· p+ na ·

1

nT
· qa
}

︸ ︷︷ ︸
2

(10)

Expand term 1 to get

1 =
nc
nT
· ∂p

∂nk,c
+

p

nT
·
�
�
��

1
∂nc
∂nk,c

+ pnc ·
∂(1/nT )

∂nk,c
+
nc
nT
·
�

�
��

0
∂qc
∂nk,c

+
qc
nT
·
�

�
��

1
∂nc
∂nk,c

+ qcnc ·
∂(1/nT )

∂nk,c

=
nc
nT
·
∑

j 6=k,b 6=c

nj,b +
p

nT
− pnc
n2T

+
qc
nT
− qcnc

n2T

=
nc
nT
·
∑

j 6=k,b 6=c

nj,b + p ·
(

1

nT
− nc
n2T

)
+ qc ·

(
1

nT
− nc
n2T

)
≥ 0 (11)

Similarly, for term 2 ,

2 =
na
nT
· ∂p

∂nk,c︸ ︷︷ ︸∑
j 6=k,b 6=c nj,b

+
p

nT
·
�
�
��

0
∂na
∂nk,c

+ pna ·
∂(1/nT )

∂nk,c
+
na
nT
· ∂qa
∂nk,c︸ ︷︷ ︸∑
j 6=k nj,c

+
qa
nT
·
�
�
��

0
∂na
∂nk,c

+ qana ·
∂(1/nT )

∂nk,c

=
na
nT
·
∑

j 6=k,b 6=c

nj,b −
pna
n2T

+
na
nT
·
∑
j 6=k

nj,c −
qana
n2T

=
na
nT
·
{∑
j 6=k

∑
b

nj,b −
(
p

nT
+
qa
nT

)
︸ ︷︷ ︸

3

}
(12)

Substitute p = 1
2

∑
i 6=j,b 6=d ni,bnj,d, and qa = 1

2

∑
i 6=j,b 6=a ni,bnj,b in term 3 to get:

p

nT
+
qa
nT

=
1

2

∑
i6=j,b 6=d

ni,b
nj,d
nT

+
1

2

∑
i 6=j,b 6=a

ni,b
nj,b
nT

≤ 1

nT
· 1

2

∑
i6=j,b 6=d

(ni,bnj,d + ni,bnj,b)

≤ 1

nT

∑
i,d

ni,d

 ·
∑
j 6=k

∑
b

nj,b


=
∑
j 6=k

∑
b

nj,b (13)

Hence term 2 is nonnegative. Combining Eq. 10 to 13 with Eq. 9, we get ∂θ(n)/∂nk,c ≥ 0.
Therefore, fix xA � xB and t ∈ T , it holds that ∆ER(t | xA) ≥ ∆ER(t | xB) for the case where
there are two regions, and thus fEC is adaptive submodular for m = 2 w.r.t. a uniform prior (note
that we can adapt the proof technique from [7] to prove A.S. for arbitrary prior).
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Now assume that f (m)
DRD is adaptive submodular for m = k and k > 2, and we want to prove when

m = k + 1, f (k+1)
DRD is also adaptive submodular. By definition, we have

f
(k+1)
DRD = 1−

k+1∏
i=1

(
1− f iEC(S(π,xT ))

)
= 1− (1− fk+1

EC (S(π,xT )) ·
k∏
i=1

(
1− f iEC(S(π,xT ))

)
= 1− (1− fk+1

EC (S(π,xT )) · (1− f (k)DRD)

Since f (k)DRD is adaptive submodular and strongly adaptive monotone, we can apply the same analysis
for the two region case, to the above problem. Therefore, f (k+1)

DRD is adaptive submodular, and thus
f
(m)
DRD is adaptive submodular for any m ≥ 1.

Remarks (“intuitive explanation” of the proof of Lemma 1). In fact, one can find concrete examples
where Noisy-OR does not preserve adaptive submodularity. Fortunately, for EC2-like objectives, we
have proved that it does preserve adaptive submodularity. The intuition lies in that the EC2 objective
characterizes a class of adaptive submodular functions with certain structures, which offers enough
slack for our proof to go through.

C.2 Proof of Theorem 2

Proof. Let Q be the quota to be achieved, and η be any value such that fDRD(S(π,xT )) > Q− η
implies fDRD(S(π,xT )) = Q, then by Theorem 10 of [15], the cost of πDRD satisfies

c(πDRD) ≤ c(π∗)(ln (Q/η) + 1).

In our case, apply Q = 1 and η ≥
(

1
p2min

)m
to get c(πDRD) ≤ cost(π∗)(2m ln (1/pmin) + 1).

D Supplemental Experiments

In this section, we provide necessary implementation details that could be used to regenerate the
results for the applications discussed in Section 4. Moreover, we test DIRECT on a new application:
(1) preference elicitation in behavioral economics, where we want to adaptively decide which theory
best explains observed risky choices. Our experimental results demonstrate consistent results that
DIRECT is effective in various decision making tasks.

D.1 Implementation Details and Supplemental Results

Table 3 summarizes how the applications discussed in this paper fit into our Decision Region Deter-
mination framework. The fourth application (risky choice selection) is introduced in Section D.2.

APPLICATION Movie recomm.. Bio. conservation Touch-based Localization Risky choice selection
TEST pair of movies monitoring / probing guarded move pair of lottery choices

HIDDEN VAR target movie cause for nest failure target location parametrized theory
DECISION recommendation conservation action manipulation action theory adoption

Table 3: Overview of how different applications discussed in this paper fit into our framework

D.1.1 Comparison-based Preference Learning

This section explains the detailed experimental setup for the preference learning application. Imag-
ine that we want to learn a user’s preferred category of movies. The user will be happy as long as any
movie in this genre is recommended to her. After showing the user a sequence of candidate movie
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Figure 4: Supplemental experimental results.

pairs (i.e., tests), we can get a set of feedbacks (i.e., a vector outcomes that align with the user’s
movie preference – the (ground truth) hypothesis). After receiving feedback from each test, we re-
move the movies that we believe do not reflect user’s interest (e.g., movies that are more similar with
the one that the user chooses to dislike). Further suppose that we have a pool of candidate movies
to recommend. Once all the remaining movies in our pool are in the same category (i.e., decision
region), we can recommend any of the movies to the user. Our goal is identify such a category by
asking as few pair-wise comparison questions as possible.

Constructing decision regions To measure the similarity of candidate movies, we extract movie
features by computing a low-rank approximation of the user/rating matrix of the MoiveLens 100k
dataset through singular value decomposition (SVD). Specifically, we extract a 10-dimensional
feature vector for each movie. We then use k-means to partition the set of movies into r (non-
overlapping) clusters in the Euclidean space, corresponding to decision regions. We choose the
k-means cluster centers as the centroids representing the “categories” that a user may be interested
in. Since one movie can usually belong to several categories, we assign each movie to the category
that is represented by the closest centroids, giving us overlapped decision regions.

Generating tests As mentioned earlier, tests are pairs of movies. We generate a set of ≈1.4
million tests from the 1682 movies in the MoiveLens 100k dataset. Usually, to distinguish a movie
from the rest of the pool, we don’t need to perform all the tests. Rather, we want to extract a
subset of tests from all the available tests, such that by performing this subset of tests, one can
uniquely distinguish all the movies in our pool. To select this subset, we first build a binary matrix
A = {ai,j}1682×1682 of size 1682 × 1682, representing all pairs of movies to be distinguished. If
performing a test t = (m1,m2) can distinguish a pair of target movies indexed by(i, j) (meaning
that by performing the test, one can tell which one of (i, j) is more favorable), then we fill the entry
ai,j = 1, indicating that we can distinguish i from j by performing this test. Therefore, we start
from an empty set T of tests, and keep adding tests (following some random order) into the T till
the matrix A is filled up. This amounts to a total number ≈ 100 tests, with which we can uniquely
identify any of the 1682 movies.

D.1.2 Active Touch-based Localization

In this section, we provide implementation details and further results on the active touch-based
localization application.

Generating hypotheses To model the pose uncertainty of the target, we use 4 parameters:
(x, y, z) for positional uncertainty, and θ for rotation about the z axis. An initial set of 20000
hypotheses are sampled from a normal distribution N(µ,Σ), where µ is some initial location (e.g.,
from a camera), and Σ is diagonal with σx = σy = σz = 2.5cm, and σθ = 7.5◦.

Comparing DIRECT with HEC In results included in the main paper, it’s prohibitive to run
HEC, because the overlap between regions are large. As supplemental results, we also want to
compare DIRECT with HEC, on problem instances where HEC can practically run. To ensure
that, we preselect a grid of 25 button pushing actions D while ensuring the overlap r is minimal, so
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that the HEC objective can be computed in reasonable time. Note that to run DIRECT, we don’t
need to enforce such strict constraints. We randomly generate guarded moves T to select from. To
compute the myopic value of information (VOI) [5], we define a utility function u(h,R) which is
1 if h ∈ R and 0 otherwise. In Figure 4a we show the number of test guarded moves needed for
different algorithms, when varying |T |. As we can observe from the results, DIRECT performs
essentially the same as HEC on this problem instance, while slightly outperforms VOI. We would
expect that for longer horizons, myopic VOI would not perform as well.

Demonstrating DIRECT on a real robot platform In the supplementary video, we demonstrate
DIRECT on a real robot manipulation task, where the goal is to push a button with the finger of a
robotic end effector. We can see that the microwave button is successfully localized on the fourth
touch attempt – when all consistent hypotheses are encapsulated by one single decision region (also
see Figure 5 for more details).

We also demonstrate DIRECT on a real robot platform as illustrated in Figure 5. See supplemental
material for more results and a video demonstration.

(a) Hypotheses (b) Tests (c) Decision Regions

Figure 5: Experimental setup for touch-based localization. (a) Uncertainty is represented by hypotheses over
object pose. (b) Tests are guarded moves, where the end effector moves along a path until contact is sensed.
Hypotheses which could not have produced contact at that location (e.g. they are too far or too close) are
removed. (c) Decisions are button-push attempts: trajectories starting at a particular location, and moving
forward. The corresponding region consists of all poses for which that button push would succeed.

D.1.3 Adaptive Management for Biodiversity Conservation

In the main paper, we have shown how DIRECT compares with baselines when the test outcomes
are noisy. Figure 4b shows the results on clean data where no flip of test outcome is allowed (i.e.,
7 hypotheses, 7 tests, 8 decision regions). We can see that DIRECT performs comparably with the
baselines. When tolerance parameter is large enough, i.e., ε ≥ 0.4, all initial decisions are “near”-
optimal, in which case we don’t need to perform any tests, and therefore query complexity becomes
0.

D.2 Supplemental Experiment: Preference Elicitation in Behavioral Economics.

We further conduct experiments in an experimental design task. Several theories have been pro-
posed in behavioral economics to explain how people make decisions under risk and uncertainty.
We test DIRECT on six theories of subjective valuation of risky choices [22, 23, 24], namely the (1)
expected utility with constant relative risk aversion, (2) expected value, (3) prospect theory, (4) cu-
mulative prospect theory, (5) weighted moments, and (6) weighted standardized moments. Choices
are between risky lotteries, i.e., known distribution over payoffs (e.g., the monetary value gained or
lost). Tests are pairs of lotteries, and hypotheses correspond to parametrized theories that predict,
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for a given test, which lottery is preferable. The goal, is to adaptively select a sequence of tests to
present to a human subject in order to distinguish which of the six theories best explains the subject’s
responses.

We employ the same set of parameters used in [25] to generate tests and hypotheses. The original
setup in [25] was designed for testing EC2, and therefore test realizations of different theories cannot
collide. In our experiments, we allow a tolerance ε - that is, if one hypothesis differs from another by
at most ε, they are considered to be similar, and thus have the same set of optimal decisions. Results
for simulated test outcomes with varying ε are shown in Figure 4c. We see that DIRECT performs
best in this setting.
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