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Abstract

We propose a novel technique to retrieve itemsets that best explain a transaction
database by leveraging a simple probabilistic model. Our approach is the first to in-
fer such interesting itemsets directly from the transaction database using submod-
ular function optimization and in so doing avoids many of the pitfalls commonly
present in frequent itemset mining algorithms. Our proposed approach is theoret-
ically simple, straightforward to implement, trivially parallelizable and exhibits
good performance as we demonstrate on both synthetic and real-world examples.

1 Introduction

Over the past ten years, submodular function optimization has been applied to a wide variety of
problems in machine learning, including structure learning (Narasimhan & Bilmes, 2004), infor-
mation gathering (Krause & Guestrin, 2011) and document summarization (Lin & Bilmes, 2011).
These successes raise the possibility that a submodular formulation would also be useful for other
problems involving the interpretation and understanding of data.

Itemset mining (Han et al., 2007) is a popular technique for exploratory data analysis within data
mining, especially for market basket data in which each data point, called a transaction, is a set of
items drawn from a common universe. The goal of itemset mining is to return a set of small itemsets
that represent common patterns in the transaction database. In the vast majority of existing research,
this is formalized as the problem of frequent itemset mining, which is to return the collection of all
itemsets that occur with a frequency greater than some user-specified minimum. Although appealing
algorithmically, from a statistical perspective this formulation has a number of issues, such as that
many frequent itemsets contain items that are individually frequent but uncorrelated, and that the list
of frequent itemset is typically long, highly redundant, and difficult to understand.

We believe that the fundamental issue with frequent itemset mining (FIM) approaches is that they
solve the wrong problem: users are not interested in solely itemsets that are frequent but rather in
the itemsets that best explain the transaction database. In this paper, we propose mining interesting
itemsets, those that are most informative within a simple but natural probabilistic model of transac-
tions. The collection of interesting itemsets can then be inferred using a structural EM framework
(Friedman, 1998), in which the E step employs a submodular formulation of the weighted set cover
problem. Our contributions in this paper are as follows:

• Our proposed generative model is the first to capture itemsets that ‘best explain’ a transaction
database. That is to say, our model contains a latent indicator variable zS that infers if itemset S
was used to generate a transaction in the database (Section 3).

• Our approach resolves many outstanding issues with FIM, including difficulties mining rare
itemsets and the retrieval of large numbers of spurious itemsets (Section 2).

• Our model is theoretically simple and our approach is straightforward to implement and trivially
parallelizable (Section 4).
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Our prototype implementation finds a hundred potentially interesting itemsets from a million trans-
actions in under an hour on off-the-shelf hardware, but it is possible that more sophisticated algo-
rithms for submodular optimization would allow us to scale this even farther.

2 Related Work

The first FIM algorithm was Apriori (Agrawal et al., 1994) which recursively builds larger frequent
itemsets from frequent singleton itemsets. While straightforward to implement and exhaustive, Apri-
ori can spend a long time generating a large number of candidate frequent itemsets and repeatedly
scanning the database to evaluate them. The FPGrowth algorithm (Han et al., 2000) was devised to
address these issues by mining frequent itemsets without candidate generation. FPGrowth works by
compressing the database into an FP-tree and starting from each frequent singleton (a suffix in the
tree), constructing a conditional subtree of prefix paths which is then recursively mined. We refer
the interested reader to Han et al. (2007) for a survey of FIM algorithms.

A major issue with FIM is that a huge number of frequent itemsets is often retrieved for a given
minimum support (frequency) threshold. In an attempt to address this, a large body of research has
been devoted to devising condensed representations of frequent itemsets including closed frequent,
maximal frequent and non-derivable itemsets (see Han et al., 2007, for a survey). While these ap-
proaches are successful at decreasing the number of retrieved itemsets, they cannot solve any of the
other issues with FIM, such as difficulties finding rare itemsets and the retrieval of spurious itemsets,
as they are merely representations of the underlying frequent itemsets themselves.

An orthogonal research direction to deal with FIM issues has been to devise measures of interesting-
ness which are usually applied to prune the associations (correlations) implied by the itemsets. These
measures incorporate the underlying frequent itemset supports and their notions of interestingness
are often based on significance tests against random itemset distributions. We refer the interested
reader to Geng & Hamilton (2006); Han et al. (2007) for surveys of interestingness measures. Note
that all such approaches require that a collection of frequent itemsets be first precomputed.

The closest work to our own is by Mampaey et al. (2012) who make use of a maximum entropy
model to mine the most informative itemsets, i.e., itemsets with frequencies which deviate most
from those predicted by their model. The authors enforce the constraint that an itemset must be
used to explain a transaction which contains it as opposed to inferring when this is the case as in
our model. This causes their model to overfit and they are forced to resort to model regularization
techniques such as BIC and MDL.

3 Interesting Itemset Mining

In this section we will formulate the problem of identifying a set of interesting itemsets that are
useful for explaining a database (i.e., sequence) of transactions. First we will define some prelimi-
nary concepts and notation. An item i is an element of the universe U = {1, 2, . . . , n} that indexes
database attributes. A transaction X is a subset of the universe U and an itemset S is simply a set of
items i. The set of interesting itemsets I we wish to determine is therefore a subset of the power set
(set of all possible subsets) of the universe. Further, we say that an itemset S supports a transaction
X if S ⊂ X .

Generative Model We propose a simple graphical model for generating a database of transactions
from a set of interesting itemsets. The parameters of our model are a set I of interesting itemsets and
for each interesting itemset S ∈ I a Bernoulli probability πS . The generative story for our model is,
independently for each transaction X in the database:

1. For each itemset S ∈ I, decide independently whether to include S in the transaction, i.e.,
sample

zS ∼ Bernoulli(πS).

2. Set the transaction to be the set of items in all the itemsets selected above, i.e.,

X =
⋃
{i ∈ S |S ∈ I, zS = 1}.

Note that the model allows individual items to be generated multiple times from different itemsets.
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Inference Given a set of itemsets I, let z,π denote the vectors of zS , πS for all itemsets S ∈ I.
Assuming z,π are fully determined, it is evident from the generative model that the probability of
generating a transaction X is

p(X, z|π) =
∏
S∈I

πzS
S (1− πS)1−zS if X =

⋃
zs=1

S, otherwise 0 (3.1)

since each zS ∼ Bernoulli(πS). Now assuming the latent variables π are known, we can infer z for
a specific transaction X using maximum likelihood estimation. From (3.1) it is easy to see that the
maximum likelihood solution is to maximize the posterior distribution p(z|X,π) over z:

max
z

∏
S∈I

πzS
S (1− πS)1−zS

s.t. X =
⋃
{i ∈ S |S ∈ I, zS = 1}.

(3.2)

Taking logs and rewriting (3.2) in a more standard form we obtain

max
z

∑
S∈I

zS ln

(
πS

1− πS

)
+ ln(1− πS)

s.t.
∑
S|i∈S

zS ≥ 1 ∀ i ∈ X

zS ∈ {0, 1} ∀S ∈ I

(3.3)

which is (up to a constant) the weighted set-cover problem (see e.g. Korte & Vygen, 2012, S16.1)
with weights wS ∈ R given by

wS := ln

(
πS

1− πS

)
.

This is an NP-hard problem in general and so impractical to solve directly in practice. It is important
to note that the weighted set cover problem is a special case of maximizing a linear function subject
to a submodular constraint, which we formulate as follows (cf. Young, 2008). Given the set of
interesting itemsets T that support the transaction

T := {S ∈ I |S ⊂ X}, (3.4)

a real-valued weight wS for each itemset S ∈ T and a non-decreasing submodular function f :
2T → R, the aim is to find a covering C ⊂ T of maximum total weight, i.e., such that f(C) = f(T )
and

∑
S∈C wS is maximized. For weighted set cover we simply define f(C) to be the number of

items in C, i.e., f(C) := |∪S∈CS|, and note that f(T ) = |X| by construction.

We can therefore approximately solve the weighted set cover problem (3.3) using the greedy approx-
imation algorithm for submodular functions. The greedy algorithm builds a covering C by repeatedly
choosing an itemset S that maximizes the weight wS divided by the number of items not yet covered
by the chosen itemset.

Algorithm 1 Greedy Weighted Set Cover
Input: Transaction X , set of itemsets T , weights w

Initialize C ← ∅
while f(C) 6= |X| do

Choose S ∈ T maximizing wS

f(C∪{S})−f(C)
C ← C ∪ {S}

end while
return C

It has been shown (Chvátal, 1979) that the greedy algorithm achieves an ln|X|+1 approximation ra-
tio to the weighted set cover problem and moreover the following inapproximability theorem shows
that this is essentially the best possible approximation ratio.
Theorem 1 (Feige, 1998). There is no (1−o(1)) ln|X|-approximation algorithm to the weighted set
cover problem unless NP ⊆ DTIME(|X|O(log log|X|)), i.e., unless NP has slightly superpolynomial
time algorithms.
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The runtime complexity of the greedy algorithm (Algorithm 1) is O(|X||T |) however by maintain-
ing a priority queue this can be improved to O(|X| log|T |) (see e.g. Cormen et al., 2001). Note
that there is also an O(|X||T |)-runtime primal-dual approximation algorithm (Bar-Yehuda & Even,
1981), however this has an approximation order of f = maxi|{S | i ∈ S}|, i.e., the frequency of the
most frequent element, which would inevitably be worse in our case.

Learning Given a set of itemsets I, consider now the case where both variables z,π in the model
are unknown. In this case we can use the hard EM algorithm (Dempster et al., 1977) for parameter
estimation with latent variables. The hard EM algorithm in our case is merely a simple layer on top
of the inference algorithm (3.3). Suppose there are m transactions X(1), . . . , X(m) with supporting
sets of itemsets T (1), . . . , T (m) defined as in (3.4). Then the hard EM algorithm is the following.

Algorithm 2 Hard Expectation Maximization

Input: Set of itemsets I and initial estimates π(0)

k ← 0
do

k ← k + 1
E-step: ∀X(j) solve (3.3) using Algorithm 1 to obtain z(j)S ∀S ∈ Tj
M-step: π(k)

S ← 1
m

∑m
j=1 z

(j)
S ∀S ∈ I

while ‖π(k−1) − π(k)‖ > ε
Remove from I sets S with πS = 0
return I,π(k)

To initialize π, a natural choice is simply the support (rel. frequency) of each itemset in the dataset.

Inferring new itemsets We can use structural EM (Friedman, 1998) to infer new itemsets, i.e.,
we add a candidate itemset S′ to I if doing so improves the optimal value p of the problem (3.3)
averaged across all transactions. We force the candidate S′ to be used to explain transactions it
supports by setting πS′ = 1 and update πS′ with the probability corresponding to its actual usage
once we have inferred all the coverings. Given a set of itemsets I and correspoding probabilities π
along with transactions X(1), . . . , X(m), each iteration of the structural EM algorithm is as follows.

Algorithm 3 Structural EM (one iteration)
Input: Set of itemsets I and probabilities π
∀X(j), solve (3.3) using Algorithm 1 to obtain the optimum p(j)

Set profit p← 1
m

∑m
j=1 p

(j)

do
Generate candidate S′ using Algorithm 4
I ← I ∪ {S′}, πS′ ← 1

E-step: ∀X(j) solve (3.3) using Algorithm 1 to obtain z(j)S ∀S ∈ Tj
M-step: π′S ← 1

m

∑m
j=1 z

(j)
S ∀S ∈ I

∀X(j) get the optimum p(j) of (3.3) using π′S , z
(j)
S ∀S ∈ Tj

Set new profit p′ ← 1
m

∑m
j=1 p

(j)

I ← I \ {S′}
while p′ ≤ p {until one good candidate found}
I ← I ∪ {S′}
return I,π′

In practice we store the set of candidates that have been rejected by Algorithm 3 and check each
potential candidate against this set before running the rest of the algorithm for efficiency.

Candidate generation The structural EM algorithm (Algorithm 3) requires a method to generate new
candidate itemsets S′ that are to be considered for inclusion in the set of interesting itemsets I. One
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possibility would be to use the Apriori algorithm to recursively suggest larger itemsets starting from
singletons, however this may not be the most efficient method. For this reason we take a slightly
different approach and recursively combine the interesting itemsets in I with the highest support
first (Algorithm 4). In this way our candidate generation algorithm is more likely to propose viable
candidate itemsets earlier and in practice we find that this heuristic works well.

Algorithm 4 Support-weighted Itemset Combination
Input: Set of itemsets I

Sort I by decreasing itemset support
for all pairs S1, S2 ∈ I, S1 6= S2, highest ranked first do

S′ ← S1 ∪ S2

Evaluate S′ using Algorithm 3
if S′ improves optimum of (3.3) break

end for

In order to determine the supports of the itemsets to be combined, we store the transaction database
in a memory-efficient itemset tree (MEI-tree) (Fournier-Viger et al., 2013) and query the tree for the
support of a given itemset. A MEI-tree stores itemsets in a tree structure according to their prefixes
in a memory efficient manner. To minimize the memory usage of the MEI-tree further, we first sort
the items in order of decreasing support (as in the FPGrowth algorithm) as this often results in a
sparser tree (Han et al., 2000). Note that a MEI-tree is essentially an FP-tree (Han et al., 2000) with
node-compression and without node-links for nodes containing the same item. An itemset support
query on the MEI-tree efficiently searches the tree for all occurences of the given itemset and adds up
their supports (see Figure 4 in Fournier-Viger et al., 2013, for the algorithm). In practice we impose
an iteration limit on the number of iterations that Algorithm 4 can spend suggesting candidates.

Mining Interesting Itemsets Our complete interesting itemset mining (IIM) algorithm is given
in Algorithm 5. Note that the parameter optimization step (Algorithm 2) need not be performed at

Algorithm 5 Interesting Itemset Miner (IIM)

Input: Database of transactions X(1), . . . , X(m)

Initialize I with singletons and π with their supports
Build EIM-tree from transaction database
while not converged do

Add itemsets to I,π using Algorithm 3
Optimize parameters for I,π using Algorithm 2

end while
return I,π

every iteration, in fact it is more efficient to suggest several candidate itemsets before optimizing
the parameters. We can then rank the retrieved itemsets according to their interestingness, that is the
ratio of transactions they explain to transactions they support. We define this formally as follows.
Definition 1. The interestingness of an itemset S ∈ I retrieved by IIM (Algorithm 5) is defined as

int(S) =

∑m
j=1 z

(j)
S

supp(S)

and ranges from 0 (least interesting) to 1 (most interesting).

Any ties in the ranking can be broken using the itemset probability πS . Note that all operations on
transactions in our algorithm are independent and so trivially parallelizable. We therefore perform
the E and M -steps in both the hard and structural EM algorithms in parallel for each transaction.

4 Numerical Experiments

We evaluate IIM on both synthetic and real-life transaction datasets. In order to minimize CPU time
spent solving the weighted set cover problem (3.3), we cache the itemsets and coverings for each
transaction as needed.
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Figure 1: IIM scaling as the number of transactions in
the database increases.

Interesting Itemsets Frequent Itemsets

associ rule algorithm mine
state art algorithm base

global local algorithm problem
support vector machin svm algorithm set

neural network algorithm result
social network algorithm approach

posit negat algorithm method
parameter parameters algorithm propos

sequenc sequential approach base
anomali detect base method

Table 1: The top ten itemsets of size ≥ 2 as found by
IIM and FPGrowth.

Scalability We created a synthetic database in order to investigate the scaling of IIM as the number
of transactions in the database increases. To achieve this, we first ran IIM for 1, 000 iterations on the
plants database (USDA, 2008) to obtain interesting itemsets I and associated probabilities π. This
enabled us to use the probabilistic model from Section 3 on I,π to generate synthetic transaction
databases of various sizes containing the mined itemsets. We then ran IIM for 100 iterations on these
databases (Figure 1) and one can see the transaction scaling is linear as expected. Our prototype
implementation can process one million transactions in 30 seconds on 64 cores each iteration, so
there is reason to hope that a more highly tuned implementation could scale to even larger data sets.

Dataset Items Itemsets IIMs Runtime Iterations

Plants 70 34, 781 271 63 min 1, 000
ICDM 3, 933 859 5, 685 121 min 1, 000

Table 2: Summary of the real datasets used and IIM results.

Real Datasets To evaluate the quality of the itemsets produced by our method, we ran IIM for 1, 000
iterations on the ICDM abstracts dataset (De Bie, 2011) along with FPGrowth. We show the top ten
nontrivial interesting itemsets (ranked according to interestingness) and frequent itemsets (ranked
according to support) in Table 1. Once can clearly see that the interesting itemsets are considerably
more informative. Moreover, the interesting itemsets suggest that the stemmer used to process the
ICDM dataset could be improved as we retrieve the itemsets {parameter, parameters} and {sequenc,
sequential}.

Redundancy We also evaluate whether the collection of itemsets returned by IIM are less redundant
than those produced by standard FIM methods. We ran FPGrowth on the plants dataset using a
minimum support chosen s.t. we obtain roughly the same number of frequent itemsets as interesting
itemsets using IIM. This enabled us to measure, for each dataset, the average size of the minimum
symmetric distance between the itemsets and see how close the itemsets are to each other. We found
that, excluding singletons, this difference is 4 items for IIM and 1 item for FIM, showing that the
IIM itemsets are less redundant.

5 Conclusions

We presented a novel approach to inferring itemsets that best explain a transaction database and
demonstrated the efficacy of our approach on both synthetic and real-world databases. In future we
would like to extend our approach to inferring associations implied by the itemsets directly and par-
allelize our approach to large clusters so that we can efficiently scale to larger databases. Exploiting
more modern solvers from the discrete optimization literature could further improve scalability.
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