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Abstract

We investigate the problem of constructing novel representatives of a fixed but
unknown concept over a structured, discrete domain, such as the set of unlabeled
graphs. In particular, we consider an online scenario in which the learning algo-
rithm immediately observes the true label of each proposed structure. This prob-
lem is highly relevant in many application domains and has so far been tackled
mostly by special-purpose algorithms. We propose a general algorithm based on
iteratively sampling novel structures from the domain and updating a conditional
probability model of the concept based on the observed labels. The conditional
probability model is used by the sampling procedure to focus on representatives
of the desired concept. An empirical study of our approach demonstrates its ef-
fectiveness on a variety of problems.

1 Introduction

We consider the class of problems in which an algorithm is trying to design novel representatives of
a fixed but unknown concept over a structured, discrete domain, such as the set of unlabelled graphs.
A simple example of such a problem is ‘de novo’ drug design: how can we find a molecule that
binds to a particular protein binding site? Whereas a standard approach consists of screening a large
database of molecules, in reality the set of synthesizable molecules is much larger than what can be
stored in any database or enumerated in any reasonable time. Similar problems are also considered in
the recently growing field of computational creativity (e.g., see McCormack and d’Inverno (2012)).
The goal of computational creativity is to develop systems exhibiting behaviour considered creative
by people. These systems either support people in a creative process or are supposed to function as
autonomous artists, musicians, writers, designers, engineers, or scientists Colton (2012).

In this paper, we investigate an iterative process for de novo construction of structured concept rep-
resentatives, focusing on the construction of graphs with desirable properties. In each step, we first
sample a candidate from the posterior distribution p(x | y) of instances x given the desired label
y and obtain its true label from the oracle. We then update the conditional distribution p(y | x)
by fitting a probability model to the current set of examples. The posterior distribution is initially
equal to some given instrumental distribution and is in further iterations updated by the learned con-
ditional probability model. The procedure to obtain samples from the updated posterior resembles
a Metropolis-Hastings chain in which the instrumental distribution serves as the proposal distribu-
tion and the acceptance probability is computed from the conditional probability model. A simple
argument shows that the stationary distribution of this chain is exactly the posterior p(x | y). To be
able to discover concept representatives, the support of the instrumental distribution must contain
the desired concept. The uniform distribution is generally a safe choice, as it guarantees that the
entire space will eventually be discovered. In the absence of any other information about the desired
concept, we advocate the uniform distribution from a maximum-entropy standpoint. However, when
domain-specific knowledge is available, the instrumental distribution can be modified appropriately.
This can be especially useful when the concept class is relatively small compared to the entire search
space, in which case a uniform sampler might need very many samples to see a positive candidate.
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To evaluate the efficiency and effectiveness of our approach without relying on subjective judge-
ments or extensive wet lab experiments we investigate how well our approach is able to construct
novel representatives of structured concepts that can be evaluated algorithmically. In particular,
we investigate how well it can pick up concepts from oracle feedback that corresponds to planar,
acyclic, and Hamiltonian graphs, respectively. Our empirical evaluation is promising and indicates
the proposed approach is able to construct concept representatives from scratch.

2 Related Work

Perhaps the most-related problem setting to ours is computer-based de novo drug design (see, e.g.,
Schneider and Fechner (2005)), which can be seen as a special case of our approach. The setting
defines a process in which a molecule with desired properties is constructed from scratch. Similar to
our setting, the search space is enormous and exhaustive search is infeasible. From various methods
implementing the de novo design process, the most similar to ours is a Monte Carlo search that can
be combined with a Metropolis criterion. For instance, Pearlman and Murcko (1993) and Nishibata
and Itai (1991) designed novel molecules that bind to a target protein by sampling atoms and making
random connections based on interaction properties of atoms and the binding site. The proposed
candidate is then accepted or rejected using a fixed energy-based scoring function. This process can
be seen as sampling from a fixed, expert-designed distribution. Our method, in contrast, learns the
concept in tandem with the construction process. The de novo process has also been implemented
with other structure sampling methods: linking, growing, lattice-based sampling, random structure
mutation, transitions driven by molecular dynamics simulations, and graph-based sampling methods
(Schneider and Fechner, 2005).

Related to our work are also methods for interactive learning and optimization (ILO). These methods
implement a two-step iterative process in which an agent interacts with a user until a satisfactory
solution is obtained. Some of the well-known ILO methods are designed for problems in information
retrieval (see, e.g., Shivaswamy and Joachims (2012); Yue and Joachims (2009)) and reinforcement
learning (see, e.g., Jain et al. (2013); Wilson et al. (2012)). In contrast to ILO methods, we are not
necessarily interested in approximating the single ‘best’ point from the instance space. For instance,
we could be searching for as many positive instances as possible that are at the same time as diverse
as possible. This makes our problem setting more general and more difficult. In addition to this, ILO
methods are designed mainly to construct structures over the domain of real-valued vectors and can
not be directly applied to highly structured domains.

3 Algorithm

In this section, we first give a pseudo-code description of the algorithm for de novo construction of
concept representatives given examples. We then review exponential family models and bound the
mixing time of a Metropolis–Hastings (MH) chain for sampling from these models.

We propose to construct structured entities by sampling from an iteratively refined posterior distri-
bution. The sampling process resembles a Metropolis-Hastings chain with an instrumental proposal
distribution Q : X → R which is independent of the current state of the chain. To refine the pos-
terior, the algorithm is provided with an oracle O : X → Y to evaluate the proposed candidates.
Usually, the evaluation is expensive and a budget B will be given to the algorithm. In our experi-
ments, we use a kernelized exponential family model p(y | x, θ) to learn the concept from labelled
examples; this is discussed below. For this choice of model, we require a positive definite kernel
function on X × Y . We note here that the proposed approach is not limited to instrumental distri-
butions independent of past states of the chain. Instead, a transition kernel that satisfies the detailed
balance condition can be used to design novel entities by modifying the previously designed ones
(e.g., a Markov chain procedure with the prior distribution as its stationary distribution).

The algorithm first samples n entities from the instrumental distribution Q and adds the entities,
along with their labels, into the training sample S. Then, the algorithm starts iterating until we
either obtain a satisfactory number of desired candidates or deplete the oracle budget (see line 2). In
the first step of each iteration, the algorithm is trained on the previously seen examples S (see line
3). This is achieved by finding the maximum a posteriori (MAP) estimate of the parameter vector θ.
In the next step (see lines 4–10), the Metropolis–Hastings algorithm (see, e.g., Andrieu et al. (2003))
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Algorithm 1 DE-NOVO-MACHINE

Input: target concept class y ∈ Y , parameterized model p(y | x, θ) and parameter prior p(θ), instrumental
distributionQ, oracle O : X → Y with budget B, and initial training set size n.

Output: list of potential concept representatives x1, x2, . . . , xB
1: S ←

{
(x̂, ŷ) | x̂ ∼ Q, ŷ ← O(x̂)

}
and |S| = n

2: while t = 1, 2, . . . , B do
3: θt ← argmaxθ log p(S | θ) + log p(θ)
4: xt ∼ Q
5: repeat
6: x ∼ Q and u ∼ U [0, 1]
7: if u < p(y | x)/p(y | xt) then
8: xt ← x
9: end if

10: until CHAIN MIXED
11: output xt
12: yt ← O(xt)
13: S ← S ∪

{
(xt, yt)

}
14: end while

is used to sample the posterior p(x | y) = p(y|x)p(x)
p(y) . As the Markov chain samples the next state

independently from the instrumental distribution Q, the acceptance threshold is equal to

p(y | xc)p(xc)Q(xt)

p(y | xt)p(xt)Q(xc)
=
p(y | xc)
p(y | xt)

, (1)

where xc is the proposed candidate, xt is the last accepted state, and p(x) = Q(x) (∀x ∈ X ).
After sampling an instance xt from the posterior, the algorithm outputs it as a potential concept
representative (line 11) and presents it to an oracle. The oracle evaluates it providing feedback yt to
the algorithm (see line 12). Finally, the labelled pair (xt, yt) is added to the training sample S (see
line 13) for the next iteration (see line 3).

As we have presented the algorithm, we do not specify the nature of the model p(y | x, θ). In
this paper we advocate the conditional exponential family model, because it is flexible and we can
give theoretical bounds on the mixing time of the Markov chain. Let X be a set of structured
entities (e.g., graphs, binary vectors, etc.) and Y be a set of concepts (e.g., planar graphs). The
conditional exponential family models the conditional distribution of an output y ∈ Y given x ∈ X
as p(y | x; θ) = exp

(
〈φ(x, y), θ〉

)
−g(θ | x),where θ is a parameter vector, 〈·, ·〉 is a dot product in a

Hilbert space, φ(x, y) are the sufficient statistics of y | x and g(θ | x) = log
∫
Y exp

(
〈φ(x, y), θ〉

)
dy

is the log-partition function. Throughout the paper, we assume that the `2-norm of the sufficient
statistics and the parameters are bounded, i.e., ‖φ(x, y)‖ ≤ r and ‖θ‖ ≤ R. Here, we note that
we can take r = 1 by normalizing the covariance function such that

〈
φ(x, y), φ(x, y)

〉
= 1 for all

x ∈ X and y ∈ Y .

To bound the mixing time of a Metropolis–Hastings chain for sampling from the posterior p(x | y)
we provide a simple coupling analysis (see also Vembu et al. (2009)). In a nutshell, |X | parallel
chains are started such that each chain starts from a different state x ∈ X . Then, an identical
random bit sequence is used to simulate all the chains. After two chains move to a common state, all
the future transitions of the two chains are the same. Thus, from that point on it is sufficient to track
only one of the chains and such chain coupling is called a coalescence (Huber, 1998). Propp and
Wilson (1996) have showed that if all the chains coalesce to a single chain at step T then samples
from this resulting chain are samples from the stationary distribution.

For a finite concept space Y , from Eq. (1) it follows

p(x→ x′) =
exp
(〈
φ(x′, y), θ

〉
− g(θ | x′)

)
exp
(〈
φ(x, y), θ

〉
− g(θ | x)

) =

∑
y∈Y exp

(
〈φ (x′, y) + φ (x, y) , θ〉

)∑
y∈Y exp

(
〈φ (x, y) + φ (x′, y) , θ〉

)
≥
|Y| exp

(
2 · 〈φ (x↓, y↓) , θ〉

)
|Y| exp

(
2 · 〈φ (x↑, y↑) , θ〉

) ≥ exp
(
−2 ·

∣∣〈φ(x↓, y↓)− φ(x↑, y↑), θ
〉∣∣),
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where 〈φ (x↓, y↓) , θ〉 and 〈φ (x↑, y↑) , θ〉 are the minimum and maximum values of the dot products
appearing in the numerator and denominator of p(x→ x′), respectively.

Now, using the Cauchy–Schwarz inequality we get

p(x→ x′) ≥ exp
(
−2 ·

∥∥φ(x↓, y↓)− φ(x↑, y↑)
∥∥‖θ‖) ≥ exp(−4R). (2)

Hence, the expected number of steps until coalescence is upper bounded with

E[T ] ≤
∞∑
k=1

k exp(−4R)
(
1− exp(−4R)

)k−1
= exp(4R).

4 Application-Specific Details

In this section, we describe instrumental distributions and covariance functions used in Section 5.
For graphs we follow the terminology and notation of standard textbooks (Bondy and Murty, 2008).

As the set of graphs is a complicated, combinatorial object, it can be difficult to design an efficient
proposal distribution. In general, to sample a random unlabelled graph it is common to use the
Erdős–Rényi model with p = 1/2. This approach, however, does not yield unlabelled graphs uni-
formly at random (e.g., the probability of sampling an unlabelled path with n vertices is n!

2 times
higher than the probability of sampling the complete graph with the same number of vertices).

Let Gn denote the set of all canonically labelled graphs with n vertices and G = ∪n≥0Gn. A left
action of a group S on a set X is a function µ : S × X → X with the following two properties:
(i)(∀x ∈ X)(∀s, t ∈ S) : µ(t, µ(s, x)) = µ(ts, x); (ii)(∀x ∈ X) : µ(e, x) = x (where e is the
identity element of the group S). If no confusion arises we write µ(s, x) = sx. A group action
defines the equivalence relation ∼ on a set X , i.e., a ∼ b ⇔ sa = b for some s ∈ S and a, b ∈ X .
The equivalence classes determined by the relation ∼ are called orbits of S in X and the number of
orbits can be computed using the Frobenius–Burnside theorem (see, e.g., Cameron (1998)).
Theorem 1 (Frobenius–Burnside). Let X be a finite non-empty set and S be a finite group. If X is
an S-set, then the number of orbits of S in X is equal to 1

|S|
∑
s∈S |Fix(s)|, where Fix(s) = {x ∈

X | sx = x}.

To sample unlabelled graphs uniformly at random, Wormald (1987) proposed a rejection sampling
method based on Theorem 1. The idea is to consider the action of a symmetric group Sn over the
set Gn. Then, the orbits of Sn in the set Gn are non-isomorphic unlabelled graphs and to sample
unlabelled graphs uniformly it suffices to uniformly sample the orbits (see, e.g., Dixon and Wilf
(1983)). Moreover, it is possible to show (see, e.g., Dixon and Wilf (1983); Wormald (1987)) that the
uniform orbit sampling is equivalent to uniform sampling of an element from the set Γ =

{
(π, g) |

πg = g;π ∈ Sn, g ∈ Gn
}

.

According to Theorem 1, an element (π, g) ∈ Γ can be sampled u.a.r. by choosing a permutation
π with probability proportional to |Fix(π)| and then choosing g ∈ Fix(π) u.a.r. Dixon and Wilf
(1983) propose a more efficient sampling algorithm by partitioning the symmetric group into conju-
gacy classes [πi] (i = 1, l) and sampling: (i) [πi] ∼ |[πi]||Fix(πi)|/on|Sn|, (ii) g ∈ Fix(πi) u.a.r.; where
on denotes the number of non-isomorphic unlabelled graphs with n vertices and πi is a class repre-
sentative for the class [πi]. As it holds |Fix(π)| = |Fix(π′)| and |Fix(π) ∩ [g]| = |Fix(π′) ∩ [g]|
for π, π′ ∈ [πi] then

P
(
[g]
)

=

l∑
i=1

P
(
[πi]
)
P
(
[g] | [πi]

)
=

l∑
i=1

∣∣[πi]∣∣∣∣Fix(πi)
∣∣

on|Sn|

∣∣Fix(πi) ∩ [g]
∣∣∣∣Fix(πi)

∣∣ =
1

on

(see, e.g., Wormald (1987) for a more detailed proof)

The problem with the approach is the fact that we need to know the exact number of non-isomorphic
graphs with n vertices on to apply the algorithm and this number is not computable in polynomial
time. To overcome this, Wormald (1987) partitions the elements of the group Sn into classes [ck] =
{π ∈ Sn | support(π) = k}, k = 0, n, and upper bounds

∣∣[ci]∣∣∣∣Fix(πi)
∣∣ ≤ Bi. The algorithm

then samples an unlabelled graph u.a.r. as follows: (i) [ci] ∼ Bi/
∑

j Bj , (ii) πi ∈ [ci] u.a.r., (iii)
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g ∈ Fix(πi) u.a.r., (iv) accept the sampled graph g with probability B−1i |[ci]| |Fix(πi)|; otherwise,
restart. On average, the method generates an unlabelled graph in time that is polynomial in the
number of vertices (Wormald, 1987).

For covariance functions of conditional exponential family, we assume we can write the inner prod-
uct of sufficient statistics as

〈
φ(x, y), φ(x′, y′)

〉
= kX (x, x′)kY(y, y′), where kX and kY are covari-

ance functions over spaces X and Y , respectively. To learn graph concepts we use the random walk
kernel as the instance space kernel kX (see, e.g., Borgwardt (2007); Gärtner et al. (2003)). The ker-
nel performs random walks on both graphs and counts the number of matching walks. The concept
space kernel function is defined by the cardinality of the intersection set of concepts yi, yj ∈ Y , i.e.,
kY(yi, yj) = |yi ∩ yj |.

5 Experiments

In this section, we investigate performances of Algorithm 1 over different concepts: the construction
of acyclic, Hamiltonian, and planar graphs.

When constructing graphs we restrict ourselves to generation of concept representatives from sets
of (non-isomorphic) unlabelled graphs with 7 and 10 vertices. Here we note that |G7| = 1 044
and |G10| = 12 005 168. Each graph concept we investigate partitions the space of graphs into two
disjoint classes, e.g., planar and non-planar graphs. Thus, the concept classes are orthogonal and
the concept space kernel matrix is the identity matrix. In construction of Hamiltonian and planar
graphs, we propose graphs using the uniform instrumental distribution described above. For the
construction of acyclic graphs, we use the Erdős–Rényi sampler with p ∼ U [0, 1] (for G10, already,
we rarely see acyclic graphs with the uniform sampler).
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Figure 1: Learning to construct novel concept representatives on small unlabeled graphs. The con-
cepts are acyclic, Hamiltonian, and planar graphs. We implement 25 rounds of our algorithm for
graphs with seven (a) and ten nodes (b) and report the portion of generated samples reflecting the
desired concept.

All the reported results were obtained by averaging over 5 runs of the algorithm. Metropolis–
Hastings sampling was performed with a burn-in sample of 50 000 proposals, and sampling was
done in a batch by taking 10 samples with a skip size of 1 000 proposals. We used the exponential
family regularizer parameter σ = 0.001 and random walk kernel parameter λ = (n2 − n + 1)−1,
where Gn denotes the search space of graphs with n vertices. This choice of λ guarantees that the
kernel converges for any pair of graphs g, g′ ∈ Gn. We measure our progress by tracking the fraction
of target samples within the accepted states of a Metropolis–Hastings chain throughout the rounds.
Also, at the first step of each run we take 50 000 samples from the prior and report the fraction of
target concepts within the sample (step-0 statistics in Figure 1).

Figure 1 demonstrates the performance of Algorithm 1 on graph concepts. Results indicate we are
learning in all cases. As seen from the experiments, some concepts are easier from the perspective of
the prior as it is biased toward that concept class. To stress the importance of a prior, we note that for
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acyclic graphs, we had to use the Erdős–Rényi sampler as with the uniform sampler we rarely see
an acyclic graphs. Finally, we note that some concepts are difficult to discriminate with the kernel
we use (e.g., planar graphs); improvements in this direction are beyond the scope of this paper.

6 Conclusion

We have presented an algorithm for the de novo construction of novel structured concept represen-
tatives. The effectiveness of the approach was tested on the domain of graphs with a fixed number
of vertices. Empirical results are promising and indicate our algorithm is capable of constructing
structured concept representatives from scratch. For future work, we plan to extend the domain of
applications to the space of molecular graphs and derive a theoretical lower-bound on the number
of constructed target representatives.

Acknowledgment: Part of this work was supported by the German Science Foundation (DFG)
under the reference number ‘GA 1615/1-1’.
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