A Robust Frank-Wolfe Method for MAP Inference

Gang Chen and Ran Xu
Dept. of Computer Science and Engineering
SUNY at Buffalo
Buffalo, NY 14216
{gangchen, rxu2}@buffalo.edu

Abstract

Finding maximum a posterior (MAP) estimation is common problem in computer
vision, such as the inference in Markov random fields. However, it is in general
intractable, and one has to resort to approximate solutions, e.g. quadratic pro-
gramming. In this paper, we propose a robust Frank-Wolfe method [6] to do the
MAP inference. Our algorithm optimizes the quadratic programming problem by
alternating projections between the discrete domain and the continuous domain
(relaxed space). If the solution in the discrete domain keeps the energy climbing
in the current step in both the discrete and continuous domains, we push the algo-
rithm ahead to that direction in the following steps. Otherwise, we backtrack our
algorithm to the continuous domain, which can find a non-discrete solution and
improve the quadratic function climbing towards the integer solution. We analyze
our algorithm and show the backtrack step under the Frank-Wolfe Method frame-
work can guarantee the energy increasing in the following gradient updating step.
We show the advantages of our algorithm by significantly outperforming integer
projected fixed point method (IPFP) and other baselines.

1 Introduction

MAP inference is an important problem in computer vision and machine learning, and has been
widely used on 2D/3D image segmentation [7]], object recognition [10, 5] and label inference
[L5L[12]]. In general, a weighted graph is used to represent the object, and then an integer quadratic
function is constructed with unary and pairwise information to measure the relationship between
nodes and labels. However, it is NP-hard to do MAP inference because it is an integer optimization
problem. Thus, much effort has gone into development of efficient algorithms for this problem. One
trend is to directly optimize this problem in discrete space, such as graph cuts, branch and bound
methods [9, 4] and Tabu search [1]]. Another direction is to relax the problem into continuous do-
main. The classical optimization algorithms usually find optimal continuous solution of the relaxed
problem, and then discretize it, such as belief Propagation (BP), simulated annealing [[13]], gradu-
ated assignment [7]] and spectral graph matching [10, 3]]. However, these methods like graph cuts
and BP, either have restrictions on the clique potentials, or require sparse graph connections. In
addition, many quadratic programming methods assume the continuous optimum is close to the dis-
crete global optimum of the original combinatorial problem. Recently, an interesting algorithm, the
Integer Projected Fixed Point Method (IPFP) [12] is proposed for MAP Inference and graph match-
ing. This algorithm is an efficient approach, which optimizes in the discrete domain, and guarantee
convergence properties. However, it is a kind of greedy approach and can trapped easily into bad lo-
cal maximum, because it cannot guarantee the continuous solution with backtrace can move towards
better discrete solutions. In general, this approach often stop early with bad local maximum.

In this paper, we prefer the relaxation and rounding techniques because it does not need to search
the state-space and generally have lower computational complexity. And we introduce a robust
Frank-Wolfe Method which can be used for graph matching and MAP inference and solve them

efficiently. Our algorithm first relax the integer quadratic programming into continuous domain,
and then optimize it under Frank-Wolfe framework using alternative projection. Basically, we first
find the best integer solution, and project it into continuous space if it cannot guarantee the function
climbing in the next step. We show that our method always move towards discrete solution and can
converlge into good local (or global) maximum. Under certain conditions, our method can coverage

2 Overall view

The MAP inference problem is to find a label vector x* that maximize a certain quadratic function
f(x) = (x"Mx) under discrete constraints, where M is an matrix measure the comparability
between nodes and labels in the graph, and x is required to be an indicator vector with an entry for
each pair of (4,a). If x;, = 1, then the node ¢ assigns the label a, and x;, = 0 otherwise. M is
usually a symmetric matrix with positive elements containing the compatibility score functions, such
that M;,;» measures how similar the pair of sites (¢, j) is compatible with labels (a, b). Note the for
the discrete optimization problem, we can always modify M into a matrix with positive elements,
without any changing to the optimal solution [[11].

In this part, we first consider the integer quadratic programming, then we relax it into continuous
constraints. We take a formula and notations that are similar to [[13}12].

OP1:
x* = argmax f(x),s.t. Ax =1,z € {0,1}" (1)

In general, we modify OP1, usually by relaxing the constraints on the solution, in order to be able
to find efficiently optimal solutions to the new problem.

OP2:

x* = argmax f(x),s.t. Ax =1,z > 0, 2)
OP2 is also NP-hard, and it becomes a concave minimization problem, equivalent to problem 1,
when M is positive definite. Suppose the feasible region for OP1: x € Dy, and the feasible region

for OP2: x € D,. Also note that D; C D,. If the integer quadratic programming OP1 has the
optimal discrete solution *, then it must be the optimal solution to OP2, but not vice verse.

2.1 The Frank-Wolfe method Algorithm 1 Frank-Wolfe with Approximate Lin-
ear subproblems, for Quality § > 0

The Frank-Wolfe method [6, 18] relax the ™. [erx, e Dy,

quadratic programming into linear subprob- 2. for K = 0to 7' do

lems, and is widely used for optimization on 3: Update vy = ;2;:
continuous domain. We denote Cy to be the 4. Fing s ¢ D, st (s, V(fx®))) >
curvature constant [8]], then the framework of maxsep (8 V(f(x““)))) ~ 150, -

. . . S 7 2
Erank—Wolfe method is listed below in algo- 5. 4) performing line search for ~ (optional), by
rithm [Tl maximizing

— (k) _ (k)

The IPFP is a kind of Frank-Wolfe method to v = max, f(x* + (s —x))

optimize OP1. Basically, it first finds a dis- ©6: D) Update xHD = x4 (s —xM);

crete solution according to linear programming ~ /* end for .

or Hungarian algorithm, then it backtracks to 8: Return x;

find y by performing line search in Alg. [T} which in general leads to continuous solutions. Assume
s = Pd(Mx(k)) is the current solution in the domain Dy, in which P; is the projection on the one-
to-one or many-to-one discrete constraints. And further we denote C' = (x*))TM(s — x(¥)), and
D = (s — x")TM(s — x(*)), which respectively are the first and the second order differences in
Taylor series.

Firstly, we argue that we cannot guarantee C' > 0 in each step, because s maximize s” Mx(*) in the
discrete domain D, and if x(*) € Dy, then it is quite possible (x*))TMs < (x*))TMx*). In
other words, we may have C' < 0 when we project the solution from D5 into D;.

Secondly, according to the Frank-Wolfe method in Alg. [1| for the new updating x(**1) € Dy, we
can express f(x**+1) as follows

f(x(k+1)) :f(x(k)) + (X(k))TM(X(kH) _ x(k)) + %(X(Hl) _ X(k))TM(X(kH) _ X(k)) +0(6?)

3)
2
= £ + (M) TM(s = x®) + (s = x)M(s = xM) + 0(5?) 0
2
=f(x®) +4C + %D+O(52) (5)
Since v € [0, 1], the best step for -y can be estimated by setting its gradient to zero
. —C
V:mm(l,?),s.t.'yz 0 (6)

However, for the current local optimum s, if f(s) is not better than f(x(**1)) in Eq. [5| it means that
s guides the OP1 problem into a wrong direction, which cannot guarantee the quadratic function
climbing in OP2. Note that the difference between f(s) and f(x(**1)) can be written with simple
algebra manipulation

FERD) — f(5) = 57 =D+ (7~ 1)C a)

where we ignore the high order difference for analysis convenience. Note that v € [0, 1], thus if
v = 1in Eq. [/} then the current s is also the optimum in the continuous domain Dy for the OP2
problem. Thus, it can guarantee the objective function climbing in the discrete domain D, . However,
if v < 1, we cannot guarantee f(x(**1)) is better than f(s), which in turn will guide the solution in
the following steps into a bad local minimum.

Now Let us go back to Eq. |5t If D > 0, then f(x*+1) > f(x(*)) holds, which guarantee the
objective climbing in the following steps. Otherwise, If D < 0, we cannot guarantee f(x(**1)
has better score than f(x(*)). Furthermore, if % < 0, it will make the case worse. Thus, we
propose a the Frank-Wolfe method with alternative projections on the two optimization problems.

Our algorithm is listed below in Alg. 2]

2.2 Basicidea Algorithm 2 Robust Frank-Wolfe method

.. 1: Let xg € Da,
To address this issue, we propose a robust 2 for k — 0 to K do

Frank-Wolfe algorithm, which optimizes the 5. Compute gradient V(f(x(*))) given the current
quadratic function between discrete and contin- solution x®:

uous domains. If the discrete solution X is opti- 4. Rinds € D,, by maximizing (s, V(f(x*)))
mal in OP1, then we trust it and continue its di- 5. Update C = (x®)TM(s — x®), and D =
rection to the integer solution. Otherwise, given (s — xNTM(s — x(*))

the current solution x, we optimize the contin-

) ’ 6: Update v via Eq.[6}
uous problem OP2, which can always improve 7. if ¢ < 0 then
the quadratic function f(x) towards to the in- § (@) x* T = Backtrack(x*), M, 8, T);
teger solution. In this case, it is a kind of op- 9: else
timization in the continuous domain, and then 10 if D > 0|y == 1 then
we project it back into discrete domain in the 11 (b)) x*F D = g;
following iterations. 12 else
13: (b2) Update x*D) = x(k) +'y(sfx(k>);
If the current discrete solution is trapped in a 4 end if
bad local minimum, our algorithm fell back 15 end if
upon the continuous domain to jump out of the 16: end for
bad case. Thus, we propose the Robust Frank- 17: if x ¢ D1 then
Wolfe method for integer quadratic program- }g (ll’{(f)jeCt x into Dy;
o endil

ming problem in Alg. 2] below. In our imple-
mentation, we use a window size w to computer

20: Return x;

the average x(*) = S x() in order to make the algorithm stable.

The backtracking subroutine in our algorithm 2]

. 3 . . Algorithm 3 Backtrack

is to find a solution by monotonically increas- — - . .

. . (k) . Input: similar matrix M, x, 8 and iterations 7’;
ing function of x'" towards an integer solu- Output: x:

tion. If f is increasing exponentially with 3 put: %

1: fort =1to T do

then, by increasing 3, we make the assignment v = Mx:

at each step similar to a max function such that % v = x - v, /fpoint-wise product
x gets closer and closer to the original integral 4. for each i do
5
6
7

Via

normalize v;, = S v
o Via

constraints in OP1. We need to design a algo-
rithm, which can not only increasing the objec- update Xiq = Via;

tive function, but also guide the current solution end for

into the integer domain. In our backtrack stage, 8: Increase 3;

we take a strategy similar to the graduated al- 9: end for

gorithm [7]] and climbing algorithm [11]. Note 10: Return x;

that our algorithm here is only for backtracking in the right direction, which is different from other
methods [7, [L1} [2]]. In other words, the algorithm only need to move towards the integer solu-
tion with just looping a few times, for example T" = 3, instead of repeating until convergence
like graduated assignment or random work [2]. Since every time we visit a site ¢ we only update
the values in vector x corresponding to that site, we can write the objective at that moment ¢ as
Fx)® = f(x_)® + f(x;)®, where x_; are all the other sites or features except 7, and x;. is
the set collected to the site ¢. Thus f (x,i)(t) is independent of x;, for any label a. We can show
that f(x;)® < f(x;)**D), and furthermore, we have f(x)®) < f(x)(+1), For the proof, refer to
(14 11].

2.3 Theoretic Analysis

Property 1: The quadratic function f(x*)) = (x(®))TM(x¥)) increases at every step k and the
sequence of x(¥) converges.

Proof: For a given step £, Algorithm has two conditions to update x(*+1)_ If C' < 0, then we use
algorithm to updating the x(*1) in the continous domain, which will keep function climbing. If
D > 0or v == 1, then we update x(*) accordin o to step (by) in Algorithm More specifically,
if D > 0, then we f(x**t1)) > f(x(¥)) via Eq. |5 Similarly, if v == 1, we can yield the same
conclusion via Eq. [7| Otherwise, x(**1) will be updated according to step (bs) in Algorithm As
we mentioned before, it always improves the function score and move towards to integer solution.
Thus, we also have f(x(*+1)) > f(x(®).

Property 2: If M is positive semidefinite with positive elements, then the algorithm converges in a
finite number of iterations to a discrete solution for OP1, which is a maximum of OP2. And further,
the algorithm will converge in O(%) if the step size in the Backtrack subroutine kept in appropriate
range.

Proof: Since M is positive semidefinite, there’s global optimum for OP1. According to the mono-
tone convergence theorem, the algorithm must converge in a finite number of steps to a local (or
global) maximum, which must be discrete. This result is obviously true for both one-to-one and
many-to-one constraints. When M is positive semidefinite, the algorithm will converge to the global
optimum for OP1, which is also true for OP2. Note that f(x(*+1)) > f(x(*)). Then there exist -,
which makes f(x**+1) = f(x®)) 4 (x*+D —xENTY f(x*) 4 (xk+1) —x(#))) hold according
to mean value theorem. And if the step side updated in step (b) in the algorithm is small enough,
then it will make v € [0, 1]. Then we will have f(x(*)) — f(x*) < O(%). For the proof, please
refer to [8]].

3 Experiments

We compared our algorithm against other methods such as BP, ICM, SMAC [3]], IPFP, L2QP [11]]
and RRWM [2]]. For a more thorough analysis, we repeated 5 times to generate synthetic graphs
with different nodes and labels, and averaged the output in the experiments. We focused more on
the degree of connectedness and the number of labels relative to the number of nodes, and evaluated

3s0| i ’ as0 a5
icM — ‘\’_/
—a—BP ic™m
300| —&— SMAC 300+ —— P 300| 1M
L2gP —e— smac e
—a— iprp L2gP —e— smac
RRWM L —8— PFP L2op
0 —=— Our method 250) A 250 -
—— Our method RRWM
—=— Our method
61 02 03 04 05 06 07 08 08 1 01 02 03 04 05 06 07 08 09 1 61 02 03 04 05 06 07 08 09
Pedg Pedge Pedg

Figure 1: It shows how the energy function changes with p.q4. for different methods for the same
graph with 30 nodes. (a) the result with 5 different labels; (b) the result with 15 labels; (c) indicates
the result with 25 different labels.

450, 450

B e Lt

L2QP L2QP
—&— IPFP —8— IPFP
RRWM RRWM
—=— Our method —— Our method
: n

L L L L L L L L | L L L L L L L L |
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Iterations Iterations

(a) (b)

Figure 2: It shows how the energy function changes for a given p,q4. for different methods for the
same graph with 30 nodes. It demonstrates that our method yield a higher and even better energy
score than baselines. (a) shows how each algorithm converges for the 40% connectivity graph; (b)
shows how each algorithm converges for the 80% connectivity graph.

the performance of different methods according to the energy function. Without other specification,
we set p. = 0.8, p,, = 0.4, K = 100 iterations for each algorithm in the experiments.

Similar to [[L1]], we generated a set of graphs by controling the density peqq4e of connections in M:
Dedge € [0,1]. To generate M, we encouraged connections between pairs of nodes with the correct
labels (set arbitrarily in advance) to be larger than other connections on average. More specifically,
we set M, j» = log(p/€) with probability pg, and M, j, = 0. If the pair sites (4, j) are connected,
then it has higher probability (p.) to have the same label, otherwise we set a lower probability (p,,).

We generated a graph with 30 nodes and varied the number of labels to test the performance of
different methods, and the results are shown in Fig. m Note that pq4. in Fig. |1|indicates the density
of connection in graph. As for p.qqe, lower value indicates higher density, which is different from
[L1]. It shows our method yields comparative results, and outperforms all other methods, except
L2QP.

We also consider how the energy changes given the density graph. In this experiment, we set the
number of nodes to be 30, and the number of labels to be 10. Then, we analyzed how the energy
changes with graph density. The result in Fig. [2|shows that for the graph with 80% connectivity, our
method can rapidly converge.

Finally, we analyzed the time complexity for our method, shown in Fig. [3} We ignore the result of
RRWM because it highest time demanding, with at least a order of magnitude slower slower than
other methods. From Figs. [I]and 3] our method is comparable to L2QP in both accuracy and time
complexity. And our method can beat most baselines, with a little sacrifice in time complexity.

IcM
Ic™M
8| —a—pp 7op | A—ee
—&— SMAC
L2QP
—8&— pFP

—8— smAC
7

L2QP 60
—&— |PFP

6f | == Our method —*— Our method

time
ume

—if .
10 15 20 25 30 10 20 30 40 50
the nuber of labels the nuber of labels

(a) (b)

Figure 3: It shows how the time complexity changes with the number of labels for different methods.
(a) shows the time complexity for different methods on the graph with 30 nodes and 80% edges
connectivity; (b) shows how time changes with respect to the number of labels on the graph with 50
nodes and 80% edges connectivity.

4 conclusion

In this paper, we propose a robust Frank-Wolfe method to optimize MAP inference problems. Our
algorithm optimizes the quadratic programming problem by alternating projections between the
discrete domain and the continuous domain (when necessary). We analyze our algorithm and show
the backtrack step under the Frank-Wolfe Method framework can guarantee the energy increasing in
the following gradient updating step. In the experiments, we show the advantages of our algorithm
by significantly outperforming IPFP and other baselines.

References

[1] S.Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York, NY, USA,
2004.

[2] M. Cho, J. Lee, and K. M. Lee. Reweighted random walks for graph matching. In K. Daniilidis, P. Mara-
gos, and N. Paragios, editors, ECCV, volume 6315 of Lecture Notes in Computer Science, pages 492-505.
Springer, 2010.

[3] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching. In NIPS, 2006.

[4] M. A. Eshera and K. Fu. A graph distance measure for image analysis. IEEE Transactions on Systems,
Man, and Cybernetics, 14(3):398—408, 1984.

[5] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent contour segments for object detection.
IEEE Trans. Pattern Anal. Mach. Intell., 30(1):36-51, 2008.

[6] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly,
1956.

[7]1 S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. IEEE TPAMI,
18(4):377-388, Apr. 1996.

[8] M. Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML, pages 427-435,
2013.

[9] E. L. Lawler and D. E. Wood. Branch-and-bound methods a survey. Oper: Res., 149, 1966.

[10] M. Leordeanu and M. Hebert. A spectral technique for correspondence problems using pairwise con-
straints. In ICCV, pages 1482-1489, 2005.

[11] M. Leordeanu and M. Hebert. Efficient MAP approximation for dense energy functions. In /ICML, pages
545-552, 2006.

[12] M. Leordeanu, M. Hebert, and R. Sukthankar. An integer projected fixed point method for graph matching
and MAP inference. In NIPS, pages 1114-1122, 2009.

[13] A. Rangarajan. Self annealing and self annihilation: Unifying deterministic annealing and relaxation
labeling. In In Pattern Recognition, pages 33—-635, 2000.

[14] A. Rangarajan, A. Yuille, and E. Mjolsness. Convergence properties of the softassign quadratic assign-
ment algorithm. Neural Computation, 11:1455-1474, 1999.

[15] L. Torresani, V. Kolmogorov, and C. Rother. Feature correspondence via graph matching: Models and
global optimization. In ECCV, pages 596-609, Berlin, Heidelberg, 2008.

	Introduction
	Overall view
	The Frank-Wolfe method
	Basic idea
	Theoretic Analysis

	Experiments
	conclusion

