
Tradeoffs for Space, Time, Data and Risk in
Unsupervised Learning

Mario Lucic
ETH Zürich

lucic@inf.ethz.ch

Mesrob I. Ohannessian
Microsoft Research - INRIA
mesrob@gmail.com

Amin Karbasi
Yale University

amin.karbasi@gmail.com

Andreas Krause
ETH Zürich

krausea@ethz.ch

Abstract
Faced with massive data, is it possible to trade off (statistical) risk, and (compu-
tational) space and time? This challenge lies at the heart of large-scale machine
learning. Using k-means clustering as a prototypical unsupervised learning prob-
lem, we show how we can strategically summarize the data (control space) in or-
der to trade off risk and time when data is generated by a probabilistic model. Our
summarization is based on coreset constructions from computational geometry.
We also develop an algorithm, TRAM, to navigate the space/time/data/risk trade-
off in practice. In particular, we show that for a fixed risk (or data size), as the data
size increases (resp. risk increases) the running time of TRAM decreases. Our ex-
tensive experiments on real data sets demonstrate the existence and practical utility
of such tradeoffs, not only for k-means but also for Gaussian Mixture Models.

1 Introduction
The computational and statistical performance of any learning algorithm for a given data set can be
described in terms of three parameters: risk, running time, and space usage. The massive growth
in datasets, coupled with limited resources in terms of time and space, raises new challenging
questions on the accuracy of learning that can be achieved. At the heart of this challenge is to
identify the relationships between risk ε, and the resources we have available, namely, time t, space
s, and data n. Most of classical learning theory centers around the question of how risk scales with
dataset (or sample) size: How much data n is needed in order to achieve a certain level of risk ε
(i.e., what is the sample complexity of a given learning task)? In contrast, and from a practical point
of view, increasing the data size is a source of computational complexity which typically translates
into higher running time t. From this perspective, large data is considered a nuisance rather than a
resource for achieving lower risk. As a result, most practical algorithms accumulate data until they
exhaust either the time or space constraints and drop the data afterwards.
Related Work. An alternative direction is to investigate computational and statistical tradeoffs:
using data as a computational resource when available beyond the sample complexity of the learning
task. Pioneering this effort, [1] and [2] showed tradeoffs in the realizable PAC learning model.
Exploring these tradeoffs has gained much recent attention due to emerging problems in big data.
For instance, [3], [4] and [5] showed the existence of such tradeoffs for learning linear classifiers
as the data size increases. These tradeoffs are generally achieved by leveraging the fact that as we
accumulate more data, the desired risk ε becomes easier to reach, thus computationally cheaper but
less accurate algorithms can be employed. This idea of algorithmic weakening was explored more
systematically by [6] using convex relaxations.
Our Contributions. Existing approaches in computational and statistical tradeoffs consider only
three of the four parameters: for a desired level of risk ε they identify tradeoffs between running time
t and data size n. Our primary goal in this paper is to study how summarization (i.e., controlling

1

space) can help navigate the tradeoff between time, data size and risk. In other words, we present
a weakening mechanism, akin to [6], albeit in a different direction. Instead of weakening learning
algorithms, we consider weakening the data representation. As more data becomes available, more
representative elements can be extracted, without incurring much computational cost. Our approach
is based on novel computational geometric techniques, called coresets [7], where a small amount of
most relevant data is extracted from the dataset, while performing the computation on this extracted
data guarantees an approximate solution to the original problem. To the best of our knowledge, this
paper is a first effort in introducing a methodological data-summarization approach for studying
and navigating space/time/data/risk tradeoffs. As a prototypical unsupervised learning problem, we
focus on k-means clustering, also known as vector quantization, due to its simplicity and practical
importance. In this problem, a set of k centers is sought to minimize the expected (squared) distance
between data points and the closest center. Finding the optimal centers is NP-hard, but good ap-
proximation algorithms are known, e.g., Lloyd’s algorithm [8]. We show how coreset constructions
for k-means [9, 10, 7, 11, 12] can be used to strategically summarize the data: in order to achieve
a fixed precision, the running time can be made to decrease as the data set grows, by carefully
controlling space usage. We also provide a practical algorithm TRAM that uses existing algorithms
for solving k-means (e.g., Lloyd’s algorithm, or k-means++) in order to realize this tradeoff in
practice. We demonstrate the effectiveness of our summarization strategy on several synthetic and
real data sets. We should highlight that k-means clustering is a non-convex problem, thus prior
computational-statistical tradeoff strategies that heavily relied on convexity cannot be applied in this
setting. While we focus on k-means, coresets are available for many other unsupervised learning
tasks [12], and we believe that our approach can be applied much more generally. In particular, we
empirically demonstrate how such tradeoffs can be achieved for Gaussian Mixture Models (GMMs).

2 The Statistical k-Means Problem

Typically, k-means is viewed as a (combinatorial) optimization problem. We focus instead on the
statistical variant. In particular, we assume that an underlying distribution generates i.i.d. samples,
and we seek centers that generalize well. More formally, let P be an unknown distribution on Rd
where we assume that it is supported on a ball of radius B at the origin, i.e., for X ∼ P we have
P(‖X‖2≤ B) = 1. In k-means clustering, any data point x ∈ Rd is associated with the closest
among a set of k centers c = {c1, · · · , ck}, where ci ∈ Rd. We judge the quality of this association
by a risk defined as R(c) = EX∼P[d2(c,X)] between c and a sampleX from P, where d2(c,X) =

minki=1 ||ci−X||22. Let C be the set of all k centers in the ball of radius B at the origin. The optimal
centers are those that minimize this risk: c? = arg minc∈C R(c). Since P is unknown, we seek cen-
ters for a dataset of n samples X1, . . . , Xn drawn i.i.d. from P. Any choice of a sequence of func-
tions c̃n, from Rd×n → Rd×k is called a k-means procedure. Out of all such choices, of particular
importance is the one that minimizes the empirical risk, to obtain the empirically optimal centers:

Rn(c) =
1

n

n∑
i=1

d2(c,Xi), ĉn = arg min
c∈C

Rn(c). (1)

3 Data Summarization
Data summarization refers to a procedure that takes a data set of size n and replaces it with a
smaller set of size sproc, which (approximately) suffices for solving the learning task at hand. This
summarization may simply be a truncation without any consideration to the inherent structure of the
data (a simple method that is often practiced), or it may be a combination of truncation and strategic
sampling that adapts to structure in the data. We denote the truncation size by mproc. One of the
main advantages of having summarized data, apart from saving space, is the substantial reduction
in running time. For this reason, truncation must be allowed, as otherwise the running time of any
learning algorithm would grow with the data size. We now formally present these two strategies.

Uniform Subsampling This is the simplest form of data summarization: start with a data set of
size n, preserve only the first ssubs ≤ n points, and then solve the learning problem by minimizing
the empirical risk. In the k-means problem, this amounts to c̃subs = arg minc∈C Rssubs(c) where
Rssubs(c) = 1

ssubs

∑ssubs
i=1 d2(c,Xi). For the uniform subsampler the summarization and truncation

sizes are identical, ssubs = msubs. Larger values of ssubs promote lower statistical risk but are more
expensive to compute. Conversely, computation on a smaller set may be fast but results in higher
risk. The uniform subsampler can tune ssubs to balance risk with running time.

2

Tradeoff	 Space	 Time	 Data	 Risk	

Data-‐Time	 Tune	 Objec*ve	 Vary	 Fixed	

Risk-‐Time	 Tune	 Objec*ve	 Fixed	 Vary	

Space-‐Risk	 Vary	 Tune	 Fixed	 Objec*ve	

Data-‐Risk	 Tune	 Fixed	 Vary	 Objec*ve	

Space-‐Time	 Vary	 Objec*ve	 Tune	 Fixed	

(a) Tradeoffs

Cost	 k	 n	 s	
✏modeling

✏estimation

(b) Trends

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

R
u
n
n
in
g
T
im

e

Data size

Coreset

Uniform

(c) Data-Time

200 300 400 500

0

1

2

3

4

5

6

R
u
n
n
in
g
ti
m
e

Risk

Coreset

Uniform

(d) Risk-Time

Figure 1: (a) Examples of Space-Time-Data-Risk-Tradeoffs. Each one is realized by trading two parameters
(green and gray) by constraining (red) and tuning (blue) the remaining ones. (b) Effect of increasing k, n and
s on the various errors and running time t. (c) Coreset (red) data-time tradeoffs versus subsampler (black).
The plots represent best running time for fixed allowed risk when varying data size, as predicted by our theory
(Section 5). (d) Risk-time tradeoff, i.e., best achievable running time for fixed data size when varying the
allowed risk. [Time units normalized to the median subsampler time.]

Strategic Sampling Coresets are data summaries that are constructed via adaptive sampling, in
the spirit of importance sampling. As with the uniform subsampler, we start with data of size n,
then truncate it to mcore points. Now, instead of using the truncation as is, we perform strategic
sampling to propose a set of score representative points (Yj)j=1,··· ,score , each associated with a
non-negative weight wj , and we solve the learning problem not on the empirical risk, but on a
weighted variant. In the k-means problem, this amounts to c̃core = arg minc∈C R

w
score(c) where

Rwscore(c) =
∑score
j=1 wjd

2(c, Yj). Coresets strive to be a more faithful/concise representation of the
data than uniform samples. The hallmark property of coresets is their ability to approximate the
empirical risk, defined in (1), optimized over the starting mcore data points.
Definition 1. A coreset construction is a (1 + η)-approximation, with η a function of the coreset
size score, if the centers c̃core satisfy Rmcore(c̃core) ≤ (1 + η(score))Rmcore(ĉmcore).

1

It is worth noting that coresets have the advantage of admitting streaming and parallel constructions
[10], which makes them particularly suited for massive datasets.

4 Space-Time-Data-Risk Tradeoff
Our goal now is to give a precise definition of tradeoffs: how data summarization may lead to trad-
ing off representation space, running time, data size, and statistical risk. Let c̃proc(n,mproc, sproc),
or c̃proc for short, denote a k-means procedure based on data summarization, such as uniform sub-
sampling or coreset summarization. Recall that such a procedure starts with n data points, truncates
them to mproc points, summarizes these to sproc (possibly weighted) representative points, and op-
timizes the (possibly weighted) empirical risk to obtain the set of centers c̃proc. The running time,
which we denote by tproc, may be further decomposed into: summarization time tsumproc and the time
tsolver for empirical risk optimization. The former depends on the particular procedure, but the latter
can be a generic solver across procedures. We assume that the act of truncation (for both the uniform
subsampler and the coreset procedure) has no computational cost. The statistical risk of the proce-
dure, which we denote by Rproc, is the expected risk, where the expectation is taken with respect to
the sample. That is, Rproc = E[R(c̃proc)]. We can decompose it as follows:

Rproc ≤ R(c?)︸ ︷︷ ︸
εmodel

+E[R(ĉmproc)]−R(c?)︸ ︷︷ ︸
εest

+ |E[R(c̃proc)]−E[R(ĉmproc)]|︸ ︷︷ ︸
εsum

, (2)

where εmodel and εest are the usual modeling and estimation errors, and εsum is the summarization
error. The latter represents , respectively. the added risk due to approximate data summarization.
For coreset procedures, it will depend on the approximation factor η(score).
How to trade off The four dimensions space, time, data, and risk put forth in this paper can now be
represented by the four parameters (sproc, tproc,mproc, Rproc). We can obtain a variety of tradeoffs by
constraining some dimensions and optimizing others. We call a subset of the dimensions feasible for
a procedure, if there exist values of the others that lead to attainable tuples. By exploring the feasible
landscape, one can harness various trends. For example, based on the risk decomposition stated
above, as we decrease sproc, the risk Rproc increases due to the increase in εsum. In contrast, solving
the optimization becomes computationally cheaper with smaller sproc. These interactions, illustrated
schematically in Figure 1(b) give rise to various tradeoffs. Some of these are listed in Figure 1(a).

1Coresets conventionally require approximating the risk at all c: for ε ∈ (0, 1), ∀c ∈ C, |Rw
score(c)/Rm(c)−

1| ≤ ε. This implies a (1 + η)-approximation with η = 2ε/(1− ε).

3

In this paper, we are mainly interested in (a) data-time tradeoffs: for Rproc fixed below some εtotal,
can tproc decrease as n increases? and (b) risk-time tradeoffs: for some fixed n, can tproc decrease as
Rproc increases? These two tradeoffs are listed respectively in the first and second rows of the table
in Figure 1(a). Data summarization gives us a natural framework to answer those questions: we
could achieve such gains by optimizing summarization space sproc. This captures the weakening-
through-data-summarization mechanism that we advocate in this paper. Formally, given a data size
n and risk εtotal, the optimal running time function is:

t?proc(n, εtotal) = minmproc,sproc tproc(n,mproc, sproc), (3)

s.t. Rproc(mproc, sproc) ≤ εtotal,mproc ≤ n.

Note: for fixed εtotal and as n increases, the optimal running time t?proc is non-increasing by construc-
tion. Similarly, for fixed n and as εtotal increases, the optimal running time t?proc is non-increasing.

Definition 2. We say that a k-means procedure offers a (non-trivial) data-time tradeoff if, for a
given desired total risk εtotal, the running time t?proc(·, εtotal) is decreasing for some range of n. We
say that the procedure offers a (non-trivial) risk-time tradeoff if, for a given data size n, t?proc(n, ·)
is decreasing for some range of εtotal.

5 Analysis
We have thus far motivated and laid out a clear paradigm of tradeoffs via data summarization. But
are such tradeoffs even possible? In this section, we show that the answer is yes. We focus in
particular on showing that nontrivial data-time tradeoffs (Definition 2) do indeed exist.

For the uniform subsampler the data-time tradeoff is necessarily trivial. To see this, let nf(εtotal)
be the smallest data size n when εtotal becomes feasible, i.e. εmodel + εest(n) ≤ εtotal. Then for all
n > nf(εtotal), the uniform subsampler has no incentive to use more thanmsubs = nf(εtotal) samples,
since otherwise its running time would be greater (for unneeded risk reduction). This means that
t?subs(·, εtotal) is undefined for n < nf(εtotal), and is flat beyond that.

The more interesting question is thus: Can coreset procedures give non-trivial data-time tradeoffs
that improve on the uniform subsampler? Our main result answers in the affirmative. Informally:

Main Result (Existence of Tradeoffs). Let the following conditions hold for a coreset procedure:
(a) The summarization is time-efficient (its running time is negligible relative to that of the solver).
(b) The summarization is sample-efficient (the approximation factor vs. summarization size decays

no slower than the estimation error vs. sample size).
(c) The estimation error decays fast (∼ power law).
(d) The solver is slow (at least super-linear).
Then, for small enough risks, the procedure admits a non-trivial tradeoff, and its optimal running
time dominates that of the uniform subsampler for large enough sample sizes. Existing bounds and
coreset constructions do satisfy these conditions.

The statement of this problem can be formalized rigorously. The conditions are rather natural. For
example, if summarization is much more time-intensive than solving (if Conditon (a) fails), then
we can’t expect to benefit from summarization. To verify these conditions, we use as a concrete
construction the one given in [13], where η(score) behaves roughly like O(1/

√
score), therefore

satisfies Condition (b), since generally εest(m) = O(1/
√
m). Thanks to the latter, Condition (c) is

also satisfied. Lastly even the most optimistic running times of heuristic algorithms (of the Lloyd
variety) are super-linear, and thus Condition (d) follows.

6 Data-driven Tradeoff Navigation
So far we demonstrated tradeoffs in k-means by considering analytical models. In practice,
however, even if a tradeoff exists, it is a priori unclear how to harness it: one would seemingly
need a “tuning oracle” to adjust the procedure to yield an optimal tradeoff, by selecting optimal
truncation and summarization sizes. An exhaustive search for such an adjustment is useful for
illustration, but it defeats the purpose of the endeavor, which is to yield a practical algorithm whose
running time decreases with more data. In this section, we address this challenge by proposing
a TRadeoff nAvigation algorithM (TRAM). It uses a limited amount of additional validation data
to explore the summarization landscape, and leads to a summarization that exhibits acceptable

4

214 215 216 217

Dataset Size

0

2

4

6

R
u
n
n
in

g
 T

im
e
 [

s]
TRAM

ORACLE-U

ORACLE-C

R=800.86

213 214 215 216 217

Dataset Size

0
1
2
3
4
5
6
7
8

R
u
n
n
in

g
 T

im
e
 [

s]

TRAM

ORACLE-C

ORACLE-U

R=1.27e+06

214 215 216 217

Dataset Size

0

1

2

R
u
n
n
in

g
 T

im
e
 [

s]

TRAM
ORACLE-C

ORACLE-U

R=5.23

213 215 217 219 221 223 225

Dataset Size

10

15

20

25

30

R
u
n
n
in

g
 t

im
e
 [

s]

ORACLE-C
TRAM

ORACLE-U
LL=10.58917

785 795 805 815 825
Risk

0

2

4

6

8

R
u
n
n
in

g
 T

im
e
 [

s]

ORACLE-C

TRAM

ORACLE-U
N=100000

1.20 1.21 1.22 1.23 1.24 1.25
Risk 1e6

0

2

4

6

8

R
u
n
n
in

g
 T

im
e
 [

s]
ORACLE-C

ORACLE-U

TRAM

N=140000

4.5 5.0 5.5 6.0 6.5
Risk

0

1

2

R
u
n
n
in

g
 T

im
e
 [

s]

ORACLE-C

TRAM

ORACLE-U

N=120000

10.6 10.5 10.4 10.3
Risk

10

15

20

25

R
u
n
n
in

g
 T

im
e
 [

s]

ORACLE-C

TRAM

ORACLE-U

N=44000000

Figure 2: Results for SYNTHETIC (S), KDD2004BIO (K), CSN (C) and WEBSCOPE (W) data, column-wise.
Figures in the first row show data-time tradeoffs: best running time for fixed risk tolerance and varying data
sizes (cf. Figure 1(c)). Tradeoffs exist: running time decreases with increasing data size. Furthermore, the
coreset procedure dominates uniform subsampling, and TRAM tracks the coreset tradeoff closely, with limited
overhead. Figures in the second row risk-time tradeoffs: best running time for fixed data size and varying risk
tolerance (cf. Figure 1(d)).

loss in risk εtotal, time t?, and space s?, thus effectively approximating a tuning oracle. We focus
specifically on data-time tradeoffs via coreset data-summarization schemes, though the approach is
potentially extensible to other tradeoffs and procedures.

A TRadeoff nAvigation algorithM (TRAM) The idea of TRAM is as follows: search for a good
summarization by starting small then growing until the desired risk is achieved. The challenge is that
the risk cannot be known exactly and needs to be tested using data. We therefore have a compromise:
if we stop too early we miss the target, and if we stop too late we spend too much on computation.
The analysis shows that the algorithm achieves a certain balance. We assume we have validation
samples beyond the main body of data. In practice the data itself is partitioned to provide these
samples. More specifically, we use a a[i] = 4ib log(1/δ)/εtotal

2 of these points at iteration i. We
also assume tsum(m) = O(m) and tsolver(s) = O(sβ), with known β.

Algorithm TRadeoff nAvigation algorithM (TRAM)
1: Input: Data of size n; risk level εtotal; validation data of size a; accuracy parameter δ > 0.
2: Initialization: Start with a truncation of size m[0] < n and a coreset size of s[0].
3: repeat
4: Iteration step i: Summarize the m[i]-truncation to a coreset of size s[i], and solve for the

centers c̃[i]. Increment: m[i+ 1]← 2m[i]∧n, and s[i+ 1]← 21/βs[i]. Use a portion a[i] of
the validation data to evaluate the empirical risk of c̃[i].

5: until Ra[i](c̃[i]) < 1.5εtotal.
6: Output: The last set of centers c̃[i].

Theorem. Let T and J denote the running time and number of iterations of TRAM respectively.
Under an assumption of strong feasibility with probability 1 − λ, given data of size n, a base risk
εtotal, and parameter δ < 1

5 , with probability at least (1− λ)(1− 5δ), TRAM:
. runs for time T ≤ 8t?2 +O

(
log 1

δ log2
2 t
?
)
,

. uses a[J] ≤ O
(
log 1

δ log2 t
?
)

validation points,
. and produces centers c̃ with risk R(c̃) ≤ 2εtotal.

7 Experimental Results
We now describe our experiments, empirically establishing the existence of tradeoffs, and evaluating
the performance of TRAM.

Setup Given a dataset X ⊆ Rd and some εtotal, we wish to find the minimum computational cost
of obtaining a k-means solution with risk less than or equal to εtotal. We simulate various dataset
sizes by restricting individual experiments to a random subset of X . For each pair of data size
ni ∈ N and summary size sj ∈ S we sample ni instances i.i.d. from X and summarize the sample

5

with a summary of size sj and solve the problem on the summary. We repeat the latter 50 times and
report the average time and risk obtained. For the uniform subsampler, sj refers to the subsample
size, and for the coresets it refers to the size of the coreset. We denote the cumulative running
time of summarizing and solving the problem on the summary by t(ni, sj) and obtained risk by
R(ni, sj). For each procedure, let Λproc = {(n, t(n, s), R(n, s)) | n ∈ N , s ∈ S}.
We can now leverage Λproc to characterize various tradeoffs. For example, to capture the data-time
tradeoff for a particular size n we find the minimum running time t′ such that ∃(m, t′, R) ∈ Λproc,
with m < n and R ≤ εtotal. Searching Λproc yields Pareto-optimal boundaries of two oracles:
coreset-based (ORACLE-C) and uniform-sampling-based (ORACLE-U). To show that one can navi-
gate the space/time/data/risk tradeoffs in practice using TRAM, we showcase it alongside the oracles
in Figure 2. Note that constructing the oracles is computationally prohibitive as it entails a full grid
search over N and S. Nevertheless, the reported times assume the oracles know the best summa-
rization right away.

Datasets SYNTHETIC — We generate synthetic data of 100, 000 points in R100 from a mixture
of Gaussians. We choose k = 100 centers in [0, 100]100 and set them as means for the k spherical
Gaussian distributions with Σ = 5I . The relative magnitudes of the clusters are sampled from an
exchangeable Dirichlet distribution with α = 1/20.
KDD2004BIO — This dataset was used for the Protein Homology Prediction Task in KDD Cup
2004. It contains 145, 751 instances and 74 attributes that describe the match between two proteins.
We fit k-means with k = 150.
CSN — The Community Seismic Network (CSN) uses smart phones with accelerometers as inexpen-
sive seismometers for earthquake detection. [14] compiled 7 GB of acceleration data and computed
17-dimensional feature vectors. We apply k-means with k = 200.
YAHOO! WEBSCOPE R6A — 45, 811, 883 instances in R6 that represent the user click log dis-
played on Yahoo! Front Page. For this dataset, we extend our framework from k-means to Gaussian
Mixture Models. We fit a GMM with k = 200 components. The risk is now defined as negative
log-likelihood on the hold-out data.
Parameters For the k-means clustering problem we use the coreset construction from [13], and
a weighted variant of the k-means++ algorithm to solve the problem on the the subsample. In
the case of GMMs, we use the coreset construction from [15] and a weighted EM for GMMs. We
consider sizes summarization sizes between 100 and 20000. For TRAM, we start with summarization
size and truncation size inversely proportional to the risk required. At every iteration, we double
the truncation size and take 1.5-fold of the summarization size. 1/5th of the sample is used for
validation, with a δ of 0.1.
Observations The plots in the first row in Figure 2 show the Pareto-optimal boundary for a fixed
risk as data size varies. There is a data-time tradeoff as predicted from theory. Furthermore, TRAM
traces the solutions achieved by the coreset oracle, implying that we can navigate tradeoff curves
without oracles. Remarkably, TRAM remains better than the uniform subsampler oracle, eventhough
either oracle takes orders of magnitude more time to obtain by exhaustive search. The second row
illustrates the existence of a risk-time tradeoffs also: for fixed data size, the time to guarantee a
desired risk decreases as the risk increases. Solving the problem on the whole dataset is often out
of the question (in the case of GMMs, it may take weeks). Summarization slashes this time down
(minutes instead of weeks). However, because the coreset procedure can achieve a faster time even
as it accesses a larger portion of data, it will be more likely to guarantee a desired risk, as compared
to the uniform subsampler, at least for interesting (small) risk levels. And TRAM opimizes this.

8 Conclusions
We explored space/time/data/risk tradeoffs achievable via coreset-based data-summarization. Our
theory predicts and our empirical results demonstrate the existence and utility of such tradeoffs. We
further showed how such tradeoffs can be practically realized via a novel algorithm, TRAM. While
our analysis focused on k-means, our insights are more generally applicable. In particular, we
empirically demonstrated tradeoffs in learning Gaussian Mixture Models. Approaches that optimize
cost functions related to the quantization error, such as small-variance limits of non-parametric
Bayesian models [16], may also immediately benefit from our results. We thus strongly believe that
our results present an important step towards understanding tradeoffs in large-scale unsupervised
learning. Lastly, given promising summarization-style techniques [17, 18, 19], similar results may
also be possible in supervised learning.

6

References

[1] Scott E Decatur, Oded Goldreich, and Dana Ron. Computational sample complexity. SIAM
Journal on Computing, 29(3):854–879, 2000.

[2] Rocco A Servedio. Computational sample complexity and attribute-efficient learning. In Pro-
ceedings of the 31st Annual Symposium on Theory of Computing, pages 701–710. ACM, 1999.

[3] Léon Bottou and Olivier Bousquet. The Tradeoffs of Large-Scale Learning. In Advances in
Neural Information Processing Systems, volume 20, pages 161–168. NIPS Foundation, 2008.

[4] Shai Shalev-Shwartz and Nathan Srebro. SVM optimization: inverse dependence on training
set size. In International Conference on Machine Learning, pages 928–935, 2008.

[5] Aharon Birnbaum and Shai S Shwartz. Learning halfspaces with the zero-one loss: time-
accuracy tradeoffs. In Advances in Neural Information Processing Systems, pages 935–943,
2012.

[6] Venkat Chandrasekaran and Michael I Jordan. Computational and statistical tradeoffs via con-
vex relaxation. Proc. Natl. Acad. Sci. U.S.A., 110(13):E1181–90, March 2013.

[7] Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geometric Approximation
via Coresets. Combinatorial and computational geometry, 52:1–30, 2005.

[8] Stuart Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, 1982.

[9] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman,
and Angela Y Wu. An efficient k-means clustering algorithm: Analysis and implementation.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(7):881–892, 2002.

[10] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
STOC, pages 291–300. ACM, 2004.

[11] Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clustering
based on weak coresets. In Proceedings of the 23rd Annual Symposium on Computational
Geometry, pages 11–18. ACM, 2007.

[12] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA and projective clustering. In SODA, 2013.

[13] Dan Feldman and Michael Langberg. A Unified Framework for Approximating and Clustering
Data. In STOC, pages 569–578. ACM, 2011.

[14] Matthew Faulkner, Michael Olson, Rishi Chandy, Jonathan Krause, K Mani Chandy, and An-
dreas Krause. The next big one: Detecting earthquakes and other rare events from community-
based sensors. In IPSN, pages 13–24, 2011.

[15] Dan Feldman, Andreas Krause, and Matthew Faulkner. Scalable training of mixture models
via coresets. pages 2142–2150, 2011.

[16] Ke Jiang, Brian Kulis, and Michael I Jordan. Small-variance asymptotics for exponential fam-
ily Dirichlet process mixture models. In Advances in Neural Information Processing Systems,
pages 3167–3175, 2012.

[17] Dmitry Pavlov, Darya Chudova, and Padhraic Smyth. Towards scalable support vector ma-
chines using squashing. In KDD, pages 295–299, 2000.

[18] Gökhan H. Bakir, Léon Bottou, and Jason Weston. Breaking SVM Complexity with Cross-
Training. In NIPS, 2004.

[19] Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core vector machines: fast SVM
training on very large data sets. JMLR, 6:363–392, 2005.

7

	Introduction
	The Statistical k-Means Problem
	Data Summarization
	Space-Time-Data-Risk Tradeoff
	Analysis
	Data-driven Tradeoff Navigation
	Experimental Results
	Conclusions

