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Abstract

We introduce conditional independence for real-valued set functions which gen-
eralizes probabilistic conditional independence. We show that a natural semantics
of conditional independence is that of local modularity. Generalized conditional
independence leads to a spectrum between two extremes: modular functions and
functions without any local modularity. We develop a decomposition theory and
relate the results to function optimization, an important problem with numerous
applications in machine learning. Moreover, we derive a connection between con-
ditional independence and the curvature of a set function. Intuitively, the more
conditional independencies hold, the more accurate the solutions of approxima-
tion algorithms. Conditional independence for function optimization and approx-
imation problems could have an impact similar to the impact conditional indepen-
dence has had on probabilistic inference and learning.

1 Introduction

There has been a surge in research on algorithms, both exact and approximate, for submodular func-
tion optimization [4]. Submodular functions occur in numerous applications [10, 12, 13, 14, 8] and
are discrete functions that have properties analogue to convex and concave functions. Existing opti-
mization algorithms take advantage of the submodularity of the function. Examples include greedy
algorithms with good approximation guarantees [15] and graph cut algorithms [9]. Empirical results
have also shown that instances of NP-hard optimization problems are often efficiently solvable using
these algorithms. Nevertheless, a comprehensive theory that relates notions of conditional indepen-
dence to function decompositions and approximation algorithms, a theory that has led to impressive
algorithmic improvements in the context of probabilistic models, is largely missing. We introduce
a generalization of conditional independence and relate it to discrete optimization problems. Max-
imum a-posteriori inference in probabilistic graphical models corresponds to an optimization prob-
lem of a particular real-valued function. This optimization problem is intractable even for restricted
model classes such as Bayesian and Markov networks. Despite seemingly daunting intractability
results, graphical models have been successfully applied in numerous problem domains and are still
subject of intense research activity. To a large extent, problem specific conditional independence re-
lationships among the random variables and the resulting speed-up in inference algorithms are part
of the success of graphical models. Similar to probabilistic inference, numerous other optimization
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problems in the realm of artificial intelligence, data mining, and machine learning, are intractable
in their most general form. For instance, it is known that maximizing a submodular function is an
intractable, that is, an NP-hard computational problem. In many cases, these problems are defined
over graphical structures (max cut, sensor placement, etc.). Hence, we propose to consider a gener-
alized form of conditional independence in the realm of function optimization. We exploit the notion
of independence to develop a decomposition theory that generalizes existing decomposition results
for submodular functions [3]. Moreover, we show that conditional independence directly influences
the curvature of functions and the ability to decompose functions into smaller components.

We hope the presented work is welcomed as a first step towards a deeper understanding of the con-
nections between conditional independence, (graph) decompositions, curvature, and approximation
algorithms for real-valued functions on sets.

2 Background

We introduce some basic concepts related to real-valued set functions of the form f : 2V → R. We
assume, without loss of generality, that f(∅) = 0 and that f is not infinite-valued.

2.1 Submodular and Supermodular Functions

Submodular functions (and their dual, supermodular functions) have attracted a considerable amount
of attention from the machine learning community. We provide the definitions of important notions
used throughout the paper. We often write, for two sets A and B, AB instead of A ∪B.
Definition 2.1. Let V be a finite set and let f : 2V → R be a function from subsets of V into the
reals. The function f is

• submodular if, for all S, T ⊆ V , f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T );

• supermodular if, for all S, T ⊆ V , f(S ∪ T ) + f(S ∩ T ) ≥ f(S) + f(T ); and

• modular if, for all S, T ⊆ V , f(S ∪ T ) + f(S ∩ T ) = f(S) + f(T ).

2.2 Function Optimization

Let V be a finite set and let f : 2V → R be a function from subsets of V into the reals. We are
concerned with optimization problems of the form

max
X⊆V

f(X) and min
X⊆V

f(X).

There are numerous extensions of the optimization problems. Almost all of these involve additional
constraints that are imposed on the optimization problem. For instance, one often wants to maximize
a submodular function subject to cardinality constraints. These additional constraints often render
the problem more difficult. For example, while the minimization of submodular functions is possible
in polynomial time, additional lower bound cardinality constraints render the problem intractable.

A concept that is used to assess approximation algorithms for optimization problems (cf. [2, 7])
is the total curvature κf of a real-valued function f and the curvature κf (S) of a function f with
respect to a set S ⊆ V . Let f(A | B) = f(A ∪B)− f(B). Then,

κf = 1−min
j∈V

f(j | V \ j)
f(j)

;κf (S) = 1−min
j∈S

f(j | V \ j)
f(j)

.

3 Generalized Conditional Independence

We define generalized conditional independence for real-valued set functions as local modularity.
Definition 3.1 (Generalized Conditional Independence). Let V be a finite set and let f : 2V → R.
Let A,B,C ⊆ V be mutually disjoint subsets of V . We write that A and B are conditionally
independent given C, denoted (A⊥⊥B | C), if and only if

f(ABC) + f(C) = f(AC) + f(BC).
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(A⊥⊥B | C) ⇒ (B⊥⊥A | C)
(A⊥⊥BD | C) ⇒ (A⊥⊥D | C)
(A⊥⊥B | CD) & (A⊥⊥D | C) ⇒ (A⊥⊥BD | C)
(A⊥⊥BD | C) ⇒ (A⊥⊥B | CD)

({a}⊥⊥{b} | CD) ⇒ ({a}⊥⊥{b} | C)

Figure 1: The semi-graphoid axioms (left) and the Reduction Axiom (right).

Alternatively, we write that f satisfies the CI statement (A⊥⊥B | C). If ABC = V we say that the
CI statement is saturated. If C = ∅ we say that A an B are independent and write (A ⊥ B). In this
case we have that

f(AB) = f(A) + f(B).

Note that (A⊥⊥B | C) is equivalent to f exhibiting local modularity on the sets AC and BC. Intu-
itively, a generalized CI statement expresses that particular differentials of the function are zero. This
simple and intuitive definition of CI turns out to be surprisingly powerful in assessing the hardness of
optimization problems. For one, it captures the notion of probabilistic conditional independence. To
show this, we leverage a mapping from probability distributions to real-valued set functions using
the multi-information function [19]. This mapping was introduced by Studený to connect proba-
bilistic CI statements to the notion of imsets, an algebraic representation of supermodular functions,
in an attempt to more thoroughly characterize probabilistic conditional independence. We use V to
denote a set of discrete random variables and a to denote an assignment to random variables A ⊆ V.
Theorem 3.2 (Studený [19]). Let Pr be any discrete probability distribution over a set of random
variables V. Then, there exists a supermodular functionmPr : 2V → R with the following property.
For A,B,C disjoint subsets of V and possible assignments a,b, and c to these sets of variables,
we have that Pr(C = c) Pr(A = a,B = b,C = c) = Pr(A = a,C = c) Pr(B = b,C = c) if
and only if mPr(ABC) +mPr(C) = mPr(AC) +mPr(BC).

It is the above connection to probabilistic conditional independence that motivates the generalization
of conditional independence. The success-story of probabilistic graphical models has largely been
driven by a thorough understanding of the algorithmic and logical properties of CI. We want to
explore the extend to which a more general notion of CI as local modularity leads to a deeper
understanding of optimization problems.

4 Axioms of Independence

A deep understanding of the algorithmic and logical properties of conditional independence has led
to the success story of graphical models such as Bayesian and Markov networks and remains an
active research area [18, 19, 17, 16, 5]. Most textbooks on probabilistic graphical models discuss
axioms of independence with an emphasis on the semi-graphoid axioms (see Figure 1) and axioms
systems that characterize factorizations of a probability distribution with respect to particular graph-
ical models (cf. [18, 11]). The semi-graphoid axioms hold for the probabilistic notion of conditional
independence. Axioms are horn rules that express what conditional independencies are implied by
a conjunction of given CI statements. We explore axioms of independence for the general notion of
conditional independence as local modularity and for general set functions.
Definition 4.1 (Soundness). Let F be a class of real-valued set functions. We say that an axiom
A1 ∧ ... ∧ Ak ⇒ C is sound relative to F if, for each f ∈ F we have that if f satisfies A1, ...,Ak
then f also satisfies C. We say that an axiom system is sound if each of its axioms is sound.

We can now state the following crucial result. The theorem was proved for supermodular functions
using imsets, an algebraic representation of supermodular functions [19].
Theorem 4.2. The semi-graphoid axioms are sound for submodular (supermodular) functions.

The Reduction Axiom depicted in Figure 1 is central to the development of a graph decomposition
theory. We state the soundness of said axiom for modular and cut capacity functions.
Lemma 4.3. The Reduction Axiom is sound for modular functions and cut capacity functions.

The Reduction Axiom is also sound for other (submodular) set functions. Moreover, one can show
that the Reduction Axiom is sound for log-probability functions with respect to probabilistic CI.

3



Lemma 4.4 (cf. Besag [1]). Let V be a set of discrete random variables with positive probability
distribution P and let H be its log-probability function. If P satisfies the probabilistic CI statement
({a}⊥{b} | C) then, for all C′ ⊆ C, H(C′ ∪ {a, b}) + H(C′) = H(C′ ∪ {a}) + H(C′ ∪ {b})
and, therefore, ({a}⊥⊥{b} | C′).

5 Decompositions

Based on the notion of generalized conditional independence we develop a decomposition theory
that generalizes and complements decomposition results in the literature [3]. The strongest form
of a decomposition is possible when the set function is modular. For every set function f , we can
relate its modularity, its curvature, and the CI statements it satisfied. We begin by formulating a
decomposition theorem for submodular and supermodular functions.
Theorem 5.1. Let V be a finite set and let f : 2V → R be a submodular (supermodular) function
from subsets of V into the reals. Then, f satisfies (S⊥⊥T | U) if and only if f(XU) = f((X ∩
S)U)+ f((X ∩T )U)− f(U) for all X ⊆ ST . Specifically, we have that f satisfies (S ⊥ T ) if and
only if f(X) = f(X ∩ S) + f(X ∩ T ) for all X ⊆ ST .

Theorem 5.1 is a generalization of existing decomposition results where Theorem 5.1 is stated for
ST = V [3], that is, for saturated CI statements. It has several noteworthy implications. For one, it
paves the way to decompositions of the problem into independent parts. For instance, if for a given
set V we know that there is a partition C of V such that (C ⊥ V \ {C}) for all C ∈ C, then the
overall optimization problem can be solved by solving the optimization problems maxX⊆C f(X)
for each C ∈ C independently. The solution of the global optimization problem is now simply the
sum of the solution of the subproblems. In many realistic scenarios, a decomposition into discon-
nected components is not possible. Since numerous instances of submodular function optimization
problems originate from graph problems, we turn our attention to graph-based decompositions.

5.1 Graph Decompositions

We now define the pairwise Markov property and graph factorization for real-valued set functions.
Definition 5.2 (Pairwise Markov property). Let f : 2V → R be a function from subsets of V
into the reals and let G be an undirected graph with node set V and edge set E . We say that f
satisfies the pairwise Markov property with respect to G if f satisfies each of the CI statements in
{(v1⊥⊥v2 | V \ {v1, v2}) : {v1, v2} /∈ E}.
Definition 5.3 (Graph factorization). Let f : 2V → R and let G be an undirected graph with node
set V and clique set C. We say that f factorizes according to G if it can be written as

f(X) =
∑
C∈C

fC(X), (1)

where fC(X) depends on X only through C ∩X .

Note that if a function factorizes over the cliques ofG then it also factorizes over the maximal cliques
of G. We are now in the position to prove the Hammersley-Clifford theorem [6, 1] for real-valued
set functions for which the Reduction axiom is sound.
Theorem 5.4. Let f : 2V → R be a function from subsets of V into the reals and let the Reduction
Axiom be sound relative to f . Then f satisfies the pairwise Markov property with respect to an
undirected graph G if and only if it factorizes according to G.

In conjunction with Lemma 4.4, the theorem allows us to prove a generalization of the Hammersley-
Clifford theorem for positive probability distributions.

6 Function Optimization

Can we exploit generalized CI for optimization problems on real-valued set functions? We show that
both exact and approximate algorithms can indeed benefit in various ways. If V can be partitioned
into independent components, we can solve optimization problems for submodular set functions on
V by solving a sequence of smaller problems.
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Corollary 6.1. Let V be a finite set and let f : 2V → R be a submodular (supermodular) function
from subsets of V into the reals. Moreover, let C = C1, ..., Ck be a partition of V such that, for each
1 ≤ i ≤ k, f satisfies (Ci ⊥ V \ Ci). Then,

max
X⊆V

f(X) =
k∑
`=1

max
X⊆C`

f(X).

Note that the above corollary applies to submodular functions and does not hold for arbitrary classes
of set functions. In the best case, the decomposition of the corollary leads to exponential speed-ups.
If f is modular, then f satisfies ({j} ⊥ V \ j) for all j ∈ V and, hence, C = {{j} | j ∈ V }.
In many applications, the optimization problem features additional constraints such as cardinality or
Knapsack constraints which introduce global dependencies between the components. However, non-
serial dynamic programming can be applied to combine the local optima into a global one. This is
reminiscent of variable elimination in the probabilistic graphical models literature. For instance, for
cardinality and Knapsack constraints, the global solution can be computed from the local solutions
in polynomial time using dynamic programming. To see this, consider an algorithm which, given a
finite set V with |V | = n, computes in iteration i, 1 ≤ i ≤ n, a set Si of size i that it deems maximal
among all sets of size i and which satisfies the given constraints. Now, for a given decomposition C,
we apply the algorithm to each C ∈ C and obtain the sets SCi with value f(SCi ), for 1 ≤ i ≤ |C|.
We can now apply non-serial dynamic programming to combine the partial solutions, associated
with each of the components C ∈ C, into a global solution that satisfies the constraints.

6.1 Independence and Curvature

We show that approximation algorithms compute more accurate solutions to optimization problems
when the problems are decomposable. Approximation bounds are often expressed using the notion
of curvature [2, 7]. Here, we define the notion of a curvature relative to a set C ⊆ V .
Definition 6.2. Let V be a finite set and let f : 2V → R be a submodular function from subsets of
V into the reals. We define the curvature of f relative to a subset C of V as

κCf = 1−min
j∈C

f(j | C \ j)
f(j)

; κCf (S) = 1−min
j∈S

f(j | C \ j)
f(j)

.

Note that κCf ≤ κf = κVf and, for all S ⊆ V , κCf (S) ≤ κf (S) = κ
V (S)
f by the submodularity of f .

We can now show that the curvature of f for V is related to a given decomposition C.
Theorem 6.3. Let V be a finite set and let f : 2V → R be a function from subsets of V into the
reals and let f factorize according to C or to the graph G which has cliques C(G). Then,

κf = 1−min
j∈V

∑
C∈C:j∈C

f(j | C \ j)
f(j)

; and κf (S) = 1−min
j∈S

∑
C∈C:j∈C

f(j | C \ j)
f(j)

.

If C is a partition of V, then we can write
κf = max

C∈C
κCf and κf (S) = max

C∈C
κCf (S).

The theorem establishes a relationship between generalized CI and the curvature of a set function.
For instance, if C is a partition of V , then the curvature of f is bounded by the largest curvature of
f on any of the individual components in C. Thus, comparing two functions f1 and f2 where f2
satisfies a superset of the conditional independence statements satisfied by f1, the curvature can only
decrease, leading to better approximation guarantees. In other words, there is a strong relationship
between decomposition in the standard sense of a graphical model, and curvature in the sense of
a submodular function. This motivates the use of decomposition cognizant curvature for assessing
the quality of approximations. The greedy algorithm for maximizing monotone submodular func-
tions has a worst-case approximation bound of 1

κf
(1− e−κf ) [2]. Moreover, there is a large body

of work on relating the curvature to the problem of approximating a submodular function, learning
a submodular function, and minimizing a submodular function [7]. The results translate to these
guarantees and provide a link between conditional independence and the goodness of the approxi-
mations. For instance, it might be possible to approximately learn submodular functions subject to
the curvature being bounded by an ε. This would translate to learning a submodular function subject
to constraints on the (graphical) decomposition structure.
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7 Discussion

We introduced a generalized form of conditional independence based on the notion of local modular-
ity. The well-known concept of probabilistic conditional independence is captured by this notion. In
numerous applications, it is possible to extract conditional independence statements. For instance,
in a sensor placement scenarios, we might know from the structure of the building that certain con-
ditional independencies hold – the addition of two sensors to two separate rooms are independent
events. If the problem is defined via a graph representation (such as the maximum cut problem)
we can read the conditional independence statements directly from the graph. Conditional indepen-
dence and the resulting decompositions have led to a better understanding of algorithmic problems
that are generally intractable such as MAP inference in Markov networks. We hope that the notion,
generalized to set functions, can have a similar impact on optimization and learning set functions.
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