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Abstract
Given a similarity graph between items, correlation clustering (CC) aims to group
similar items together and dissimilar ones apart. One of the most popular CC
algorithms is KwikCluster: a simple peeling scheme that offers a 3-approximation
ratio. Unfortunately, KwikCluster is inherently sequential and can require a large
number of peeling rounds. This can be a significant bottleneck when scaling up to
big graphs. Recent proposals to parallelize KwikCluster encounter challenges in
scaling up, while sometimes they introduce a loss to the 3 approximation factor.
We present C4, a parallel CC algorithm that obtains a 3-approximation ratio, has
limited overheads, and gracefully scales up to billion-edge graphs. The main
idea behind C4 is running multiple peeling threads concurrently, while ensuring
consistency among them without many overheads. We enforce consistency through
concurrency control, a popular paradigm in database research. We provide ex-
tensive experiments and demonstrate that C4 can scale up to billion-edge graphs
where it outputs a clustering in a few seconds.

1 Introduction
Clustering items according to some notion of similarity is a major primitive in machine learning.
Correlation clustering is a very basic clustering variant: given a similarity measure between pairs of
items, CC aims to group these items in clusters so that the number of unsatisfied pairs is minimized.

In the simplest setup, we are given a graph G on n vertices, +1 weights on edges between similar
items, and −1 weights on edges for dissimilar items. Correlation clustering aims to generate clusters
of items that minimize the number of erroneously clustered pairs, commonly referred to as the number
of disagreements. In an output clustering, the number of disagreements corresponds to the number of
“+” edges cut by the clusters plus the number of “−” edges inside the clusters. In Figure 1, we give a
simple example of a CC instance for a graph on 6 vertices.

cluster 1 cluster 2

cost = (#“�” edges inside clusters) + (#“+” edges across clusters) = 2

Figure 1: In the above graph, solid edges denote similarity, and dashed denote dissimilarity. Let the
two clusters shown above be the output of a CC algorithm. The metric of interest (i.e., the number of
disagreements) for the given clustering is 2; we denote with red the edges that incur a cost.
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Observe that the number of clusters is not given as a parameter to the problem, i.e., the algorithm can
output an arbitrary number of clusters. This comes in sharp contrast to other clustering approaches
such as k-means, or k-median, where the number of clusters needs to be a priori defined.
Applications. Entity deduplication is one of the traditional motivations for correlation clustering.
Entity deduplication finds application in chat disentanglement, co-reference resolution, and spam
detection [1, 2, 3, 4, 5, 6]. In this problem, we assume that there are some entities (say, results of a
keyword search), and a pairwise classifier that indicates (with a possible error), when two entities are
the same. In the context of a keyword search, two results might refer to the same item, however, if
they come from different sources the results will appear slightly different. By building a similarity
graph between these entities and by applying CC one hopes to cluster all duplicate entities in the
same similarity class; in the context of keyword search, this would imply a more meaningful and
compact list of results.

Correlation clustering is also useful in finding communities in signed networks, or classifying missing
edges in opinion, or trust networks [7, 8]. Given a network of social interactions, the weights on edges
can indicate likes/dislikes, or for opinion networks agreements/disagreements between individuals. In
this setup, CC aims to cluster individuals in groups of agreement, while having people that disagree
in different clusters. In the context of classifying missing edges in opinion networks, CC can be
thought of as a way to “guess” the missing edge signs. Further applications include gene clustering
according to expression pattern similarity [9], and consensus clustering [3].
A simple 3-approximation, and efforts to scale up. Arguably the simplest algorithm for CC is
KwikCluster, a 3-approximation by [10]. KwikCluster works in the following way: pick a vertex v at
random, create a cluster that contains v and its positive neighborhoodN+(v), peel these vertices from
the graph, and repeat. Apart from its theoretical guarantees, KwikCluster has been experimentally
shown to perform reasonably well, when combined with additional local improvement heuristics [3].

The main drawback of KwikCluster is its number of peeling rounds: although its expected running
time is O(n+ OPT) [11], the algorithm can suffer from the fact that it is inherently sequential, and
can require up to O(n) rounds. This can be problematic when scaling up to large graphs, or when
considering implementations in distributed paradigms like MapReduce.

Recently, there have been efforts to develop scalable variants of KwikCluster [5, 6]. In [6] a distributed
peeling algorithm was presented in the context of MapReduce. Using an elegant analysis, the authors
show that their algorithm achieves a (3 + O(ε))-approximation in O (1/ε · log n · log ∆+) rounds,
where ∆+ is the maximum positive edge degree. A potential issue is that obtaining an approximation
provably close to 3 (i.e., close to that of KwikCluster) requires in the worst case thousands of
MapReduce rounds for large graphs: the leading constants in the asymptotic analysis of the algorithm
are not negligible. Unfortunately, the number of rounds has been a known bottleneck for MapReduce
implementations, with reasonable numbers varying between tens to a few hundred rounds.

Additionally in [5], the rough details of a distributed algorithm were presented. This algorithm
achieves the same approximation as KwikCluster in an expectedO(log n) number of rounds. However,
as this algorithm is not yet published, we cannot present a fair and meaningful comparison.
Our contributions. We present C4, a parallel correlation clustering algorithm that obtains the same
3-approximation as KwikCluster. Our algorithm has limited overheads and can gracefully scale up
to billion-edge graphs. The main idea behind C4 is that it allows multiple peeling threads that run
concurrently. We show that if one enforces consistency among these peeling threads, then the output
of C4 is equivalent to the output of the serial KwikCluster. We enforce consistency among the peeling
threads through concurrency control, a notion that has been extensively studied in the context of
databases. Concurrency control has been recently introduced as a means for consistent parallelization
of inherently sequential machine learning algorithms [12].

Using concurrency control, we are able to block peeling threads that can cause inconsistencies in the
output solution. The main computational benefit of the algorithm is that blocks happen infrequently,
when running on up to 16 cores. In theory, the expected number of total thread blocks is proportional
to the graph’s average positive degree times the number of cores. In practice, we observe that more
than 99.9% of peeling threads run without being blocked. Experimentally, this translates to an almost
linear speed-up on up to 16 threads, when comparing to single thread execution.

We provide an extensive experimental evaluation of C4 and demonstrate that it can scale up to graphs
with millions of vertices and more than a billion edges. We show that even in these large graphs C4
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outputs a valid clustering of all vertices in less than five seconds, up to an order of magnitude faster
than KwikCluster. We conclude that C4 is suitable for large-graph cases, where the number of peeling
rounds renders KwikCluster slow, and the graph can still fit in main memory of a few machines.

Related algorithmic state of the art Correlation clustering was formally introduced by Bansal
et al. [13]. In the general case, minimizing disagreements is NP-hard and hard to approximate
within an arbitrarily small constant (APX-hard) [13, 14]. There are two variations of the problem: i)
CC on complete graphs where all edges are present and all weights are ±1, and ii) CC on general
graphs with arbitrary edge weights. Both problems are hard, however the general graph setup seems
fundamentally harder. The best known approximation ratio for the latter is O(log n), and a reduction
to the minimum multicut problem indicates that any improvement to that requires fundamental
breakthroughs in theoretical algorithms [15]. In the case of complete unweighted graphs, a long
series of results establishes a 2.5 approximation via a rounded linear program (LP) [10]. By avoiding
the expensive LP, and by just using the rounding procedure of [10] as a basis for a greedy algorithm
yields KwikCluster: a 3 approximation for CC on complete unweighted graphs.

2 Concurrency Control for Machine Learning
In this section, we briefly present the key ideas behind concurrency control and its application in
parallelizing sequential machine learning algorithms.

In many cases, machine learning algorithms iteratively process data points and transform some global
state (e.g. model parameters) giving the illusion of serial dependencies between iterations. More
precisely, each iteration is a transformation Ti : (vi, S) 7→ S′ that produces a new global state S′
given a data point vi and the current global state S. The algorithm itself is a sequence of local
updates on the global state using one data point per update. In the context of KwikCluster, the state
S corresponds to an assignment of vertices to clusters, and each Tπ(v)(v, S) creates a new cluster
around a vertex v, if that vertex is not yet assigned to an existing cluster in S.

In this paper, we take a transactional view of the KwikCluster algorithm, and explore parallelization
through the lens of parallel database transaction processing systems. Specifically, we cast each
transformation Ti as a database transaction, and apply ideas from database systems research to
parallelizing execution of the algorithm. Parallel execution of transactions has been a focus of the
database research community for decades, with the dual objectives of ensuring serializability – the
outcome of the parallel execution must be equivalent to that of the serial algorithm – and maximizing
concurrency. Concurrency control mechanisms have been developed as a result to allow transactions
to execute concurrently as long as they do not conflict with one another.

The transactional approach to concurrent machine learning prescribes designing parallel algorithms
to guarantee serializability through the application of concurrency control mechanisms. As a conse-
quence, theoretical properties about the serial algorithm extend to the parallel algorithms without
modification. The analysis of the parallel algorithms focuses on demonstrating concurrency, for
example, by bounding the overheads in terms of the number of blocked or re-executed transactions.

3 C4: Parallel Correlation Clustering with Concurrency Control
The serial KwikCluster algorithm (Alg. 1) is a sequence of iterative operations that i) checks if
a vertex v has been assigned to a cluster, and ii) if v is unassigned, then set it as a cluster center
and assign its (unassigned) neighbors to its cluster. To do this, the algorithm maintains γser(v), an
indicator of whether v is a CENTER, SPOKE or UNASSIGNED, and κser(v), the id of v’s cluster.
The order in which KwikCluster visits vertices is dictated by a random permutation π of {1, . . . , n}.
In the following we denote by V the set of vertices, and by E+, the set of positive edges.

We apply both blocking and optimistic concurrency control mechanisms in C4 (Alg. 2), our parallel
version of KwikCluster. Each C4 transaction Tπ(v) in essence performs the same two operations as
an iteration in serial KwikCluster, and maintains analogous data γC4(v) and κC4(v). To verify that a
vertex v should become a new cluster center, transaction Tπ(v) checks that none of v’s neighbors that
have an earlier order is a cluster center. That is, it verifies that for all u such that π(u) < π(v) we
have that ((u, v) 6∈ E+ ∨ γC4(v) = SPOKE). The verification process (Alg 3) employs the use of
waits to ensure Tπ(v) reads the correct value of γC4(u) for all neighbors u such that π(u) < π(v).

If v is created as a CENTER, Tπ(v) then optimistically assigns all unassigned neighbors u of v to v’s
cluster. This may, however, create a conflict if u has a neighbor w that is also a CENTER, but has
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Algorithm 1: KwikCluster: serial peeling
1 Init ∀v ∈ V, κser(v) =∞
2 Init ∀v ∈ V, γser(v) = UNASSIGNED
3 for i = 1 to n do
4 Let v be vertex such that π(v) = i.
5 if γser(v) == UNASSIGNED then
6 γser(v) = CENTER
7 κser(v) = π(v)

8 for u : (u, v) ∈ E+ do
9 if γser(u) == UNASSIGNED then

10 γser(u) = SPOKE
11 κser(u) = π(v)

Algorithm 2: C4: Parallel peeling
1 Init ∀v ∈ V, κC4(v) =∞
2 Init ∀v ∈ V, γC4(v) = UNASSIGNED
3 for p ∈ {1, . . . , P} do in parallel
4 for i = p, p+ P, . . . , p+ bn/PcP do

// Transaction Tv

5 Let v be vertex such that π(v) = i.
6 if γC4(v) == UNASSIGNED then

// Check concurrent neighbors
7 isCenter = verifyIsCenter(v)

// Create cluster
8 if isCenter then createCluster(v)

Algorithm 3: verifyIsCenter(v)
1 for u : (u, v) ∈ E+ do
2 if π(u) < π(v) then
3 wait until γC4(u) 6= UNASSIGNED
4 if γC4(u) == CENTER then
5 return false

6 return true

Algorithm 4: createCluster(v)
1 γC4(v) = CENTER
2 κC4(v) = π(v)

3 for u : (u, v) ∈ E+ do
// Atomic check & set

4 if κC4(u) > π(v) then
5 γC4(u) = SPOKE; κC4(u) = π(v)

π(w) < π(v), since u should have rightly been assigned to w’s cluster instead. KwikCluster resolves
this conflict by allowing Tπ(w) to reassign u to w’s cluster. We show that the use of concurrency
control in KwikCluster guarantees serializability, and establish the following result. The proofs are
omitted due to lack of space.
Theorem 3.1. C4 achieves a 3-approximation ratio (in expectation) with respect to the optimal
clustering assignment for the metric of disagreements.

Concurrency of C4 and wait times. C4 examines the edges of each cluster center twice – first
to determine that it should in fact be made a center, and again to put its neighbors into the cluster.
Although this amounts to twice the edges scanned by serial KwikCluster, the work can be parallelized
and does not constitute a serial overhead.

In addition, some of C4’s transactions need to block to wait for concurrent transactions to complete,
essentially forcing the conflicting transactions to be serially executed. We argue that such events are
uncommon and thus not a serious obstacle to attaining high concurrency.

Let Tv.begin and Tv.end be the start and end times of Tv, the C4 transaction on v. Let τ =
maxv∈V (π(v)−min{π(u) : π(u) < π(v) ∧ Tu.end > Tv.begin}). Intuitively, τ is the maximum
discrepancy between the progress of the multiple processors in executing transactions. In general, we
expect τ to be in the order of number of processors.
Theorem 3.2. The expected number of blocked transactions is upper bounded by 2τ |E+|/|V |.
We expect that real graphs will have low average degree 2|E+|/|V |, and thus the expected fraction
of blocked transactions 2τ |E+|/|V |2 should be insignificant, and most transactions need not wait.

4 Experiments and Preliminary Results
We implemented our algorithms in Scala / Java and ran our experiments on Amazon EC2 r3.8xlarge
instances (2 Intel Xeon E5-2670 v2 CPUs, 2.50GHz, 8 cores per CPU, 2 threads per core, 244 GiB
memory). We tested on 3 graphs (Table 1), with 10 runs each of 10 random permutation, for a total
of 100 runs per graph.

Graph # vertices # edges Description

Erdos-Renyi 100,000,000 ≈ 1× 109 Each edge is included with probability 2× 10−7.
IT-2004 41,291,594 1,135,718,909 2004 crawl of the .it domain [16, 17, 18].

WebBase-2001 118,142,155 1,019,903,190 2001 crawl by WebBase crawler [16, 17, 18].

Table 1: Synthetic and real graphs used in the evaluation of C4.

Algorithms for comparison. We implemented serial KwikCluster on non-fenced memory. We
also compare against an oracle ‘pull assignment’ approach, where the cluster centers are assumed to
be known, and each spoke then assigns itself to the lowest ordered adjacent cluster center: κpull(v) =
min{κpull(u) : (u, v) ∈ E+ ∧ γpull(u) = CENTER}. This operation trivially parallelizes over
vertices, but requires a scan of all edges incident to the spokes. Conversely, our approach depends on
centers to push assignments to spokes, but resolves conflicts at the spokes.
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Figure 2: Runtimes of correlation clustering algorithms.
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Figure 3: Speedups of correlation clustering algorithms.
We also considered an alternative approach using MapReduce based on ideas in [5]. In each round
t, each vertex v checks if ∃u : (u, v) ∈ E+ ∧ π(u) < π(v) ∧ γMR(u) = CENTER, and if so, sets
γMR(v) = SPOKE. However, if γMR(u) = SPOKE for all u such that (u, v) ∈ E+ ∧ π(u) < π(v),
then we set γMR(v) = CENTER. Updates are sent to the fenced memory (simulating a key-value
store) to efficiently inform neighbors of changes in cluster assignments. Finally, after cluster centers
are found, κMR is assigned by an oracle pull. We emphasize that we tested our own multicore
implementation, and not the distributed implementation of [5].

Results. On all 3 graphs, C4 was always faster than serial KwikCluster with 4 threads (Fig 2). We
also measured the speedups – the ratio of runtime on 1 thread to the runtime on p threads. For C4, we
were able to achieve up to 10x speedup with 16 threads, and up to 15x speedup with 32 threads (Fig
3). With 32 threads, C4 is 4-6x faster than serial KwikCluster (Fig 4c). The percentage of blocked
C4 transactions (Fig 4a) is always below 0.02%, i.e. 99.98% of transactions proceed without waiting.

We note that C4’s runtime is competitive with the oracle pull assignment, and faster on the Erdos-
Renyi graph. This is because the oracle pull assignment examines more edges than C4 (Fig. 4b).

Our MapReduce implementation is always slower than C4, and also slower than serial KwikCluster
even on 32 threads. Admittedly, our implementation may not be fully optimized. However, we
observe that the MapReduce approach takes hundreds of rounds (Fig 4d) on the real graphs (compared
to about 20 rounds on Erdos-Renyi), which tends to negatively impact scalability (Fig 3). Furthermore,
this approach performs redundant work processing vertices and edges multiple times (Fig 4b) until
the vertices are assigned to a cluster. Hence, we believe that our asynchronous approach in C4 is
more scalable than the MapReduce one.

5 Conclusion and Future Work
We proposed C4, a parallel correlation clustering algorithm that employs concurrency control mech-
anisms. Our approach preserves the 3-approximation of serial KwikCluster, and has low expected
overheads. We also demonstrated empirically that C4 is scalable on real and synthetic graphs with
billion edges, outperforming serial KwikCluster by 4-6x on 32 threads.

While we have presented this work in a multicore setting, we recognize that there are situations where
distributed solutions are preferable, such as when the graph is too large to fit on a single machine, or
if the graph is already loaded in distributed memory. C4 extends easily to the distributed setting and
we are currently working on distributed implementation and analysis.
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Figure 4: (a) Maximum percentage of blocked C4 transactions over 100 runs is less than 0.02%. (b) Fraction of
edges examined by various algorithms. (c) Speedup of C4 and MapReduce over serial KwikCluster. (d) Number
of MapRedue rounds used to identify cluster centers.

We also note that C4 incurs some overheads to ensure serializability, particularly in resolving conflicts
between adjacent vertices concurrently creating new clusters. Removing this overhead leads to faster
runtimes and better scalability, but could introduce additional errors. We are currently studying the
approximation ratio and empirical scalability of this lock-free style approach.
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