
Analyzing PlanarCC: Demonstrating the Equivalence
of PlanarCC and The Multi-Cut LP Relaxation

Julian Yarkony
Experian Data Lab

San Diego CA, 92075
julian.yarkony@experian.com

Abstract

Correlation clustering is an exciting area of research in the fields of graphical
models and image segmentation. In this article we study the linear programming
(LP) relaxation corresponding to PlanarCC and the multi-cut LP relaxation which
are two methods for correlation clustering. We demonstrate that they have equal
value when optimized. This provides justification for the use of PlanarCC which
is very fast on planar graphs in situations where the multi-cult LP relaxation is
currently employed.

1 Introduction

Correlation clustering Bansal et al. (2002) is a mathematically interesting area at the intersection of
the domains of graphical models and image segmentation. In the domain of image segmentation,
correlation clustering is used to indicate the boundaries between the regions of an image.

Correlation clustering for image segmentation relies on a local classifier such as the global proba-
bility of boundary, gPb Martin et al. (2004) to produce a probability that any pair of adjacent pixels
are in separate regions. The prediction is based on local image features. The goal is to partition the
image into an arbitrary number of regions so as to respect these local probabilities.

More generally super-pixels are used instead of pixels. A super-pixel is simply a small compact
group of pixels in the same area of the image that have similar color values. Each super-pixel is
closed meaning that there exists a path on the image between each pair of pixels in a super-pixel such
that this path does not include pixels outside of the super-pixel. Super-pixels are non-overlapping
meaning that they don’t share pixels with each other. Super-pixels are constructed so as to ensure
that it is unlikely that any given super-pixel is on both sides of a boundary in the image. Super-pixels
are used to aggregate information so as to avoid hallucinating boundaries.

Correlation clustering in the domain of image segmentation has been approached using multiple
methods such as the multi-cut (MC) linear programming (LP) relaxation or its integer programming
version Andres et al. (2011), graph cut methods Bagon and Galun (2011), or PlanarCC Yarkony et al.
(2012) and its extension amongst others. Correlation clustering is NP hard even on planar graphs
Bachrach et al. (2011). One interesting property of correlation clustering in the domain of images
is that the MC LP relaxation, and the PlanarCC LP relaxation appear to be generally tight and when
not tight they are nearly tight Yarkony et al. (2012). When they are not tight naive rounding schemes
produce solutions that are either globally optimal or very near global optimal.

PlanarCC is a LP relaxation based method that leverages the fact that gPb only provides probabilities
between adjacent super-pixels thus creating a planar correlation clustering instance. The application
of PlanarCC has been demonstrated to yield large increases in speed over the other LP based methods
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Yarkony et al. (2012). In this paper we study the LP corresponding to PlanarCC in the context of the
MC LP relaxation. We demonstrate that they correspond to the same LP relaxation. In this paper we
first introduce the MC and take its dual, then we then introduce PlanarCC and take its dual. Then we
show that the optimal value of the PlanarCC dual is upper and lower bounded by the optimal value
of the MC dual meaning that they are equal and thus their corresponding primal problems also have
equal optimizing objective value.

2 Correlation Clustering and the Multi-Cut (MC) LP Relaxation

Correlation clustering is formulated as follows. Consider a graph G where nodes refer to super-pixels
and edges indicate adjacency. We denote a partition (also called a clustering or a segmentation in the
literature) using binary indicatorX . HereX is indexed by e whereXe = 1 if and only if a boundary
is created on edge e. Here each edge e is associated with a real valued cost θe. Here θe refers to the
cost to ‘cut’ (meaning create a boundary) at the edge e. Negative values of θe are associated with
inclination to create a boundary at edge e and positive values are associated with an inclination to
not create a boundary at edge e.

The objective of correlation clustering is to find the partition X that minimizes the sum of the cut
edges subject to the constraint that the regions are closed meaning that there are no cut edges in
the middle of a region. Correlation clustering is a natural clustering criteria because the number of
clusters is not a hyper-parameter that must be hand tuned on an image by image basis. Instead it is
a function of the potentials θ. We now illustrate this with two examples. Consider that θ is strictly
positive; then the optimal partition cuts no edges meaning all super pixels are in the same region.
Similarly if θ is strictly negative; then the optimal partition puts each super pixel in a separate region.

We now define closeness formally. We denote the set of cycles including any edge f as S(f). For
each cut edge f and each cycle c containing f , at least one edge on c in addition to f must be cut.
These constraints above are called cycle inequalities. They are written as follows.

∑
e∈c−f

Xe ≥ Xf ∀[f ; c ∈ S(f)] (1)

Given the cycle inequalities we can now write the exact form of correlation clustering.

min
X≥0

∑
e

θeXe (2)∑
e∈c−f

Xe ≥ Xf ∀[f ; c ∈ S(f)] AND Xe ≤ 1 ∀e

The form above is the MC LP relaxation. The integer programming version forces elements of X
to be either 0 or 1. Solving Eq 2 is done by via cutting plane operations. The iteration consists
of solving the LP and adding new constraints from the set of violated cycle inequalities. These
constraints can be found using shortest path operations.

3 Derivation of the Dual of MC LP

We now take the dual of the MC LP (Eq 2). This will facilitate our comparison of the PlanarCC and
MC LP relaxations. We first place the cycle inequalities in the objective using Lagrange multipliers
ψ and δ.

min
X≥0

max
ψ≥0,δ≥0

∑
e

θeXe +
∑
e

δe(Xe − 1) +
∑

f,c∈S(f)

ψcf (Xf −
∑
e∈c−f

Xe) (3)

Now we reverse the order of the max-min in the LP. This does not alter the value of the combined
objective as the primal and dual of any LP have the same value.

2



max
ψ≥0,δ≥0

min
X≥0

∑
e

θeXe +
∑
e

δe(Xe − 1) +
∑

f,c∈S(f)

ψcf (Xf −
∑
e∈c−f

Xe) (4)

We now rearrange the variables so that each primal variable is associated with its respective product.
To ease notation we introduce D(e). Here D(e) refers to the set of pairs [c, f ] in which e is on the
cycle c and e 6= f .

max
ψ≥0,δ≥0

min
X≥0

∑
e

−δe + (θe + δe +
∑
c∈S(e)

ψce +
∑

[c,f ]∈D(e)

−ψcf )Xe (5)

We now convert the dual into another linear program called the Dual MC LP.

max
ψ≥0,δ≥0

∑
e

−δe (6)

θe + δe +
∑
c∈S(e)

ψce −
∑

[c,f ]∈D(e)

ψcf ≥ 0

Finally we alter the sign on δe and move it to the other side.

max
ψ≥0,δ≤0

∑
e

δe (7)

θe +
∑
c∈S(e)

ψce −
∑

[c,f ]∈D(e)

ψcf ≥ δe

Consider that we have solved for dual MC LP. We now apply the following additional operation to δ
and ψ. We now seek to alter the form of the objective without altering its value until we satisfy the
following property which will be useful in our analysis.

min(θe, 0) ≤ δe (8)

Select any such e violating this property. Now select any [c, f ] ∈ D(e) such that ψcf > 0. One
must exist otherwise δe would greater than or equal to min(θe, 0). Let ε ← min(−δe, ψcf ). Now
set δe ← δe + ε and set ψcf ← ψcf − ε. We have now increased the component of the objective
corresponding to δe and decreased the component of the objective corresponding to δf by no more
than ε. In fact the objective must be unaffected as otherwise the LP would not be optimal. We
continue this process until the property in Eq 8 is satisfied. This process can not continue forever
because eventually all of the Lagrange multipliers ψcf would converge to zero forcing termination.
Our final LP is as follows.

max
ψ≥0,δ≤0

∑
e

δe (9)

θe +
∑
c∈S(e)

ψce −
∑

c,f∈D(e)

ψcf ≥ δe AND δe ≥ min(0, θe)∀e

We now interpret this as a dual decomposition over sub-problems. There is one sub-problem for
each individual edge. The sub-problem corresponding to edge e is associated with potential δe.
The MAP energy of the subproblem over edge e is simply δe. There is also one cycle sub-problem
for each cycle c and edge on that cycle e. The potentials for that sub-problem equal ψce for each
edge f 6= e on the cycle and −ψce for edge e. Notice that the MAP energy for each of the cycle
sub-problems is zero.

4 Derivation of PlanarCC

The PlanarCC objective considers the matrix defining the set of all possible 2-colorable partitions
Z. A 2-colorable partition is a partition in which each region can be given one of 2 colors such that
it does not share a color with any of its neighbors. 2-colorable does not mean only two regions. For
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example a checkerboard is a 2-colorable graph with 64 regions. Here each 2-colorable partition is
associated with a single column of Z. Each row of Z corresponds to an edge e. We define Z to be a
binary matrix where Ze,r = 1 if and only if edge e is cut in partition r.

PlanarCC constructs a partition by taking a non-negative weighted sum of the columns of Z. This
partition is defined using the non-negative column vector γ . Here γ has one index for each column
of Z. The partition given by PlanarCC is Zγ. We also enforce that the benefit of cutting a negative
edge e can not be less than θe. This is achieved using terms β and φ. We use β to indicate how much
each edge is cut beyond the value 1. We use φ to denote the penalty for cutting an edge more than
the value of 1. Here φ and β are indexed by e where φe = −min(0, θe). This means that if an edge
e is over-cut ((Zγ)e > 1) the penalty received is linear in the θe if the edge weight is negative and
is zero otherwise.

Given this we write the objective of PlanarCC (primal problem).

min
γ≥0,β≥0

θZγ + φβ (10)

Zγ ≤ 1 + β

Solving Eq 10 is difficult because of the exponential size of Z. To circumvent this we take the dual
problem, and solve via a cutting plane method. This produces a subset of Z such that no additional
constraints are needed. We can then solve the primal LP by a using this subset of Z as discussed
later. We now derive the dual version of PlanarCC. We first convert the constraint into Lagrange
multipliers λ.

min
γ≥0,β≥0

max
λ≥0

θZγ + φβ + λ(Zγ − 1− β) (11)

Now we reverse the order of the max-min in the LP.

max
λ≥0

min
γ≥0,β≥0

θZγ + φβ + λ(Zγ − 1− β) (12)

We now alter the form of the expression so as to group by primal variable.

max
λ≥0

min
γ≥0,β≥0

(θZ + λZ)γ + (φ− λ)β − λ1 (13)

We now convert the primal variables into constraints in the dual.

max
λ≥0
−λ1 (14)

(θ + λ)Z ≥ 0

φ ≥ λ

Now one should first notice that all non-negative entries of θ are associated with 0 valued Lagrange
multipliers. Next one should notice that we are still troubled by the exponential size Z. We employ
a cutting plane approach to solve Eq 14. In this manner we iteratively solve the LP then add the
most violated constraint (which corresponds to a column of Z) to the LP. We treat finding the most
violated constraint as MAP inference on binary planar ising model without a field Yarkony et al.
(2012). This is commonly known as a binary planar Markov random field (MRF) with no unary
(biases) potentials. In fact the solution to the binary planar ising model without a field is exactly the
optimal 2-colorable partition given its potentials. MAP inference here can be done in O(N

3
2 logN)

time via a reduction to perfect matching Fisher (1966).
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Once the LP has been solved the dual LP can be converted to a solution to the primal LP by solving
the primal using only the Z identified during dual optimization. Alternatively one can produce an
integer solution easily by taking the set of tight constraints over Z and then create a partition by
taking the union edges cut in their respective partitions.

While the underlying problem is NP hard; for the data sets considered in recent work the LP is
generally tight and when not is nearly tight. Furthermore the solutions produced are either exact or
on rare occasions nearly exact Yarkony et al. (2012).

5 Relationship to PlanarCC

We now demonstrate that the PlanarCC LP and the MC LP have the same value. First we take the
optimal MC LP dual solution and demonstrate that we can map this to a solution to the PlanarCC
dual with the same value. This shows that dual PlanarCC LP is no less than the dual MC LP solution.
Next take the optimal PlanarCC dual solution demonstrate that we can map it to a solution to the
MC LP dual with the same objective value. This shows that dual PlanarCC LP no more than the
dual MC LP solution. By certifying that the maximum value of dual PlanarCC is upper and lower
bounded by the maximum value of the MC LP dual we show that the two must be equal.

5.1 Dual(PlanarCC) ≥Dual(MC)

Let δ correspond to the optimal solution to the lower bound in the MC LP relaxation. Let λ← −δ.
Notice that if λ satisfies the constraints on the PlanarCC dual LP then the objective value of the dual
PlanarCC LP is lower bounded by that of MC LP dual.

Observe that the inequality 0 ≤ λ ≤ φ is satisfied. We now lower bound the amount the most
violated constraint of the remaining constraints is violated by to zero.

min
X∈C2

(θ + λ)X ≥ min
X∈C2

(
∑
c∈S(e)

−ψce +
∑

c,f∈D(e)

ψcf )Xe (15)

Observe that if for any solution X , and [c, f ] if −ψcf is contributed to the objective then ψcf must
also be contributed to the objective at least once. This is because if edge f is ever cut then at least
one additional edge on the cycle c must also be cut because X ∈ C2. Thus the total sum in the
lower bound in Eq 15 must be non-negative. Since cutting no edges is a valid value for X then the
minX∈C2(θ + λ)X = 0.

Since −δ is a valid solution to the PlanarCC LP and has the objective same value as in MCLP then
PlanarCC is no less than MCLP.

5.2 Dual(PlanarCC) ≤ Dual(MC)

To prove that the value of the dual of PlanarCC is upper bounded by the dual of MC we rely on a
tight dual formulation of MAP inference in a planar binary ising model without a field. Every binary
planar ising model without a field has a dual LP with exactly the same value Barahona and Mahjoub.
(1986) Yarkony et al. (2012). The form of this dual is as follows.

min
X∈C2

(θ + λ)X = max
ω∑

c ω
c
e=λe+θe ∀e

∑
c

min
Xc∈C2

ωcXc (16)

Here each vector ωc is associated with one cycle of the graph. We use Xc to denote the minimizer
over the set of 2-colorable partitions for ωcXc. Since we know that (θ+λ)Z ≥ 0 and since everyXc

is independently solved for all c then minXc∈C2 ω
cXc = 0 then it must be that case that there is no

more than one negative edge on any cycle ωc. Moreover that negative edge must be have magnitude
no greater than any other edge on the cycle. We write these constraints formally as follows.

(ωce < 0)→ (ωcf + ωfe ≥ 0) ∀c, f ∈ c, e ∈ c, e 6= f (17)
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Now consider the solution to the MCLP such that δ ← −λ and ψce = max[0,−ωce]. We consider
that cycles c that include edge e and in which ωce > 0 to be in D(e). We consider any c that includes
e and in which ωce < 0 as in S(e). Notice that ψcf ≤ ωce. for all [c, f ] ∈ D(e).

We now establish that [δ, ψ] is an admissible solution to the LP in Eq 7 which has the equivalent to
the final dual MC LP in Eq 9. We establish this by construction.

Claim: θe +
∑
c∈S(e) ψce −

∑
c,f∈D(e) ψcf ≥ δe

Proof:

We begin by writing θ + λ in terms of ω. We then swap out some terms in ω for equal terms in ψ.

θe + λe = θe − δe =
∑
c

ωce =
∑
c∈S(e)

−ψce +
∑

c,f∈D(e)

ωcf (18)

Recall that ψcf ≤ ωce. for all [c, f ] ∈ D(e). We now produce an inequality.

θe − δe ≥
∑
c∈S(e)

−ψce +
∑

c,f∈D(e)

ψcf (19)

We now rearrange the variables and recover our claim.

θe +
∑
c∈S(e)

ψce −
∑

c,f∈D(e)

ψcf ≥ δe (20)

5.3 Final Statement

Since Dual(PlanarCC) ≤ Dual(MC) and Dual(PlanarCC) ≥ Dual(MC) then Dual(PlanarCC) =
Dual(MC). Since the primal and dual forms of an LP have the same value then Primal(PlanarCC) =
Primal(MC)

6 Conclusion

Correlation clustering is a fascinating new direction at the intersection of graphical models and
computer vision/image segmentation. PlanarCC is a powerful approach around which a family of
algorithms have been formed. We provide an analysis of the PlanarCC LP relaxation and the MC
LP relaxation and demonstrated that they correspond to the same LP.
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