
On Approximate Non-submodular Minimization
via Tree-Structured Supermodularity

Yoshinobu Kawahara
The Inst. of Sci. and Ind. Res. (ISIR),

Osaka University
ykawahara@sanken.osaka-u.ac.jp

Rishabh Iyer Jeffery A. Bilmes
Dept. of Electrical Engineering,

University of Washington,
{rkiyer,bilmes}@u.washington.edu

Abstract
We address the problem of minimizing non-submodular functions where the su-
permodularity is restricted to tree-structured pairwise terms. We are motivated by
several real world applications, which require submodularity along with structured
supermodularity, and this forms a rich class of expressive models, where the non-
submodularity is restricted to a tree. While this problem is NP hard (as we show),
we develop several practical algorithms to find approximate and near-optimal so-
lutions for this problem, some of which provide lower and others of which provide
upper bounds thereby allowing us to compute a tightness gap for any problem. We
compare our algorithms on synthetic data, and also demonstrate the advantage of the
formulation on the real world application of image segmentation, where we incorpo-
rate structured supermodularity into higher-order submodular energy minimization.

1 Introduction
Minimizing submodular functions, which appears in a variety of problems in machine learning and
related fields, has been actively studied for several decades. This problem is polynomially-solvable
and several efficient algorithms have been developed [15, 7]. While submodularity is natural in many
applications, for others it is restricting from a modeling perspective, and thus much recent work has
focused on non-submodular optimization [13, 5, 17, 9, 10]. Algorithms for this are either combina-
torial (like greedy or local search) [13, 5] or rely on relaxations [22, 23]. This occurs very naturally,
for example, in the context of inference in Markov random fields and image segmentation [22, 2, 10].

Unfortunately, the most general formulation of this problem is a difference of submodular functions,
that is if h(A) = f(A) + (−g(A)) = f(A) + ḡ(A) where g and f are submodular (ḡ = −g is super-
modular), then h can represent any discrete set function. Minimizing such functions is very hard and
in fact inapproximable [9]. In some applications, however, we do not require this most general form
where restricted supermodularity suffices. In this paper, we consider non-submodular minimization
where supermodularity comes only from terms with specific structures, i.e., tree-structured pairwise,
and later generalize these to arbitrary pairwise terms. That is, ḡ =

∑
(i,j)∈E φij where E are the edges

of a tree or a graph. This is an important special case of non-submodular minimization, where we
could use its specific structure of the problem to obtain a practical algorithm or to incorporate some
prior information into submodular minimization. Thus, we are additively combining the extremes of
polytime solvable problems: on the one hand, we have f which is submodular, but regardless of the
tree-width, we can minimize it in polynomial time; and on the other hand, we have ḡ that, in the case
of a tree, can be minimized exactly and efficiently using dynamic programming even when it uses
non-submodular potentials.

We are motivated by several real world applications, where we want to model structured supermodu-
larity along with submodularity. For example, in the context of image segmentation, submodularity
represents the smoothness (attractive potentials) in an image while supermodularity represents the
roughness (repulsive potentials). Thus, by incorporating supermodular terms on reliable edges
obtained by some detector in addition to a submodular energy, we might expect to get better segmen-
tation than when using the submodular energy alone. For example, a supermodular forest or tree
could be used to add encouragement for certain pairs of pixels to be labeled unequally, and forest
edges could be created perpendicularly across detected image edges obtained via a separate image
edge detection algorithm. We show results for this application in Section 4.2.

1

We develop four distinct algorithms having different properties, alternating minimization, dual
decomposition, continuous relaxation/rounding, and the submodular-supermodular procedure, each
of which exploits the structure of the supermodular term and the submodularity of the submodular
term. These algorithms together provide both upper and lower bounds to the problem, and thus
are useful to obtain an approximate or ε-optimal solutions. We compare the performance of our
algorithms on synthetic data thereby providing evidence for which should be used in applications,
and also demonstrate the advantage of the formulation in image segmentation.

Notations and Preliminaries: We denote by f̂ the Lovász extension of a set function f , i.e.,
a continuous function f̂ : RV→ R defined by f̂(x) =

∑l−1
j=1(x̂j − x̂j+1)f(Uj) + x̂lf(V), where

Uj = {i ∈ V : xi ≥ x̂j} and x̂1 > · · · > x̂l are them distinct values in the elements of x ∈ RV .Also,
a bi-set function g : 22V→ R is called simple bi-submodular [21] if g(S, T) + g(S ′, T ′) ≥ g(S ∪
S ′, T ∪ T ′) + g(S ∩ S ′, T ∩ T ′) for all (S, T), (S ′, T ′) ∈ 22V . This definition means that if we fix
one of the coordinates of g(S, T), it is a submodular function in the other coordinate. We denote by
eS ∈ {0, 1}V , the characteristic vector of S ⊆ V , i.e., eS =

∑
i∈S ei (ei is the i-th unit vector).

2 Non-submodular Minimization with Tree-Structured Supermodularity
In this section, we first formulate non-submodular minimization with tree-structured supermodularity,
and then further characterize this problem. Given a finite set V := {1, . . . , d} and a tree T = (E ,V)
whose vertices correspond to the elements in V , we consider the following optimization problem:

min
x∈{0,1}V

E(x) = min
x∈{0,1}V

f(S(x)) +
∑

(i,j)∈E

ψij(xi, xj), (1)

where f : 2V→ R is a submodular function, S : {0, 1}V→ 2V is a mapping from a characteristic
vector to the corresponding subset and ψij : {0, 1}2→ R+ is strictly supermodular on a pair in E .
That is, ψij satisfies the following inequality equation:

ψij(0, 0) + ψij(1, 1) > ψij(1, 0) + ψij(0, 1). (2)

The objective in problem (1) is therefore not submodular. Also, there is no loss or gain in generality
by requiring the pairwise functions ψij to be strictly supermodular as any modularity (or pairwise
submodularity) can be absorbed into f . Unfortunately, this problem is already NP hard.
Theorem 1. Problem (1), where E are the edges of a forest, is NP hard.

Proof. The idea is to reduce this problem to the vertex cover problem. Given an instance of the
vertex cover problem, i.e., a graph G = (V,E), define an auxiliary graph Ĝ = (V̂ , Ê) as follows.
V̂ = V ∪ V̄ , where V̄ are a set of |V | appended vertices V̄ = {̄i, i ∈ V }. Furthermore, Ê =
{(i, j), (i, j̄), ī, j), (̄i, j̄)},∀(i, j) ∈ E. Hence the auxiliary graph has 2|V | vertices and 4|E| edges.
Now define the submodular function as f(X) =

∑
(i,j)∈E C(1− xi)xj̄ +

∑
i∈V xi. Note that f is a

pairwise submodular function. Define the supermodular tree function as T (X) =
∑

i∈V C.I(xi =
xī). In both functions, ensure that the constant C ≥ n. Then for any vertex cover, X in G, we have
that f(X)+T (X) = |X|. Furthermore, if X is not a vertex cover, the term

∑
(i,j)∈E C(1−xi)xj̄ +∑

i∈V C.I(xi = xī) > 0, and hence, f(X) ≥ C ≥ n. Correspondingly,the minimum solution to
this problem, is the minimum vertex cover, which is NP hard to find.

The minimization problem (1) is a special case of non-submodular minimization problems, where
the non-submodularity comes only from the tree-structured term. The above theorem shows that even
restricting the supermodularity to a tree does not help in terms of the hardness. We shall, however,
provide several approximate and near optimal algorithms to this problem that are, fortunately, made
possible by the fact that the supermodularity is restricted to a tree.

3 Optimization and Bounds Estimation
The four approaches to problem (1) are described in the following subsection: alternating minimiza-
tion (AM) in subsection 3.1; dual decomposition (DD) in subsection 3.2, continuous relaxation (CR)
in subsection 3.3; and submodular-supermodular procedure (SSP) in subsection 3.4. Our algorithms
require submodular minimization as a subroutine, which can be performed efficiently in general and
even more efficiently for sub-classes of submodular functions (e.g., generalized graph-cuts [11, 16]).
Exact inference on trees is always efficient using dynamic programming.

2

Algorithm 1 Alternating minimization (AM).
Input: α and y0. Output: xt−1 and yt−1.
1: Set t← 1.
2: while not converged do
3: xt ← argminx∈{0,1}V Eα(x,yt−1).
4: yt ← argminy∈{0,1}V Eα(xt,y).
5: t← t+ 1.
6: end while

Algorithm 2 AM with greedy scheduling (AM-Greedy).
Input: y0. Output: xt−1.
1: Set α0 ← 0 and t← 1.
2: repeat
3: αt←argmaxα[Eα(xt−1,yt−1)−Eα(x∗

α,yt−1
,y∗

α,yt−1
)]

((x∗
α,yt−1

,y∗
α,yt−1

) is the output of AM(α,yt−1)).
4: (xt,yt)← AM(αt,yt−1).
5: t← t+ 1.
6: until xt−1 = yt−1 holds

3.1 Alternating Minimization with Scheduling (AM)

Since exact minimization of each term individually in Eq. (1) can be efficiently solved, one can apply
a simple alternating minimization (AM) procedure (Algorithm 1). Define the following:

Eα(x,y) = f(S(x)) +
∑

(i,j)∈Eψij(yi, yj) + α · dh(x,y), (3)

where α ≥ 0 and dh : {0, 1}V×V→ R is the Hamming distance. Starting with an arbitrary initial
y0 ∈ {0, 1}V , AM alternately minimizes Eα(x,y) with respect to x while y is held fixed and then
vice-verse. That is, we iterate

xt = argminx∈{0,1}VEα(x,yt−1) and yt = argminy∈{0,1}VEα(xt,y).

This procedure always decreases the value of Eα until convergence. Although, at convergence, x and
y are not necessarily equal, the value of Eα with these solutions offers an upper bound of the original
problem (1) due to the following proposition:
Proposition 2. Given any x,y, z ∈ {0, 1}V such that x 6= y, then there exists a finite ᾱ such that

Eᾱ(x,y) ≥ Eᾱ(z, z) = E(z).

Since dh(x,y) > 0 (due to x 6= y), the proof of this proposition is obvious from Eq. (3). The direct
application of AM to Problem (3), however, does not necessarily produce a useful solution to the
original problem (1). This is because, if we set a relatively large α to make x = y at termination, the
distance term in Eq. (3) is dominant and the procedure quickly gets stuck near y0. A solution is to
utilize appropriate scheduling of α to ensure a sequence of solutions gradually move towards each
other. How to do this optimally is an interesting issue, but in this work we introduce a simple (but
reasonable) strategy to increase the value of α gradually until both solutions are equivalent. Denote a
multiplier by C > 1, and then update α as α← C × α (AM-Simple). This scheduling never makes
the objective worse due to the following:
Proposition 3. Let α1 < α2 and y0 ∈ {0, 1}V . Then, if (x∗

1,y
∗
1) ← AM(α1,y0) and (x∗

2,y
∗
2) ←

AM(α2,y
∗
1) and (x̄∗, ȳ∗)← AM(α2,y0), then there exists some minimal value, say α̃, for α1 such

that for all α1 ≥ α̃, we have that the objective at α2 satisfies Eα2(x
∗
2,y

∗
2) ≤ Eα2(x̄

∗, ȳ∗).

We further enhance the scheduling of α using a greedy-like procedure, as described in Algorithm 2
(AM-Greedy). Here, at each outer iteration, we choose an α (Line 3 of Algorithm 2), chosen via
binary search, such that Eα decreases the most from the previous candidate solution. This scheduling,
in fact, works very well in practice as will be seen below in the experimental section.

3.2 Optimization via Dual Decomposition (DD)

In the AM approach, we ensure feasible solutions by adjusting α in a manner that works well in
practice, but it is indeed heuristic. A more systematic approach (and often applied to ML problems)
is dual decomposition [18], or Lagrangian relaxation, which is quite naturally applied to problem (1).
We reformulate the original problem (1) in the following (equivalent) form:
minx,y∈{0,1}V E(x, y) = minx,y∈{0,1}Vf(S(x)) +

∑
(i,j)∈Eψij(yi, yj) s.t. xi = yi (i ∈ V). (4)

It is obvious that the solutions of the problems (1) and (4) are equivalent. Note that the minimization
with respect to each subproblem in Eq. (4) is solvable efficiently via submodular minimization (the
first term) or dynamic programming (the second), respectively. This motivates us to solve the dual

maxδL(δ) = maxδminx,y∈{0,1}VE(x,y) + δ>(x− y), (5)

where δ ∈ RV is the Lagrangian coefficients, in place of the primal one (4). This always provides a
lower bound of the primal although we do not necessarily have strong duality. However, for some
function E(x), strong duality might hold, as stated in the following:
Proposition 4. If there exist δ∗ and x∗ such that

x∗ ∈ argminxf(S(x)) + (δ∗)>x and x∗ ∈ argminx
∑

(i,j)∈Eψij(xi, xj)− (δ∗)>x,

then x∗ is an optimal solution to problem (1) and hence L(δ∗) = E(x∗).

3

Similar statements appear in multiple papers on the MAP inference on MRFs [8, 18]. The conditions
of the proposition correspond to the subproblems agreeing on a minimizing x of E(x). Since
agreement implies optimality of the dual, it can only occur after the algorithm finds the tightest
lower bound. Although agreement is not guaranteed, if we do reach such a state, then Proposition 4
ensures an exact solution to problem (1). Each subproblem is still solvable efficiently. Since L(δ) is
concave on δ (and non-differentiable), the outer optimization (with respect to δ) can be performed by
a subgradient methods and so on.

3.3 Continuous Relaxation and Rounding (CR)

For MAP inference on MRFs, it is well known that dual decomposition is equivalent to solving
the dual of a linear programming (LP) relaxation of the original problem [22]. Therefore, many
algorithms based on the LP relaxation have been actively discussed in this context. In this subsection,
we consider a convex relaxation approach to problem (1). Consider the following relaxation of
problem (1) to the domain [0, 1]V :

min
x∈[0,1]V ,µ∈[0,1]4|E|

f̂(x) +
∑

(i,j)∈E

∑
x̄ij∈{0,1}2

ψij(x̄i, x̄j)µij,x̄ij ,

s.t.
∑

x̄ij∈{0,1}2
µij,x̄ij = 1,

∑
i∈V

µij,x̄ij = xj ,
∑
j∈V

µij,x̄ij = xi,
(6)

whereµ = {µij,x̄ij
} are the alternative variables for this representation, and f̂ is the Lovász extension

of f and hence is convex. Therefore, this is basically an extended formulation of LP relaxation
methods for MAP inference on MRFs, but using the Lovász extension. Although several optimization
methods, including dual decomposition, can be applied to this problem, we develop an algorithm
based on Alternating Direction Method of Multipliers (ADMM) [6, 3] in the current subsection. This
is because ADMM possesses superior convergence properties. Note that it can be intractable to solve
Eq. (6) directly by a constrained convex solver due to the representation of the Lovász extension.
Also note that the application of ADMM to a discrete problem is not straightforward and thus it is
beyond the scope of this paper to apply it directly to problem (4).

For simplicity, we denote by 〈ψ,µ〉 the second term in the objective and byAµ = 1|E| andBµ = Cx
the sets of the equality constraints. The augmented Lagrangian for ADMM is then given by

Lρ(x,µ, δ) = f̂(x) + 〈ψ,µ〉+
[
δ1
δ2

]>[
Aµ− 1|E|
Bµ− Cx

]
+ (ρ/2)(‖Aµ− 1|E|‖22 + ‖Bµ− Cx‖22),

where δ1 ∈ R|E| and δ2 ∈ R2|E| are the Lagrangian coefficient vectors and ρ > 0 is the penalty
parameter. Then, ADMM consists of the iterates:

xk+1 ⇐ argminx∈[0,1]V Lρ(x,µ
k, δk) (7a) µk+1 ⇐ argminµ∈[0,1]2V Lρ(x

k+1,µ, δk) (7b)

δk+1
1 ⇐ δk1 + ρ(Aµk+1 − 1|E|), δ

k+1
2 ⇐ δk+1

2 + ρ(Bµk+1 − Cxk+1) (7c)

While the minimization for µ in step (7b) is a quadratic problem, the one for x in step (7a) is a
non-smooth convex problem. Thus, for example, we can apply proximal gradient methods to solve
this step. Since the objective consists of the Lovász extension of a submodular function and a
least-squares term, we can calculate the proximal operator as a minimum-norm-point (MNP) problem,
as in a (not entirely straightforward) fashion similar to [1, 16]. A solution for problem (6) is not
necessarily integral, and hence we must apply a rounding algorithm. Although there are several
possible deterministic and randomized rounding algorithms that could be applied directly to our case
(from [19]), we use the node-based rounding in the experiments below.

3.4 Submodular-Supermodular Procedure Using Pairwise Structures (SSP)

The Submodular-Supermodular procedure [17, 9] is a set of heuristics for minimizing a general set
functions. [9] propose a number of different variants of the submodular-supermodular procedures that
have worked well for a variety of problems. The most general algorithms do not specifically exploit
the structure of the problem, and work for arbitrary sums of submodular and supermodular terms.

In SSP, we iteratively minimize the sum of a submodular function and a supermodular function by
replacing the supermodular part by its (typically, modular) upper bound at every iteration. Here, we
describe an efficient special form of the submodular-supermodular procedure for minimizing E(x) in
Eq. (1) with a modular upper bound that can be calculated easily based on the structure of a pairwise
supermodular function. For each pair (i, j) ∈ E(x), let us define b1

ij ,b
2
ij ∈ R2, respectively, as

b1
ij =

[
ψij(1, 0)

ψij(1, 1) + ψij(0, 0)− ψij(1, 0)

]
and b2

ij =
[
ψij(1, 1) + ψij(0, 0)− ψij(0, 1)

ψij(0, 1)

]
4

100 101 102

30

35

40

45

50

55

60

65

SSP
AM−SImple
AM−Greedy
DD (Lower Bound)
DD (Upper Bound)
CR (Lower Bound)

Time [s] (log-scale)
10 20 30 400

2

4

6

SSP
AM−Simple
AM−Greedy
DD
CR

LB by DD

U
B

 -
 L

B

800 850 900
0

20

40

60

80

100

LB by DD

U
B

 -
 L

B

SSP
AM−Simple
AM−Greedy
DD
CR

Figure 1: Typical examples (for a concave-of-modular function of |V| = 324) of solution sequences by the
algorithms for the cases with a tree-structured supermodular term, and lower bounds (by DD) vs. ε-optimality,
i.e. (upper bounds by the algorithms)− (LB (by DD)), for several instances (left: concave-of-modular funct.,
right: objective in [14] with tree-structured term).

Note that all elements in b1
ij and b2

ij are always positive from the supermodularity and the positivity
of ψij . Then, ψij(xi, xj) can be represented as

ψij(xi, xj) = ψij(0, 0) · (1− x>
ij12) + min{x>

ijb
1
ij ,x

>
ijb

2
ij}, (8)

where xij = [xi, xj]
>. This function is bi-submodular. Then, for a given x̄ij , define a vector b̃ij as

b̃ij = b1
ij (if x̄ij = (1, 0)>), b2

ij (if x̄ij = (0, 1)>) and (b1
ij + b2

ij)/2 (otherwise). (9)

Then, hx̄ij
(xij) := ψij(0, 0)(1−x>

ij12)+x
>
ijb̃ij is a modular upper bound that is tight with respect

to a given point x̄ij , which can be calculated easily. By summing up this for all pairs in E , we have
a modular upper bound of the original supermodular term. Thus, we can apply SSP with hx̄ij

, and
iteratively solve xt+1 ← argminx∈{0,1}V f(S(x)) +

∑
(i,j)∈E hx̄ij

(xij), until convergence.

4 Experimental Evaluation
In Subsection 4.1, we investigate and compare the performance of the four proposed approaches on
synthetic data. Then, we apply them to image segmentation in Subsection 4.2. The experiments below
were run on a 2.6 GHz 64-bit WS using Matlab. For the calculation of a maximum flow problem (for
the second), we used a C++ implementation modified from the shared code by Kohli et al. [12].1

4.1 Evaluation on Synthetic Data

Our first experiment was performed with synthetic data generated as follows. First for a submodular
function, we used a concave-over-modular function

√
w1(S) + αw2(V \ S) with randomly chosen

vectors w1, w2 in [0, 1]n, and the objective in [14], f(S) =
∑

i∈V
∑

j∈S sij − λ
∑

i,j∈S sij , where
λ is a redundancy parameter and {sij} is a random similarity matrix. And for the supermodular
part, we randomly generated a tree or an undirected graph over nodes V , where we used GENRMF
available from DIMACS Challenge2 to generate a graph and also find a minimum spanning tree on
the graph for the tree case. We created a supermodular potential by first randomly assigning values
ψij(0, 0) and ψij(1, 1) in [0, 1], and then randomly giving values on ψij(0, 1) and ψij(1, 0) such that
these satisfy the inequality in Eq. (2). Figure 1 shows typical examples of algorithmic convergence
for a concave-over-modular function with a supermodular tree-structured, where |V| = 324. Also,
Figure 1 shows the plots of lower bounds (by CR) vs. upper bounds by the algorithms for different
sizes of instances for the cases with two submodular functions and a tree-structured supermodular
term. In general, CR ran significantly slower and didn’t complete in some cases. SSP obtained a
reasonable solution very quickly, but then got stuck at local optima — a reasonable hybrid approach
would be to warm-start DD with SSP (not shown).

4.2 Application to Image Segmentation

edge
pixel

triplet for
supermodular term

Figure 2: Construction of triplets
for the supermodular term.

We formulated segmentation in an image as problem (1), where we
used the tree-structured term to incorporate information about edges
into submodular energy minimization. As a submodular potential,
we used the robust Pn Potts model [12] (with binary labels), where
the unary, pairwise and higher-order terms are respectively given by

φi(xi) = θTφT (xi) + θcolφcol(xi) + θlφl(xi) (i ∈ V),
φij(xi, xj) = 0 (if xi = xj), θp + θv exp(θβ‖Ii − Ij‖2) (otherwise),

φc(xc) = 0 (if xi = lc, ∀i ∈ c), |c|θα(θhp + θhv exp(−(θhβ/|c|)‖
∑

i∈c(f(i)− µ)
2‖) (otherwise),

1
http://research.microsoft.com/en-us/um/people/pkohli/code.html

2The 1st DIMACS Int’l Algo. Implmentation Challenge, 1990. See http://dimacs.rutgers.edu/Challenges/.

5

http://research.microsoft.com/en-us/um/people/pkohli/code.html

Figure 3: Original image (left), supermodular forest (second column), segmentation result with the robust Pn

model (third column) and segmentation result with our formulation (forth column).

where φT , φcol and φl are potentials from TextonBoost [20],3 color and location, Ii and Ij are the
color vectors of pixel i and j, f(·) is a function evaluated on all constituent pixels of the superpixel c
and µ =

∑
i∈c f(i)/|c|, respectively. Here, we used binary-segmented images in MSRC data [20]

(1/2 images were used for training) and applied similar parameters to the ones used in [12]:

θT = 0.7, θcol = 0.2, θl = 0.27, θp = 1.0, θv = 1.5, θβ = 8.0, θα = 0.8, θhp = 0.2, θhv = 0.5, θhβ = 12.0.

Segments C for the higher-order potential were generated from mean-shift [4]. Moreover, with edges
obtained by a popular edge detector (the Prewitt method), the tree-structured supermodular term was
constructed as follows: first, we generated a set of triplets of pixels that stride across detected image
edge boundaries, as shown in Figure 2 and Figure 3 (2nd col.). Then, we found a minimum-spanning
tree (forest) on pixels included in all triplets and set a supermodular potential on each pair in the tree.
Figure 3 (3rd col.) shows an example of a typical result by the robust Pn Potts model (which either
entirely misses the background between the bench slats (shown), or removes significant portions of
the bench from the foreground (not shown)), and our formulation which reduces this problem (4th
col.). For the optimization in our formulation, we used AM-Greedy (Algorithm 2) with the maximum
flow algorithm. As can be seen, the addition of the supermodular forest significantly improves the
quality of the segmentation in background regions where the submodular-only potential fails.

References
[1] F. Bach. Structured sparsity-inducing norms through submodular functions. In Adv. in NIPS, volume 23, pages 118–126. 2010.
[2] L. Bordeaux, Y. Hamadi, and P. Kohli. Tractability: Practical Approaches to Hard Problems. Cambridge University Press, 2014.
[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction

method of multipliers. Found. & Trends in Mach. Learn., 3(1):1–122, 2011.
[4] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE PAMI, 24(5):603–619, 2002.
[5] D.-Z. Du, R.L. Graham, P.M. Pardalos, P.-J. Wan, W. Wu, and W. Zhal. Analysis of greedy approximations with nonsubmodular potential

functions. In Proc. of the 19th Ann. ACM-SIAM Symp. on Discrete Algorithm (SODA’08), pages 167–175, 2008.
[6] J. Eckstein and D.P. Bertsekas. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone

operators. Mathematical Programming, 55(1-3):293–318, 1992.
[7] S. Fujishige. Submodular Functions and Optimization. Elsevier, 2nd edition, 2005.
[8] A.M. Geoffrion. Lagrangian relaxation for integer programming. Math. Prog. Study, 2:82–114, 1974.
[9] R. Iyer and J.A. Bilmes. Algorithms for approximate minimization of the difference between submodular functions, with applications.

In UAI, 2012.
[10] S. Jegelka and J. Bilmes. Submodularity beyond submodular energies: Coupling edges in graph cuts. In CVPR, pages 1897–1904, 2011.
[11] S. Jegelka, H. Liu, and J.A. Bilmes. On fast approximate submodular minimization. In Adv. in NIPS, volume 24, pages 460–468. 2011.
[12] P. Kohli, L. Ladický, and P.H.S. Torr. Robust higher order potentials for enforcing label consistency. International Journal of Computer

Vision, 82:302–324, 2009.
[13] V. Kolmogorov and C. Rother. Minimizing nonsubmodular functions with graph cuts – A review. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 29(7):1274–1279, 2007.
[14] H. Lin and J. Bilmes. Multi-document summarization via budgeted maximization of submodular functions. In NAACL-HLT, pages

912–920, 2010.
[15] L. Lovász. Submodular functions and convexity. In Mathematical Programming – The State of the Art, pages 235–257. 1983.
[16] K. Nagano and Y. Kawahara. Structured convex optimization under submodular constraints. In UAI’13, pages 459–468, 2013.
[17] M. Narasimhan and J.A. Bilmes. A submodular-supermodular procedure with applications to discriminative structure learning. In

UAI’05, pages 404–412, 2005.
[18] N. N.Komodakis, N. Paragios, and G. Tziritas. Mrf energy minimization and beyond via dual decomposition. IEEE PAMI, 33(3):531–552,

2011.
[19] P. Ravikumar, A. Agarwal, and M.J. Wainwright. Message-passing for graph-structured linear programs: Proximal methods and rounding

schemes. Journal of Machine Learning Research, 11:1043–1080, 2010.
[20] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and context modeling for multi-class object

recognition and segmentation. In ECCV, pages 1–15, 2006.
[21] A.P. Singh, A. Guillory, and J.A. Bilmes. On bisubmodular maximization. In Proc. of the 15th Int’l Conf. on Artificial Intelligence and

Statistics (AISTATS’12), pages 1055–1063, 2012.
[22] M.J. Wainwright and M.I. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine

Learning, 1(1–2):1–305, 2008.
[23] T. Werner. Revisiting the linear programming relaxation approach to Gibbs energy minimization and weighted constraint satisfaction.

IEEE PAMI, 32(8):1474–1488, 2010.

3TextonBoost is originally a method for multiple classes segmentation. We used its outputs as the labeling on
a main object and others. For the training, the half of all images in the whole MSRC data was used.

6

	Introduction
	Non-submodular Minimization with Tree-Structured Supermodularity
	Optimization and Bounds Estimation
	Alternating Minimization with Scheduling (AM)
	Optimization via Dual Decomposition (DD)
	Continuous Relaxation and Rounding (CR)
	Submodular-Supermodular Procedure Using Pairwise Structures (SSP)

	Experimental Evaluation
	Evaluation on Synthetic Data
	Application to Image Segmentation

