
Submodular Point Processes

Rishabh Iyer
Department of Electrical Engineering

University of Washington
rkiyer@u.washington.edu

Jeff Bilmes
Department of Electrical Engineering

University of Washington
bilmes@u.washington.edu

Abstract

We introduce a class of discrete point processes that we call the Submodular
Point Processes (SPPs). These processes are characterized via a submodular (or
supermodular) function, and naturally model notions of information, coverage and
diversity, as well as cooperation. Unlike Log-submodular and Log-supermodular
distributions (Log-SPPs) such as determinantal point processes (DPPs), SPPs
are themselves submodular (or supermodular). In this paper, we analyze the
computational complexity of probabilistic inference in SPPs. We show that
computing the partition function for SPPs (and Log-SPPs), requires exponential
complexity in the worst case, and also provide algorithms which approximate
SPPs up to polynomial factors. Moreover, for several subclasses of interesting
submodular functions that occur in applications, we show how we can provide
efficient closed form expressions for the partition functions, and thereby marginals
and conditional distributions. Finally, we argue how SPPs complement existing
Log-SPP distributions, and are a natural model for several applications.

1 Introduction

Submodular functions provide a rich class of expressible models for a variety of machine learning
problems. Submodular functions occur naturally for two purposes: In minimization problems, they
model notions of cooperation, attractive potentials, and economies of scale, while in maximization
problems, they model aspects of coverage, diversity, and information. A set function f : 2V → R
is submodular if ∀S, T ⊆ V , f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T). An equivalent characterization,
which many real world models naturally exhibit, is the “diminishing returns” property, which says
that for S ⊆ T and j /∈ T, f(S ∪ j) − f(S) ≥ f(T ∪ j) − f(T). Submodular functions have
properties that make their exact or approximate optimization efficient and often practical.

While significant research has gone into providing optimal and near optimal algorithms for various
forms of submodular optimization problems [7, 13, 15, 29], limited work has investigated submodular
functions from a probabilistic perspective. Most research has focused on a special class of Log-
Submodular and Log-Supermodular distributions, namely pairwise Markov Random Fields (also
called Ising models) [8] and Determinantal Point Processes [20, 27]. Recently, [5] investigate the
general class of Log-Submodular distributions, and provide algorithms for approximate probabilistic
inference. In this paper, we make attempts to model submodular functions as probabilistic point
processes, which we call the “Submodular Point Processes“ (SPP). These distributions are defined
via a non-negative submodular (supermodular) function as: P (X) ∝ f(X), for X ⊆ V , where f is
a submodular (or supermodular) function defined so that when normalized, P (X) is a valid distri-
bution. A related but different class of distributions is the Log-submodular (or Log-supermodular)
distributions, which we call Log-SPPs. These [5] are defined as: P (X) ∝ exp(f(X)). where
f is submodular (or supermodular). Determinantal Point Processes (DPPs) [20, 27] are special
cases of Log-submodular distributions, while Ising models are special cases of Log-supermodular
distributions.
The following are the main contributions of this paper: 1) We investigate the hardness of computing
the partition function for SPPs and Log-SPPs. In particular, we show that exact computation of
the normalization constants for SPPs and Log-SPPs, could require exponential complexity in the
worst case (independent of P v/s NP). 2) We show that the Log Partition function of SPPs can
be approximated within O(log n). 3) We then investigate several subclasses of useful submodular

1

functions and show how the partition function can be computed exactly for several of these subclasses.
4) Finally, we argue that while the SPPs are similar to the Log-SPP models from a modeling
perspective, they have several key differences from these models, thereby providing a complementary
class of models. In particular, we argue that SPPs form a class of models natural for modeling
submodular mixtures.

2 Probabilistic Inference

We here investigate the computation of the partition function for SPPs, and correspondingly, the
conditionals and marginals. The partition function corresponding to SPPs is Zf =

∑
X⊆V f(X).

Similarly, the partition function for Log-SPPs can be defined as Zf =
∑

X⊆V exp(f(X)). We
first investigate the hardness of probabilistic inference (in particular, probabilistic inference), and
provide approximation algorithms for computing these for general SPPs. We contrast these with
the corresponding guarantees and hardness results for Log-SPPs, and show how this problem is
significantly harder in the context of Log-SPPs as opposed to SPPs. We then consider several
subclasses of SPPs and show how the partition function can be computed either exactly, or up to a
factor of 1 + ε, for these subclasses. Finally, we show how these result in algorithms for computing
marginals, conditionals, sampling, and learning mixtures of submodular functions.

2.1 Hardness And Approximation Factors

In this section, we provide hardness results and worst case approximation factors for the general
classes of SPPs and Log-SPPs. In the case of Log-SPPs, the worst case approximation factors are
provided in [5]. In terms of hardness, the partition function computation was known to be #P hard
[17]. In the current paper, we show that the partition function computation is provably exponential
for both SPPs and Log-SPPs, in the worst case. We also provide the worst case approximation factor
for SPPs, and show that the log-partition function can be approximated within a factor of O(log n),
which is in contrast to the approximation factor for Log-SPPs shown in [5] and is O(n).

Denote Zf as the true partition function, and Ẑf as the approximate partition function. We define the
approximation factor of the Log-Partition function as α = | logZf − log Ẑf | = | log

Zf

Ẑf
|.

The approximation factors for the general class were provided in [5] where they show that submodular
sub- and super-gradients [15] provide lower and upper bounds on the partition function. In particular,
the semigradients yield, in polynomial time, Ẑu

f , Ẑ
l
f such that Ẑl

f ≤ Zf ≤ Ẑu
f , where Zf is the

partition function of f . Furthermore, [5] also provides approximation guarantees, which in the
worst case is O(n), and depends on the function valuation. Here we offer a new result showing that
computing the partition function has provably exponential cost.
Lemma 1. There exists a submodular (or supermodular) function f , such that computing the
partition function of P(X) ∝ exp(f(X)) requires exponential complexity (independent of the
P = NP question).
Proof in [1]. Next, we study the hardness of SPPs.
Lemma 2. There exists a submodular (or supermodular) function f , such that computing the
partition function of P(X) ∝ f(X) requires exponential complexity (independent of the P 6= NP
question). Proof in [1].

Similar to Log-SPPs, we can use the sub and super-gradients to provide upper and lower bounds for
the partition function. Note that the sub/super gradients provide modular functions ml(X) + cl and
mu(X) + cu such that ml(X) + cl ≤ f(X) ≤ mu(X) + cu. Moreover, submodular functions also
admit tighter approximations via non-modular functions. For example, the class of coverage functions
(equivalently concave over modular functions) approximates the class of monotone submodular
functions up to a factor of O(

√
n), which is the tightest possible bound for the general class of

submodular functions. The main idea of the algorithm for computing an approximate partition
function is to compute an approximation f̂(X) of f(X), such that f̂(X) ≤ f(X) ≤ αf̂(X),∀X ⊆
V . Then, define

Ẑf =
∑
X⊆V

f̂(X). (1)

The following lemma shows that this approximation results in an approximation factor of O(logα)
for the log partition function:

2

Lemma 3. Given a submodular function f , and an approximation f̂ , such that f̂(X) ≤ f(X) ≤
αf̂(X),∀X ⊆ V , it holds that Ẑf ≤ Zf ≤ αẐf . Moreover, | log Ẑf − logZf | ≤ logα.

Using the Lemma above, we can compute the approximation guarantees for the log partition function.
Theorem 1. Given a submodular function f , there exists a poly-time algorithm which computes
an approximation Ẑf of the partition function Zf of the distribution P(X) ∝ f(X), such that
| log Ẑf − logZf | ≤ O(log n).

Proof. The proof of the above result relies on the following facts, and Lemma 3. For a monotone
submodular function, the sub and supergradients, approximate the submodular function up to a factor
of O(n) [14], implying a O(log n) approximation guarantee. Furthermore, a coverage function
[4, 9] approximates a monotone submodular function within a factor of O(

√
n) [4, 9], which

again provides a O(log n) approximation guarantee to the log-partition function.1 We as shall see
later, the partition function can exactly be computed for the coverage functions. Finally, general
non-monotone submodular functions can be approximated within a factor of O(n2/4) by directed
graph-cut functions. Since the partition function of directed graph-cut functions can also be exactly
computed (see the next section), we can provide a multiplicative approximation factor of O(n2/4),
which again provides an approximation factor of O(log n).

2.2 Subclasses Of SPPs

In this section, we investigate several subclasses of submodular functions, and show, surprisingly, how
probabilistic inference is exact for certain of these functions, independent of the underlying tree-width
of the function. Note that the tree-width is, in general, the complexity parameter of exact inference for
graphical models — a graphical model known to have tree-width k is such that inference is possible
exponential in k, so for example inference on trees is very efficient. The section here indicates an
analogous situation for SPPs, namely that certain traits may exist that allow for inference in SPPs to
be done exactly in polynomial time. In the interest of space, we just provide expressions for Zf and
Zk
f , and defer the exact expressions and corresponding proofs for computing the generalized partition

function Zf (A,B) and Zk
f (A,B) to the supplement [1].

2.2.1 Graph Based Submodular Functions

A number of submodular functions are graph based functions, defined on a graph G = (V,E),
with |V | = n and E denoting the objects that interact. The submodular functions are typically
parameterized by a kernel L which represents the pairwise interactions between objects. We denote
sij = L(i, j), which represents the similarity between item i and j. In the context of document sum-
marization, this could represent the similarity between sentences. Similarly, in image summarization
this would be the similarity between images. These matrices are often symmetric, where sij = sji,
which is true in most applications so we assume this in the below. We also assume, with no loss of
generality, that the similarities are normalized (i.e., 0 ≤ sij ≤ 1).

Facility Location and its generalizations: Given a similarity matrix {sij}i,j∈V the facility location
function is f(X) =

∑
i∈V maxj∈X sij . This function has successfully been used in document

summarization [21], image summarization [30] and data subset selection [25]. Denote Pfac(Y) as
the corresponding point process, with, Pfac(Y) ∝

∑
i∈V maxj∈Y sij . This function is monotone

submodular, since it models coverage. The normalization constants Zfac of the facility location can

be computed efficiently: Zfac =
∑
i∈V

n∑
l=1

2l−1sijli .

where jli is as defined in [1]. We can also generalize this to the k-facility location case [24], where
instead of a single max, we take the k-best maximum.

Graph Cut and Generalizations: This class of functions have been used extensively both in
summarization problems (modeling coverage and diversity [25, 21]) as well in image segmentation
and denoising (by capturing cooperation [2]). This general class can be defined as: f(X) =

1While the guarantee for the log-partition function is the same order, the multiplicative guarantee of the
partition function is O(

√
n), which is tighter than the sub/supergradient approximations which is O(n).

3

M + λ
∑

i∈V
∑

j∈X sij − µ
∑

i,j∈X sij ; µ = λ = 1,M = 0 is the standard graph cut, and λ = 0

gives the redundancy penalty [25]. M ≥ 0 is just a factor to ensure that f(X) ≥ 0.

Notice that the similarity penalty models diversity in a manner very similar to the DPPs. Also note
that the redundancy penalty can be used with any submodular function capturing coverage (like the
facility location or asymmetric graph cut etc.) to define an objective for summarization. This has
been used, for example, with the facility location and asymmetric graph cut [30, 25, 10]). Define,
Pgc(X) ∝M + λ

∑
i∈V

∑
j∈X sij −µ

∑
i,j∈X sij , where λ, µ,M are appropriately chosen so that

the objective is non-negative. This function is monotone for λ > 2µ. Define S =
∑

i,j∈V sij , S
d =∑

i∈V sii. The normalization constants for these processes have a simple expression: Zf =

2nM + (2λ− µ)2n−2S − 2n−2µSd This class of point processes can be normalized in O(n2).

Saturated Coverage Function: The saturated coverage function, f(X) =∑
i∈V min{

∑
j∈X sij , αi}, has successfully been used in document summarization [22].

Instead of average coverage (like the graph cut type functions), or the maximum coverage (which is
the facility location), this function chooses a certain fraction of coverage for every item. We can
define the corresponding point process Psc(Y) ∝

∑
i∈V min{

∑
j∈X sij , αi}. Unlike the graph-cut

and facility location, the normalization constant for this one is hard to obtain in polynomial time,
since it involves knapsack counting, which is #P complete [18]. Fortunately, it can be approximated
to an arbitrary factor close to one, by using an fully polynomial time approximation scheme (FPTAS)
for knapsack counting. In the interest of space, we defer the formal result to the supplement [1].

2.2.2 Coverage Functions

Set Cover: One can define a submodular function via “concepts“, and assume that each object
covers a set of concepts. Hence, given a set S, Γ(S) denotes the set of concepts covered by S. Let V
be the set of all items and W be the set of all concepts, so ∀S ⊆ V,Γ(S) ⊆ W . Given a modular
function c : 2W → R+, the set cover function is defined as fcov(S) = c(Γ(S)). This function
simultaneously models aspects of coverage [26] in maximization, and the notion of complexity (like
the size of the vocabulary in a speech corpus) in minimization problems [23]. We can also define an
inverse map, Γ−1 such that for every w ∈W , Γ−1(w) denotes the set of elements v ∈ V such that
Γ(v) = w. Since this is a monotone non-negative submodular function, we can define a distribution,
Pcov(Y) ∝ c(Γ(Y)). The normalization factors Zf is: Zcov =

∑
w∈W cw[2n − 2n−|Γ

−1(w)|].

Probabilistic Coverage Functions: This is a generalization of the set cover function, which has
been used in a number of models for summarization problems [6]. This provides a probabilistic
notion to the set cover function, and is defined as f(X) =

∑
i∈U wi[1−

∏
j∈X(1− pij)] where U is

some set (e.g., of features). The normalization factor of this class of functions can be obtained as
Zf =

∑
i∈U wi[2

n −
∏

j∈V (2− pij)].

2.2.3 Independent Distributions

Modular Functions: The simplest class of set functions is a modular function f(X) =
∑

i∈X mi.
The items in the set do not interact with each other. The normalization constant for this class of
distributions is Zf = 2n−1m(V).

Log-Modular distributions & Poisson Processes: A related class of distributions is f(X) =
e−m(X) which is supermodular and log-modular. The normalization constant is, Zf =

∏
i∈V [1 +

e−mj]. A related class of distributions is the Poisson distribution, where we independently sample
each j ∈ V with a probability pj . The resulting distribution is f(X) =

∏
i∈X pi

∏
j /∈X(1 − pj)

which is submodular, also log-modular, and is already a probability distribution (i.e., Zf = 1).

2.2.4 Concave over modular Functions

A general class of submodular functions is sums of concave over modular. Given modular
functions mi and concave functions ψi, we can define a submodular function: fCM (X) =∑M

i=1 wiψ(mi(X)). They appear in maximization problems as feature based functions, defined
as f(X) =

∑
e∈F ψ(me(X)) (where |F| = M), and have been used in data subset selection ap-

plications [33]. me(j) captures how much item j covers feature F . Another related function is
f(X) =

∑M
j=1 ψ(mj(X ∩CM)), where C1, C2, · · · , CM are clusters of similar items in the ground

4

set V . This function simultaneously captures diversity in maximization problems [22], and notions of
cooperation in minimization problems [16, 12]. Moreover, the saturated coverage function discussed
above is also a special case of this class of functions.

Similar to the saturated coverage function, we expect that computing the exact normalization constant
is #P complete. However, we can approximate it using ideas similar to the saturated coverage function.
First, we restrict our attention to sums of piecewise linear concave over modular functions. These
functions have finite number of breakpoints, and the function is modular within each piece. Hence,
one can use knapsack counting within each component of the modular function, and approximately
compute the normalization constant up to a factor of 1 + ε [31]. Moreover, since it is possible to
approximate any concave function with a truncation up to any desired factor [19], one can extend this
result to general sums of concave over modular functions.

While the FPTAS for knapsack counting gives an FPTAS for sums of concave over modular functions,
the resulting algorithm can be quite computationally expensive. A much simpler approximation
can be used for functions which can be expressed as f(X) =

∑M
i=1[mi(X)]a, where a ∈ (0, 1].

It is known that the function f̂(X) =
∑M

i=1

∑
j∈X [mi(j)]

a approximates f up to a factor of
O(|X|1−a) [14]. Since f̂ is a modular function, and following Lemma 3, it is easy to see that the
resulting approximation factor is (1− a) log n.

2.2.5 Sparse Pseudo-Boolean functions

For graphical models, in particular in computer vision, set functions are often written as polyno-
mials [11]. Any set function can be written as a polynomial, pf (x) =

∑
T⊆V αT

∏
i∈T xi, where

x ∈ {0, 1}n is the characteristic vector of a set. In other words, f(S) =
∑

T⊆S αT . Submodular
functions are a subclass of these polynomials. Often the polynomial is sparse, i.e., has few nonzero
coefficients αT . This is the case for graph cut like functions above and for the functions considered
in [32, 11]. The partition function in this case is Zf = 2npf (1/2). The reason for this is that the
pseudo-Boolean representation is exactly the multilinear extension of the submodular function corre-
sponding to f . Furthermore, the multilinear extension F (x) =

∑
X⊆V f(X)

∏
i∈X xi

∏
i/∈X(1−xi)

is closely related to the partition function F (1/2) =
∑

X⊆V f(X)/2n = Zf/2
n.

2.2.6 Fourier Sparse Submodular Functions

A class of set functions introduced in [32] – given a set function f , its Fourier transform is
f̂(B) = 1

2n

∑
A⊆V f(A)ψB(A), where ψB(A) = (−1)|B∩A|. Given f̂(B), the inverse Fourier

transform recovers f(A) as f(A) =
∑

B⊆V f̂(B)ψB(A). Fourier sparse submodular functions
are functions where supp(f) = {B ⊆ V : f̂(B) 6= 0} is polynomial in n. In this case,
we can evaluate the partition function as Zf =

∑
B∈supp(f) f̂(B)

∑
A⊆V ψB(A) and since∑

A⊆V ψB(A) =
∑|B|

i=0(−1)i
(|B|

i

)
2n−|B|, we may evaluate the partition function in closed form.

3 Discussion

In this paper, we introduced a novel class of point processes, which we called the Submodular Point
Processes (SPPs), which are distinct from the Log-Submodular and Log-Supermodular distributions
(Log-SPPs) studied in literature (like DPPs and Ising Models). SPPs have properties analogous to
DPPs (when defined via submodular functions), and Ising models (when defined via supermodular
functions), in that they both capture notions of coverage, diversity and cooperation.

In looking at samples of both SPPs and Log-SPPs (e.g., DPPs), we noticed empirically a fundamental
difference that is explained by their definitions. SPPs are directly proportional to the submodular
function, and thus very often the probabilities themselves have a relatively low dynamic range.
Log-Submodular distributions, like DPPs, on the other hand, have a high dynamic range since the
probabilities are proportional to the exponential. Indeed, a large number of statistical and probabilistic
models are defined via exponentials, and thus also have high dynamic range. This is particularly
useful in sampling and inference, due to the high confidence in their decisions and concentration of
their distributions. This property however can also sometimes be undesirable. For example, in the
multi-class classification setting, classifiers built using low entropy distributions can be overconfident
of their decisions (whether right or wrong), thereby motivating investigation of smoother transitions
via linear models [3, 28].

5

Another very important distinction between SPPs and Log-SPPs is handling mixtures. Most machine
learning applications (like for example, summarization, and subset selection), do not inherently define
single submodular functions, both most often, are modeled via a mixture of submodular functions.
Correspondingly, handling and learning mixtures of submodular functions is very important, in
considering models for submodular functions. SPPs are closed when taking mixtures, since a mixture
of base SPPs is also a SPP, and hence all the attractive properties for inference still hold. This is not
true with Log-SPPs. In particular, given submodular f1, f2 which are both Log-SPPs, one particular
characterization of a mixture distribution is P ∝ exp(w1f1(X) + w2f2(X)). While this is still
Log-Submodular, it may not have the nice properties of f1 and f2 (i.e all the inference quantities
like the normalization factor, etc. might not any longer be computable). On the other hand, one
could define a mixture distribution as P ∝ w1 exp(f1(X)) + w2 exp(f2(X)). While this retains the
nice properties with respect to inference, it is no longer Log submodular. In particular, this means
that MAP inference is no longer guaranteed. The same holds for Log-Supermodular distributions.
When seen in the context of mixtures, the low dynamic range of SPPs also makes sense. Given two
submodular functions f1, f2 which measure two different, and possibly complementary aspects of
the application, we might not want any of the individual functions to be overconfident of its selection.

On a whole, SPPs provide a new class of distributions, which are distinct from and complementary
to existing point processes used in applications. While the main contribution of this paper is the
introduction of this new class, and hence is primarily theoretical, in future work, we plan to test these
distributions in real world applications of summarization and data subset selection.

References
[1] Anthors. Submodular Point Processes: Extended Version. 2015.
[2] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. TPAMI,

26(9):1124–1137, 2004.
[3] K. Crammer and A. Globerson. Discriminative learning vis semidefinite probabilities. In Uncertainty in Artificial Intelligence (UAI),

Cambridge, MA, July 2006. AUAI.
[4] Nikhil R Devanur, Shaddin Dughmi, Roy Schwartz, Ankit Sharma, and Mohit Singh. On the approximation of submodular functions.

arXiv preprint arXiv:1304.4948, 2013.
[5] Josip Djolonga and Andreas Krause. From map to marginals: Variational inference in bayesian submodular models. In Neural Informa-

tion Processing Systems (NIPS), 2014.
[6] K. El-Arini, G. Veda, D. Shahaf, and C. Guestrin. Turning down the noise in the blogosphere. In KDD, 2009.
[7] S. Fujishige. Submodular functions and optimization, volume 58. Elsevier Science, 2005.
[8] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, (6):721–741, 1984.
[9] M.X. Goemans, N.J.A. Harvey, S. Iwata, and V. Mirrokni. Approximating submodular functions everywhere. In SODA, pages 535–544,

2009.
[10] J. He, H. Tong, Q. Mei, and B. Szymanski. Gender: A generic diversified ranking algorithm. In Neural Information Processing Systems

(NIPS), pages 1151–1159, 2012.
[11] Hiroshi Ishikawa. Higher-order clique reduction in binary graph cut. In CVPR, 2009.
[12] R. Iyer and J. Bilmes. Algorithms for approximate minimization of the difference between submodular functions, with applications. In

UAI, 2012.
[13] R. Iyer and J. Bilmes. Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints. In NIPS, 2013.
[14] R. Iyer, S. Jegelka, and J. Bilmes. Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions . In NIPS,

2013.
[15] R. Iyer, S. Jegelka, and J. Bilmes. Fast Semidifferential based Submodular function optimization. In ICML, 2013.
[16] S. Jegelka and J. A. Bilmes. Submodularity beyond submodular energies: coupling edges in graph cuts. In CVPR, 2011.
[17] M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the ising model. SIAM Journal on computing, 22(5):1087–

1116, 1993.
[18] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer Verlag, 2004.
[19] P. Kohli, A. Osokin, and S. Jegelka. A principled deep random field for image segmentation. In CVPR, 2013.
[20] A. Kulesza and B. Taskar. Determinantal point processes for machine learning. arXiv preprint arXiv:1207.6083, 2012.
[21] H. Lin and J. Bilmes. Multi-document summarization via budgeted maximization of submodular functions. In NAACL, 2010.
[22] H. Lin and J. Bilmes. A class of submodular functions for document summarization. In ACL, 2011.
[23] H. Lin and J. Bilmes. Optimal selection of limited vocabulary speech corpora. In Interspeech, 2011.
[24] H. Lin and J. Bilmes. Learning mixtures of submodular shells with application to document summarization. In UAI, 2012.
[25] H. Lin, J. Bilmes, and S. Xie. Graph-based submodular selection for extractive summarization. In ASRU, 2009.
[26] Hui Lin. Submodularity in Natural Language Processing: Algorithms and Applications. PhD thesis, University of Washington, Dept. of

EE, 2012.
[27] O. Macchi. The coincidence approach to stochastic point processes. Advances in Applied Probability, pages 83–122, 1975.
[28] Jonathan Malkin and Jeff Bilmes. Ratio semi-definite classifiers. In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE

International Conference on, pages 4113–4116. IEEE, 2008.
[29] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for maximizing submodular set functions—i. Mathemat-

ical Programming, 14(1):265–294, 1978.
[30] I. Simon, N. Snavely, and S.M. Seitz. Scene summarization for online image collections. In ICCV, 2007.

[31] D. Štefankovic, S. Vempala, and E. Vigoda. A deterministic polynomial-time approximation scheme for counting knapsack solutions.
SIAM Journal on Computing, 41(2):356–366, 2012.

[32] P. Stobbe and A. Krause. Learning fourier sparse set functions. In AISTATS, 2012.
[33] Kai Wei, Yuzong Liu, Katrin Kirchhoff, Chris Bartels, and Jeff Bilmes. Submodular subset selection for large-scale speech training data.

Proceedings of ICASSP, Florence, Italy, 2014.

6

	Introduction
	Probabilistic Inference
	Hardness And Approximation Factors
	Subclasses Of SPPs
	Graph Based Submodular Functions
	Coverage Functions
	Independent Distributions
	Concave over modular Functions
	Sparse Pseudo-Boolean functions
	Fourier Sparse Submodular Functions

	Discussion

