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Abstract

We present the equivalence of the first-order local consistency relaxation and the
MAX SAT relaxation of Goemans and Williamson [1] for a class of MRFs we
refer to as logical MRFs. This allows us to combine the advantages of both ap-
proaches into a single technique: solving the local consistency relaxation with
any of a number of message-passing algorithms, and then improving the solu-
tion quality via a guaranteed rounding procedure when the relaxation is not tight.
Logical MRFs are a general class of models that can incorporate many common
dependencies, such as mixtures of submodular and supermodular potentials, and
logical implications. They can be used for many tasks, including natural language
processing, computer vision, and computational social science.

1 Introduction

One of the canonical problems for probabilistic modeling is finding the most probable assignment to
the unobserved random variables, i.e., maximum a posteriori (MAP) inference. For Markov random
fields (MRFs), MAP inference is NP-hard in general [2], so approximations are required in practice.
In this paper, we provide a new analysis of approximate MAP inference for a particularly flexible
and broad class of MRFs we refer to as logical MRFs. In these models, potentials are defined by truth
tables of disjunctive logical clauses with non-negative weights. This class includes many common
types of models, such as mixtures of submodular and supermodular potentials, and many of the
models that can be defined using the language Markov logic [3].1 Such models are useful for the
many domains that require expressive dependencies, such as natural language processing, computer
vision, and computational social science. MAP inference for logical MRFs is still NP-hard [4], so
we consider two main approaches for approximate inference, each with distinct advantages.

The first approach uses local consistency relaxations [5]. Instead of solving a combinatorial opti-
mization over discrete variables, MAP inference is first viewed equivalently as the optimization of
marginal distributions over variable and potential states. The marginals are then relaxed to pseudo-
marginals, which are only consistent among local variables and potentials. The primary advantage
of local consistency relaxations is that they lead to highly scalable message-passing algorithms, such
as dual decomposition [6]. However—except for a few special cases—local consistency relaxations
produce fractional solutions, which require some rounding or decoding procedure to find discrete
solutions. For most MRFs, including logical MRFs, there are no previously known guarantees on
the quality of these solutions.

The second approach to tractable MAP inference for logical MRFs is weighted maximum satisfiabil-
ity (MAX SAT) relaxation, in which one views MAP inference as the classical MAX SAT problem

1Markov logic can also include potentials defined by clauses with conjunctions and with negative weights.
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and relaxes it to a convex program from that perspective. Given a set of disjunctive logical clauses
with associated nonnegative weights, MAX SAT is the problem of finding a Boolean assignment
that maximizes the sum of the weights of the satisfied clauses. Convex programming relaxations
for MAX SAT also produce fractional solutions, but unlike local consistency relaxations, they offer
theoretically guaranteed rounding procedures [1]. However, though these relaxations are tractable in
principle, general-purpose convex program solvers do not scale well to large graphical models [7].

In this paper, we unite these two approaches. Our contribution is the following theoretical result:
for logical MRFs, the first-order local consistency relaxation and the MAX SAT relaxation of Goe-
mans and Williamson [1] are equivalent. We sketch a proof of this equivalence that analyzes the
local consistency relaxation as a hierarchical optimization and reasons about KKT conditions of the
optimizations at lower levels of the hierarchy. This new, compact, hierarchical form is easily seen to
be equivalent to the MAX SAT relaxation.

This proof of equivalence is important because it reveals that one can combine the advantages of both
approaches into a single algorithm that offers scalable and accurate inference by using the message-
passing algorithms developed in the graphical models community and the guaranteed rounding pro-
cedures of the MAX SAT relaxation.

2 Preliminaries

2.1 Markov random fields

MRFs are probabilistic graphical models that factor according to the structure of an undirected
graph. For the purposes of this paper, we consider MRFs with discrete domains.
Definition 1. Let x = (x1, . . . , xn) be a vector of n random variables, where each variable xi has
discrete domain Xi = {0, 1, . . . ,Ki − 1}. Then, let φ = (φ1, . . . , φm) be a vector of m potentials,
where each potential φj(x) maps states of a subset of the variables xj to real numbers. Finally, let
w = (w1, . . . , wm) be a vector of m real-valued parameters. Then, a Markov random field over x
is a probability distribution of the form P (x) ∝ exp

(
w>φ(x)

)
.

2.2 Local consistency relaxations

A popular approach for tractable inference in MRFs is local consistency relaxation [5]. This ap-
proach starts by viewing MAP inference as an equivalent optimization over marginal probabilities.
For each φj ∈ φ, let θj be a marginal distribution over joint assignments to the variable subset xj .
For example, θj(xj) is the probability that xj is in a particular joint state. Also, let xj(i) denote the
setting of the variable with index i in the state xj .

With this variational formulation, inference can be relaxed to an optimization over the first-order
local polytope L. Let µ = (µ1, . . . , µn) be a vector of probability distributions, where µi(k) is the
marginal probability that xi is in state k. The first-order local polytope is

L ,

θ,µ ≥ 0

∣∣∣∣∣∣∣
∑
xj |xj(i)=k θj(xj) = µi(k) ∀i, j, k∑
xj
θj(xj) = 1 ∀j∑Ki−1

k=0 µi(k) = 1 ∀i

 ,

which constrains each marginal distribution θj over joint states xj to be consistent only with the
marginal distributions µ over individual variables that participate in the potential φj .

MAP inference can then be approximated with the first-order local consistency relaxation:

argmax
(θ,µ)∈L

m∑
j=1

wj

∑
xj

θj(xj) φj(xj), (1)

which is an upper bound on the true MAP objective. The first-order local consistency relaxation is a
much more tractable linear program than exact inference, and it can be applied to any MRF. Much
work has focused on solving the first-order local consistency relaxation for large-scale MRFs, which
we discuss further in Section 4. However, in general, the solutions are fractional, and there are no
guarantees on the approximation quality of a discretization of these fractional solutions.
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2.3 Logical Markov random fields

We now turn to the focus of this paper: logical MRFs, which are MRFs whose potentials φ are
defined by disjunctive Boolean clauses with associated nonnegative weights, formally defined as
follows.

Definition 2. LetC = (C1, . . . , Cm) be a vector of logical clauses, where each clause Cj ∈ C is a
disjunction of literals and each literal is a variable x or its negation ¬x such that each variable xi ∈ x
appears at most once inCj . Let I+j (resp. I−j )⊆ {1, . . . , n} be the set of indices of the variables that

are not negated (resp. negated) in Cj . Then Cj can be written as
(∨

i∈I+
j
xi

)
∨
(∨

i∈I−
j
¬xi
)

. A
logical Markov random field is an MRF in which each variable xi has Boolean domain {0, 1}, i.e.,
Ki = 2, each potential φj(x) = 1 if x satisfies Cj and 0 otherwise, and each parameter wj ≥ 0.

Logical MRFs are very expressive. A clause Cj can be viewed equivalently as an implication from
conditions to consequences:

∧
i∈I−

j
xi =⇒

∨
i∈I+

j
xi. If multiple sets of conditions should imply

the same set of possible consequences, or if one set of conditions should imply multiple sets of
possible consequences, then additional clauses can be added to the set C, covering the cases that
cannot be expressed in a single clause. Moreover, the generality of logical MRFs can be stated more
broadly: MAP inference for any discrete distribution of bounded factor size can be converted to a
MAX SAT problem—and therefore MAP inference for a logical MRF—of size polynomial in the
variables and clauses [8].

2.4 MAX SAT relaxations

The MAP problem for a logical MRF can also be viewed as an instance of MAX SAT and approxi-
mately solved from this perspective. The MAX SAT problem is to find a Boolean assignment to the
variables x that maximizes the sum of the weights of the satisfied clauses from a set of clauses C.
A solution to MAX SAT is also the MAP state of the logical MRF defined via C. Since MAX SAT
is NP-hard, convex programming relaxations are a tractable approach.

Goemans and Williamson [1] introduced a linear programming relaxation that provides rounding
guarantees for the solution. We review their technique and the results of their analysis here. For
each variable xi, associate with it a continuous variable yi ∈ [0, 1]. Then, let y? be the solution to
the linear program

argmax
y∈[0,1]n

∑
Cj∈C

wj min


∑
i∈I+

j

yi +
∑
i∈I−

j

(1− yi), 1

 . (2)

After solving the linear program, each variable xi is independently set to 1 according to a rounding
probability function f , i.e., pi = f(y?i ). Many functions can be chosen for f , but a simple one
[1] analyze is the linear function f(y?i ) = 1

2y
?
i + 1

4 . Let Ŵ be the expected total weight of the
satisfied clauses from using this randomized rounding procedure. Let W ? be the maximum total
weight of the satisfied clauses over all assignments to x, i.e., the weight of the MAX SAT solution.
Goemans and Williamson [1] showed that Ŵ ≥ 3

4W
?. The method of conditional probabilities

[9] can deterministically find an assignment to x that achieves a total weight of at least Ŵ . Each
variable xi is greedily set to the value that maximizes the expected weight over the unassigned
variables, conditioned on either possible value of xi and the previously assigned variables. This
greedy maximization can be applied quickly because, in many models, variables only participate in
a small fraction of the clauses, making the change in expectation quick to compute for each variable.

3 Equivalence analysis

In this section, we prove the equivalence of the first-order consistency relaxation and the MAX SAT
relaxation of Goemans and Williamson [1] for logical MRFs (Theorem 1). Our proof analyzes the
local consistency relaxation to derive an equivalent, more compact optimization over only the vari-
able pseudomarginals µ. We show that this compact form is identical to the MAX SAT relaxation.
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Since the variables are Boolean, we refer to each pseudomarginal µi(1) as simply µi. Let xF
j denote

the unique setting such that φj(xF
j ) = 0.

We begin by reformulating the local consistency relaxation as a hierarchical optimization, first over
the variable pseudomarginals µ and then over the factor pseudomarginals θ. Due to the structure of
local polytope L, the pseudomarginals µ parameterize inner linear programs that decompose over
the structure of the MRF, such that—given fixed µ—there is an independent linear program φ̂j(µ)
over θj for each clause Cj . We rewrite objective (1) as

argmax
µ∈[0,1]n

∑
Cj∈C

φ̂j(µ), (3)

where

φ̂j(µ) = max
θj≥0

wj

∑
xj |xj 6=xF

j

θj(xj) (4)

s.t.
∑

xj |xj(i)=1

θj(xj) = µi ∀i ∈ I+j (5)

∑
xj |xj(i)=0

θj(xj) = 1− µi ∀i ∈ I−j (6)

∑
xj

θj(xj) = 1 (7)

It is straightforward to verify that objectives (1) and (3) are equivalent for logical MRFs. All con-
straints defining L can be derived from the constraint µ ∈ [0, 1]n and the constraints in the definition
of φ̂j(µ). We have omitted redundant constraints to simplify analysis.

To make this optimization more compact, we replace each inner linear program φ̂j(µ) with an ex-
pression that gives its optimal value for any setting of µ. Deriving this expression requires reasoning
about any maximizer θ?j of φ̂j(µ), which is guaranteed to exist because program (4) is bounded and
feasible for any parameters µ ∈ [0, 1]n and wj .
Theorem 1. For a logical MRF, the first-order local consistency relaxation of MAP inference is
equivalent to the MAX SAT relaxation of Goemans and Williamson [1]. Specifically, any partial
optimum µ? of objective (1) is an optimum y? of objective (2), and vice versa.

Proof. (Sketch) To derive a simplified expression for φ̂j(µ) that makes objectives (3) and (2) equiv-
alent, we first identify a condition on µ that is sufficient for program (4) to not be fully satisifi-
able, i.e., it cannot achieve the maximum value of wj . Throughout, we assume wj > 0, since
the derivation is trivial if wj = 0. If

∑
i∈I+

j
µi +

∑
i∈I−

j
(1 − µi) < 1, then θ?j (x

F
j ) > 0, by

constraints (5), (6), and (7). In this case, program (4) equals
∑

i∈I+
j
µi +

∑
i∈I−

j
(1 − µi), which

can be shown via the Karush-Kuhn-Tucker (KKT) conditions [10, 11] for program (4). If instead∑
i∈I+

j
µi +

∑
i∈I−

j
(1 − µi) ≥ 1, then program (4) equals wj . Together, these results give the

solution to program (4) as a piecewise-linear expression. Substituting this expression into the local
consistency relaxation objective (3) gives a projected optimization over only µ which is identical to
the MAX SAT relaxation objective (2).

4 Related work

A large body of work has focused on solving local consistency relaxations of MAP inference quickly.
The theory developed in this paper is applicable to any algorithm that can find the optimal variable
pseudomarginals µ?. We consider two families of such approaches.

The first approach is dual decomposition [6, DD], which solves a dual problem of (1). Only some
DD algorithms can be used to find the optimum µ? in order to compute rounding probabilities.
Subgradient methods for DD (e.g., Jojic et al. [12], Komodakis et al. [13], and Schwing et al. [14])
can find µ? in many ways, including those described by Anstreicher and Wolsey [15], Nedić and
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Ozdaglar [16], and Shor [17]. Other DD algorithms, such as TRW-S [18], MSD [19], MPLP [20],
and ADLP [21], use coordinate descent to solve the dual objective. In general, there is no known
way to find the primal solution µ? with coordinate descent DD.

The second approach uses message-passing algorithms to solve objective (1) directly in its pri-
mal form and therefore always finds µ?. One well-known algorithm is that of Ravikumar et al.
[22], which uses proximal optimization, a general approach that iteratively improves the solution
by searching for nearby improvements. The authors also provide rounding guarantees for when the
relaxed solution is integral, i.e., the relaxation is tight, allowing the algorithm to converge faster.
Such guarantees are complementary to ours, since we consider the case when the relaxation is not
tight. Another message-passing algorithm that solves the primal objective is AD3 [23], which uses
the alternating direction method of multipliers [24, ADMM]. AD3 optimizes objective (1) for bi-
nary, pairwise MRFs and supports the addition of certain deterministic constraints on the variables.
A third example of a primal message-passing algorithm is APLP [21], which is the primal analog of
ADLP. Like AD3, it uses ADMM to optimize the objective.

In addition to the many approaches for solving the first-order local consistency relaxation, other
approaches to approximating MAP inference include tighter linear programming relaxations [25,
26]. These tighter relaxations enforce local consistency on variable subsets that are larger than
individual variables, which makes them higher-order local consistency relaxations. Mezuman et al.
[27] developed techniques for special cases of higher-order relaxations, such as when the MRF
contains cardinality potentials, in which the probability of a configuration depends on the number
of variables in a particular state. Some papers have also explored nonlinear convex programming
relaxations, e.g., Ravikumar and Lafferty [28] and Kumar et al. [29].

Previous analyses have identified particular subclasses whose local consistency relaxations are tight,
i.e., the maximum of the relaxed program is exactly the maximum of the original problem. These
special classes include graphical models with tree-structured dependencies, models with submodular
potential functions, models encoding bipartite matching problems, and those with nand potentials
and perfect graph structures [5, 30, 31, 32]. These tightness guarantees are powerful, but they require
more restrictive conditions on the distributions than our analysis. Our results complement these
types of analyses by identifying a larger class of problems with an approximation-quality guarantee.

Researchers have studied performance guarantees of other subclasses of the first-order local consis-
tency relaxation. Kleinberg and Tardos [33] and Chekuri et al. [34] considered the metric labeling
problem. Feldman et al. [35] used the local consistency relaxation to decode binary linear codes.

Finally, we note the work of Huynh and Mooney [36], which introduced a linear programming
relaxation for Markov logic networks [3] inspired by MAX SAT relaxations. Markov logic networks
subsume logical MRFs, but the relaxation of general Markov logic provides no guarantees on the
quality of solutions.

5 Conclusion

We presented the equivalence of the first-order local consistency relaxation and the MAX SAT re-
laxation of Goemans and Williamson [1] for logical MRFs. This result is important because the
local consistency relaxation can first be solved with any of a number of scalable message-passing
algorithms, and the quality of the results can be improved with a guaranteed rounding procedure.
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