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Abstract

The recently introduced k-support norm has been successfully applied to sparse
prediction problems with correlated features. This norm however lacks any ex-
plicit structural constraints commonly found in machine learning and image pro-
cessing. We address this problem by incorporating a total variation penalty in the
k-support framework. We introduce the (k, s) support total variation norm as the
tightest convex relaxation of the intersection of a set of discrete sparsity and total
variation penalties. We show that this norm leads to an intractable combinato-
rial graph optimization problem, which we prove to be NP-hard. We then intro-
duce a tractable relaxation with approximation guarantees. We demonstrate the
effectiveness of this penalty on classification in the low-sample regime, M/EEG
neuroimaging analysis, and background subtracted image recovery.

1 Introduction

Regularization methods utilizing the `1 norm such as Lasso [1] have been used widely for feature
selection. They have been particularly successful at learning problems in which very sparse models
are required. However, in many problems a better approach is to balance sparsity against an `2
constraint. One reason is that very often features are correlated and it may be better to combine
several correlated features than to select fewer of them, in order to obtain a lower variance estimator
and better interpretability. This has led to the method of elastic net in statistics [2], which regularizes
with a weighted sum of `1 and `2 penalties. More recently, it has been noted that the elastic net is
not in fact the tightest convex penalty that approximates sparsity (`0) and `2 constraints at the same
time [3]. The tightest convex penalty is given by the k-support norm, which is parameterized by an
integer k, and can be computed efficiently. This norm has been succesfully applied to a variety of
sparse vector prediction problems [4, 5, 6].

We study the problem of introducing further structural constraints to sparsity and `2. In particular,
we seek to introduce a total variation smoothness prior in addition to sparsity and `2 constraints.
Total variation is a popular regularizer used to enforce local smoothness in a signal [7, 8, 9]. It
has succesfully been applied in image denoising and has recently become of particular interest in
the neural imaging community where it can be used to reconstruct sparse but locally smooth brain
activation [8, 10].

To derive a penalty incorporating these constraints we follow the approach of [3] by taking the
convex hull of the intersection of our desired penalties and then recovering a norm by applying the
gauge function. We then derive a formulation for the dual norm which leads us to a combinatorial
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optimization problem, which we prove to be NP-hard. We find an approximation to this penalty and
prove a bound on the approximation error. Since the k-support norm is the tightest relaxation of
sparsity and `2 constraints, we propose to use the intersection of the TV norm ball and the k-support
norm ball. This leads to a convex optimization problem in which (sub)gradient computation can be
achieved with a computational complexity no worse than that of the total variation. Furthermore,
our approximation can be computed for variation on an arbitrary graph structure.

We demonstrate the tractability and utility of the norm through applications to M/EEG neuroimaging
analysis, classification in the low-sample regime, and background subtracted image recovery.

2 Convex Relaxation of Sparsity, `2 and Total Variation

In this section we formulate the (k, s) support total variation norm, a tight convex relaxation of
sparsity, `2, and total variation (TV) constraints.

Derivation of the Norm We start by defining the set of points corresponding to simultaneous
sparsity, `2 and total variation (TV) constraints:

Q2
k,s := {w ∈ Rd : ‖w‖0 ≤ k, ‖w‖2 ≤ 1, ‖Dw‖0 ≤ s}

where k ∈ {1, . . . , d}, s ∈ {1, . . . ,m} andD ∈ Rm×d is a prescribed matrix. HereD will generally
take the form of a discrete difference operator. It is easy to see that the set Q2

k,s is not convex due to
the presense of the ‖ · ‖0 terms. Hence using Q2

k,s in a regularization method is impractical. Thus
we consider instead the convex hull of Q2

k,s:

C2
k,s : = conv(Q2

k,s)

=
{
w : w =

r∑
i=1

cizi,

r∑
i=1

ci = 1, ci ≥ 0, zi ∈ Rd, ‖zi‖0 ≤ k, ‖zi‖2 ≤ 1, ‖Dzi‖0 ≤ s, r ∈ N
}

The convex set C2
k,s is the unit ball of a certain norm. We call this norm the (k, s) support total

variation norm. It equals the gauge function of C2
k,s, that is,

‖x‖sptvk,s : = inf
{
λ ∈ R+ : x = λ

r∑
i=1

cizi,

r∑
i=1

ci = 1, ci ≥ 0, zi ∈ Rd, ‖zi‖0 ≤ k, ‖zi‖2 ≤ 1,

‖Dzi‖0 ≤ s, r ∈ N
}

= inf
{ r∑

i=1

‖vi‖2 :

r∑
i=1

vi = x, ‖vi‖0 ≤ k, ‖Dvi‖0 ≤ s, r ∈ N
}
.

The special case s = m is simply the k-support norm [3], which trades off between the `1 norm
(k = 1, s = m) and the `2 norm (k = d, s = m). This norm is combinatorial in nature and it can be
shown that it leads to an NP-hard problem.

Approximating the Norm Although special cases where s equals m or 1 are tractable, it can
be shown that the general case for arbitrary values of s leads to an NP-hard problem. We thus
approximate the solution by taking instead the intersection of the k-support norm ball and the convex
relaxation of total variation. This leads to the following penalty

Ωsptv(w) = max{‖w‖spk ,
1√

s‖D‖ |Dw‖1}

where ‖ · ‖ denotes the spectral norm. It can be shown that, given appropriate parameter selection,
the solution to a regularized risk function with this penalty will be equivalent to regularization with
a penalty of the form

Ωk+tv(w) = λ1‖w‖spk + λ2‖Dw‖1
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for some regularization parameters λ1, λ2 > 0.1 These objectives can be optimized using stan-
dard first-order convex optimization techniques such as subgradient descent or Nesterov smoothing
methods [11, 12]. We can bound the approximation error as follows,

Proposition 1. For every w ∈ Rd, it holds that

Ωsptv(w) ≤ ‖w‖sptvk,s .

Moreover, suppose that range(D>) = Rd and that for every I ∈ Gk the submatrix D∗I has at least
m− s zero rows. Then it holds that

‖w‖sptvk,s ≤
√

1 +
s‖D‖2‖(D>)+‖2∞

k
Ωsptv(w)

where ‖ · ‖∞ is the norm on Rm×d induced by `∞, that is, ‖A‖∞ =
m

max
i=1

d∑
j=1

|Aij |.

The hypothesis on D required for the upper bound on ‖ · ‖sptvk,s has an intuitive interpretation when
D is the transpose of an incidence matrix of a graph. It means that any group of k vertices in
the graph involves at most s edges. This is true in many cases of interest, such as the grid if s is
proportional to k. Thus the hypothesis is satisfied when k is not too large and the degrees of the
vertices are relatively small. Finally, we note that frequently there will be some dependence on the
dimensionality d, implicit in the term ‖(D>)+‖∞.

3 Experimental Results

We evaluate the effectiveness of the introduced penalty on several regression and classification prob-
lems. We consider a regression task with synthetic data set with spatial coherence and sparsity, a
small training sample classification task using MNIST, a sparse image recovery problem, and an
M/EEG prediction task.

We compare our regularizer against several basic regularizers (`1 and `2) and popular structured
regularizers for problems with similar structure. In recent work TV+`1, which adds the TV and `1
constraints, has been heavily utilized for data with similar spatial assumptions and is thus one of our
main benchmarks.

Synthetic 2-D Spatially Correlated Data For our synthetic problem we consider the estimation
of an ideal weight vector with both spatial correlation and sparsity. We construct a 25x25 image
with 84 % of coefficients set to zero. The non-sparse portion of the image correpond to Gaussian
blobs. This image will serve as a set of parameters w we wish to recover. Figure 1 shows this ideal
parameter vector. We construct data samples X = Y w+ ε. Where Y is a sample from {−1, 1} and
ε ∼ N is Gaussian noise.

We take 250 training samples, 100 validation samples, and 500 test samples. We evaluate a reg-
ularized risk function using only `1, `2, or k-support regularizers, TV+`1 regularizer, and the our
k-support total variation regularizer. For each of these scenarios we perform model selection through
the range of model parameters and select the model with the highest accuracy on the validation set.
For this task we use hinge loss and perform optimization using stochastic subgradient descent. For
the graph structure we use a grid graph with each pixel having a neighborhood consisting of the 4
adjacent pixels. We repeat this experiment with a new set of training, validation, and test samples
5 times so that we may obtain statistical significance results. The test set accuracy results for each
method are shown in Table 1. For each competing method we perform a Wilcoxon signed-rank test
against the k-support total variation results. In all listed cases the test rejects the null hypothesis (at
a significance level of p < 0.05) that the samples come from the same distribution.

In some applications with spatially contigous data (e.g. the classification of registered images) the
properties of the visualization afforded by the derived model parameters can be critical in providing

1The proof of this statement follows from the fact that optimization subject to the intersection of two con-
straints has a Lagrangian that is exactly a regularized risk minimization with the two corresponding penalties
each with their own Lagrange multiplier.
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Method Acc. (p-value) Stability
`2 68.12% (0.042) 96.7%
`1 70.84%(0.042) 54.8%
k-support 71.24%(0.043) 58.7%
TV+`1 79.80%(0.043) 89.5%
k-sup/TV 82.8 97.4%

Table 1: Average test accuracy results for
5 trials of synthetic data along with p-value
for Wilcoxon hypothesis performed for each
method against the k-support/TV result, be-
low 0.05 for all cases. Pixel selection stability
refers to the frequency of ground truth non-
zero pixels remaining non-zero across all 5
trials

Figure 1: (top left to bottom right) ideal weight
vector, weight vector obtained with `1,`2, k-
support norm, TV+`1, and k-support/TV regu-
larizer, and weight vector with combined total
variation and k-support norm regularizer

users insight into the model. We can qualitatively evaluate this property of our sparse regularizer for
data fulfilling the structure and sparsity characteristics which are hypothesised by the (k, s) support
total variation norm: sparse with smooth contiguous regions.

In Figure 1 we can visualize the weight vector produced by the various regulazation methods, we
can see that in Figure 1 the k-support norm alone does a poor job at reconstructing a model with
any of these local correlations in place. The TV+`1-regularizer does a substantially better job at
indicating the areas of interest for this task but the k-support/TV regularizer produces smoother
regions (which are more easily interpertable) and substantially better classification accuracy.

We can see an additional advantage of the k-support total variation regularizer over the TV+`1 regu-
larizer in terms of stability of the results. In applications where the support of the model parameters
is used to interpret the model, methods which produce stable results in terms of selecting the same
support on various folds of the data are preferable [6, 13]. Table 1 demonstrates the substantially
improved selection stability for k-support total variation. Here we determine the average fraction
of times a voxel is selected within the true active regions (based on the ground truth). We note that
`2 constraints improve stability of the solution since they prevent correlated features from being
discarded when searching for sparse solutions.

Low Sample Complexity MNIST Classification We consider a simple classification problem
using the MNIST data set [14]. We select a very small subset of data to train with in order to
demonstrate the effectiveness of our regularizer. We train a one versus all classifier for each digit. In
the case of each digit we take 9 negative training samples, one from each other digit, and 9 positive
training samples of the digit. We use a large validation set consisting of 8000 examples to perform
parameter selection. We use a regularized risk function consisting of Ωk+tv and logistic loss. We test
on the entire MNIST test set of 10000 images. We optimize a logistic loss function combined with
our k-support total variation norm and compare to results from `1, `2, k-support norm, and TV+`1
penalties combined with logistic loss. We perform optimization using FISTA on the k-support norm
[3, 11] and a smoothing applied to the total variation. For the graph structure, specified by D, we use
a grid graph with each pixel having a neighborhood consisting of the 4 adjacent pixels. We obtain
surprisingly high classification accuracy using just 18 training examples. The results in Table 2
show classification accuracy for each one versus all classifier and the the average of the classifiers.
In all but two case the k-support TV norm outperforms the other regularizers.

M/EEG Prediction We apply k-support total variation regularization to an M/EEG prediction
problem from [15]. The data is preprocessed in the same way as in [15]. This results in data
samples with 60 channels, each consisting of a time-series presumed to be independent across chan-
nels. Following [15] we use results only for subject 8 from this dataset. For the total variation
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Class. `1 `2 KS `1+TV KS+TV
D0 93.62± .01 93.49± .01 93.68± .02 96.22± .01 96.27± .01
D1 90.1± .02 89.56± .02 90.08± .02 90.57± .02 92.18± .02
D2 78.28± .03 77.28± .03 78.25± .03 81.47± .02 81.39± .03
D3 68.58± .02 68.05± .02 68.60± .02 71.63± .02 73.25± .02
D4 83.81± .01 82.55± .01 83.76± .01 84.69± .01 84.79± .01
D5 73.7± .03 73.2± .02 73.69± .03 74.52± .02 74.95± .02
D6 93.48± .01 93.37± .01 93.51± .01 93.71± .01 94.08± .01
D7 88.88± .02 87.21± .02 88.85± .02 91.67± .01 92.59± .01
D8 70.79± .02 72.07± .03 72.75± .02 73.23± .02 73.10± .02
D9 85.48± .02 85.61± .02 85.49± .02 85.5± .03 85.60± .03

Table 2: Accuracy for One versus All classifiers on MNIST using only 18 training examples and
standard error computed on the test set

Classifier Mean Acc. Acc std.
SVM [15] 65.44% 2.29%
ksp-TV SVM 66.84% 3.42%
TV-L1 SVM 60.70% 4.66%

Table 3: Mean and standard deviation for
SVM classifier, k-support total variation reg-
ularized SVM, and TV-L1 regularized SVM
computed over 5 folds
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Figure 2: Average model error for background
subtracted image reconstruction for various sam-
ple sizes

graph structure, we impose constraints for adjacent samples within each channel, while values from
different channels are not connected within the graph. In the original work a latent variable SVM
with delay parameter h is used to improve alignment of the samples. We consider only the case for
h = 0, which reduces to the standard SVM. To directly compare our results we utilize hinge loss
with a constant C of 2 × 104, the same regularization value used in [15]. Thus we optimize the
following objective

R(w) =
C

N

N∑
i=1

max{0, 1− yi〈w, xi〉}+ (1− λ)(‖w‖spk )2 + λ‖Dw‖1

Where λ allows us to easily tradeoff between k-support and total variation norms, while maintaining
a fixed weight for our regularizer comparable to [15]. We use a k value of 2500 (approximately
80%) of the maximum and a λ parameter of 0.1. Table 3 shows the mean and standard deviation
for the classification accuracy. We use the same partitioning of the data as described in [15], and
obtain an improvement over the original results. We note that TV-L1 regularization has relatively
poor performance. We hypothesize this is because the data used is very noisey and not extremely
sparse.

Background Subtracted Image Recovery We apply k-support total variation regularization to
a background subtracted image reconstruction problem frequently used in the structured sparsity
literature [16, 17]. We use a similar setup to [16]. Here we apply m random projections to a
background-subtracted image along with Gaussian noise, and reconstruct the image using the pro-
jections and projection matrices. Our evaluation metric for the recovery is the mean squared pixel
error. For this experiment we utilize a FISTA technique with squared loss [3, 5] and a smoothed
total variation term. To speed up convergence we make the smoothing parameter adaptive.
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We selected 50 images from the background segmented dataset and converted them to grayscale. We
use squared loss and k-support total variation to reconstruct the original images. We compute nor-
malized recovery error for different number of samples m and compare our regularizer to LASSO,
TV+`1, and StructOMP. The latter is a structured regularizer which performs best on this problem
in [17]. The average normalized recovery error is shown for different sample sizes in Figure 2.

Figure 3: Background subtracted image recovery example for different methods and sample sizes

In terms of recovery error we note that k-support total variation substantially outperforms LASSO
and TV+`1, and outperforms StructOMP for low sample complexity. Further examination of the
images can reveal other advantages of the k-support total variation regularizer. An example for
one image recovery scenario is shown at 2 different sample sizes in Figure 3. Here we can see
that at low complexity StructOMP and LASSO can completely fail in terms of creating a visually
coherent reconstruction of the image. TV+`1 recovery at the low sample size improves upon the
latter methods, producing smooth regions, but still not resembling the human shape pictured in the
original image. k-support total variation has better visual quality at this low sample complexity, due
to its ability to retain multiple groups of correlated variables in addition to the smoothness prior.
For the case of a larger number of samples, illustrated by the bottom row of Figure 3, we note that
although the recovery performance of StructOMP is better (lower error), the visual quality of the
k-support total variation regualrizer produces smoother and more coherent image segments.

4 Conclusions

We have introduced a novel norm that incorporates spatial smoothness and correlated sparsity. This
norm, called the (k, s) support total variation norm, extends both the total variation penalty which
is a standard in image processing and the recently proposed k-support norm from machine learn-
ing. The (k, s) support TV norm is the tightest convex penalty that combines sparsity, `2 and total
variation constraints jointly. We have derived a variational form for this norm for arbitrary graph
structures. We have also expressed the dual norm as a combinatorial optimization problem on the
graph. This graph problem is shown to be NP-hard motivating the use of a relaxation, which is shown
to be equivalent to the weighted combination of a k-support norm and a total variation penalty. We
have shown that this norm approximates the (k, s) support TV norm within a factor that depends
on properties of the graph as well as on the parameters k and s. Moreover, we have demonstrated
that joint k support and TV regularization can be applied on a diverse variety of learning problems,
such as classification with small samples, neural imaging and image recovery. These experiments
have illustrated the utility of penalties combining k-support and total variation structure on problems
where spatial structure, feature selection and correlations among features are all relevant.
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