NIPS Workshop on
Discrete Optimization in Machine Learning (DISCML)

  • Topics
  • Invited Talks
  • Organizers
  • Format
  • Links

Recorded talks

DISCML 2012

  • Satoru Fujishige: Submodularity and Discrete Convexity
  • Venkat Chandrasekaran: Computational and Statistical Tradeoffs via Convex Relaxation
  • Amir Globerson: What cannot be learned with Bethe Approximations
  • Alex Smola: The Parameter Server

DISCML 2011

  • Jack Edmonds: Polymatroids and Submodularity
  • Pushmeet Kohli: Exploiting Problem Structure for Efficient Discrete Optimization
  • Francis Bach: Learning with Submodular Functions: A Convex Optimization Perspective
  • Nicolo Cesa-Bianchi: Combinatorial prediction games

DISCML 2010

  • Satoru Iwata: Submodular Function Minimization
  • Jan Vondrak: Multilinear relaxation: a tool for maximization of submodular functions
  • Tamir Hazan: Mixing sum-product and max-product type updates to tighten tree-reweighted upper bounds for the log-partiton function
  • Stefanie Jegelka: Online submodular minimization with combinatorial constraints
  • Yuri Boykov: Energy Minimization with Label costs and Applications in Multi-Model Fitting
  • Terry Koo: Dual decomposition for inference in natural language processing
  • Joachim Buhmann: Information Theoretic Model Validation by Approximate Optimization
  • Carlos Guestrin: Taming Information Overload
  • Daniel Golovin: Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization
  • DISCML 2012
  • DISCML 2011
  • DISCML 2010
  • DISCML 2009

© Andreas Krause, Pradeep Ravikumar, Jeff Bilmes, Stefanie Jegelka