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Abstract

Bayesian optimization and kernelized bandit algorithms are
widely used techniques for sequential black box function
optimization with applications in parameter tuning, control,
robotics among many others. To be effective in high dimen-
sional settings, previous approaches make additional assump-
tions, for example on low-dimensional subspaces or an ad-
ditive structure. In this work, we go beyond the additivity
assumption and use an orthogonal projection pursuit regres-
sion model, which strictly generalizes additive models. We
present a two-stage algorithm motivated by experimental de-
sign to first decorrelate the additive components. Subsequently,
the bandit optimization benefits from the statistically efficient
additive model. Our method provably decorrelates the fully
additive model and achieves optimal sublinear simple regret
in terms of the number of function evaluations. To prove the
rotation recovery, we derive novel concentration inequalities
for linear regression on subspaces. In addition, we specifi-
cally address the issue of acquisition function optimization
and present two domain dependent efficient algorithms. We
validate the algorithm numerically on synthetic as well as
real-world optimization problems.

1 Introduction
Experimental design (Chaloner and Verdinelli 1995) is a
branch of statistics for optimally acquiring information in
order to reduce uncertainty about a quantity of interest. The
related fields of kernelized bandit algorithms and Bayesian
optimization (Srinivas et al. 2010; Shahriari et al. 2016) seek
to adaptively query a noisy function in order to identify an
input with maximum value. Such a procedure can also be
viewed as an adaptive experimental design for the optimal
input. Bandit optimization and experimental design in general
have been successfully used in many applications such as
clinical trials (Lizotte 2008), parameter tuning (Kirschner et
al. 2019) and reinforcement learning (Gopalan, Mannor, and
Mansour 2014).

In this work, our objective is to maximize an unknown
function that is assumed to be additive up to a rotation, using
only noisy function evaluations. The additivity assumption
has been placed in previous work in order to gain statistical
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and computational efficiency on high dimensional domains.
We significantly generalize this setup by allowing the addi-
tivity to occur in an unknown rotated coordinate system.

A Bayesian approach to estimate the rotation is to treat
the projection matrix as a hyper-parameter of a Gaussian
process model and maximize the evidence (marginalized like-
lihood) to determine a candidate rotation (Rasmussen and
Williams 2006). However, this approach has two drawbacks
that severely limit its performance in practice. First, the ev-
idence is a non-convex function on the space of rotation
matrices, that can be heuristically optimized using manifold
optimization techniques (Edelman, Arias, and Smith 1999).
In practice we observed that this approach suffers from local
optima and obtaining a good solution is difficult. Second, it
is a largely open problem how to pick the initial data set in
the first place, yet importantly, the sample set determines the
quality of the solution significantly.

In this work we present a principled two-stage algorithm
based on experimental design. We first derive a design to
efficiently estimate the unknown rotation of the coordinate
system by estimating the Hessian of the black box function at
a single point with optimal experimental design. We control
the error in the estimate of the rotation by evaluating the func-
tion at carefully chosen points and consequently provably
de-correlate the parameters. Finally, we proceed to efficiently
optimize the de-correlated function by using a bandit algo-
rithm designed for additive functions.

Summary of Contributions
• We analyze a novel two stage bandit algorithm for esti-

mating and optimizing the orthogonal projection pursuit
model, which generalizes additive models.

• We reduce the estimation of the rotation to linear regres-
sion on a subspace; and we derive novel concentration
inequalities for subspace estimation that are of indepen-
dent interest. These allow us to carefully trade-off two
counteracting errors - the local approximation error and
the error due to noisy observations.

• We derive a sample complexity bound for simple regret
that is asymptotically optimal in the number of queried
points and scales polynomially in the dimension of the
input parameter.



• We explicitly address the problem of acquisition func-
tion maximization and provide tractable optimization algo-
rithms.

Related Work Kernelized Bandits and Bayesian optimiza-
tion are a family of algorithms that use frequentist confidence
intervals or probabilistic models to determine the next evalu-
ation point (Mockus 1982; Shahriari et al. 2016). Many vari-
ants appear in literature; including GP-UCB (Srinivas et al.
2010), Thompson Sampling (Chowdhury and Gopalan 2017),
Expected Improvement (Mockus 1982); and recently infor-
mation theoretic criteria such as MVES or IDS (Wang and
Jegelka 2017; Kirschner and Krause 2018). Scaling Bayesian
optimization to high dimensional setting has been consid-
ered recently, as many of the commonly used kernels suf-
fer from the curse of dimensionality. Hence, to make the
problem tractable, most approaches make structural assump-
tions on the function such as additivity (Rolland et al. 2018;
Mutný and Krause 2018) or a low-dimensional active sub-
space (Djolonga, Krause, and Cevher 2013; Wang et al. 2016;
Kirschner et al. 2019). Beyond additivity, a stronger assump-
tion is made by Li et al. (2016) which assumes a version of
projected pursuit regression (PPR). Their decorrelating algo-
rithm is based on the EM algorithm of Saati, Cunningham,
and Gilboa (2013) without provable guarantees. A provable
algorithm for active learning is demonstrated in (Hemant
and Cevher 2012) which considers a similar model to ours
utilizing different techniques. More recently, Zhang, Li, and
Su (2019) consider a more general model than PPR.

Problem Statement For positive integer k, we denote
[k] = {1, . . . k}. Let D ⊂ Rd be a bounded domain. Our
objective is to maximize an unknown black box function
f : D → R using only noisy point observations y = f(x)+ε.
The noise is assumed to be independent and σ2-subgaussian.
Simple regret of a point x ∈ D is defined as

r(x)
def
= max

x′∈D
f(x′)− f(x) (1)

The goal is to return a solution xfinal with small simple regret
rfinal = r(xfinal), which is the same as small optimization er-
ror. Clearly, the general problem is intractable without further
smoothness assumptions on f . The central assumption used
in the literature on kernelized bandits and Bayesian optimiza-
tion is that f is a member of a known reproducing kernel
Hilbert space (RKHS). We denote by Hk the RKHS with
associated kernel k and Hilbert norm ‖·‖k.
Assumption 1 (Global RKHS). There exists a known Mercer
kernel κ, such that f ∈ Hκ and ‖f‖κ ≤ B and f is L-
Lipschitz and k is twice differentiable.

This assumption alone does not guarantee statistical effi-
ciency, and in fact with isotropic kernels, sample complexity
bounds are known to be exponential in the dimension (Scar-
lett, Bogunovic, and Cevher 2017). A powerful, yet tractable
model is projection pursuit regression (PPR) (Friedman and
Stuetzle 1981) which assumes that f(x) =

∑r
i=1 fi(β

>
i xi)

for unknown vectors βj ∈ Rd and one-dimensional compo-
nent functions fi : R→ R. For our approach we require that
the vectors βi are orthogonal, which allows for functions that
are additive in an arbitrary rotated coordinate system.

(a) Pick an initial point x0. (b) Experimental design to deter-
mine the Hessian at the point x0.

(c) Rotate (decorrelate) the input
space.

(d) Perform additive bandit opti-
mization.

Figure 1: The different stages of Algorithm 1. The dashed
lines represent the axis over which the function is additive.

Assumption 2 (Orthogonal PPR). The function f can be
written as f(x) = f̃(Rx) for an unknown orthogonal matrix
R ∈ Rd×d and an additive function f̃(x̃) =

∑d
i=1 f̃i(x̃i).

Further, f̃ ∈ Hk for an additive RKHS with kernel k(x, y) =∑d
i=1 ki(xi, yi) and ‖f̃‖k ≤ B.

One example of a function that satisfies our assumptions
is a polynomial of fixed degree that is obtained from rotating
another polynomial function without cross terms. In this case
both kernels can be chosen as the corresponding polynomial
kernel. Furthermore, our results hold more generally for maps
R ∈ Rl×d with orthogonal columns RR> = Il×l, where
l ≤ d (also known as Stiefel manifold) and group additive
function, as we discuss in more detail later.

2 A Two-Stage Algorithm

We present a two-state algorithm based on experimental de-
sign. In the first stage, we determine a design to estimate the
Hessian of the function at an arbitrary starting point x0 which
allows us to identify the correlating matrix R. At the second
stage, we de-correlate the parameters and perform bandit op-
timization, where we benefit from the low sample complexity
of additive models (Krause and Ong 2011). The stages of
the algorithm are illustrated in Figure 1 and pseudo-code is
provided in Algorithm 1.

Bayesian Optimization Bayesian optimization and kernel-
ized bandits leverage the RKHS assumption by constructing
a kernel regression estimate of the objective. Specifically,



Algorithm 1 Orthogonal PPR - Bandit Algorithm

Require: global kernel κ, kernels {ki}|d|i=1, bound B, arbi-
trary starting point x0, discretization of domain D

1: Estimate Hessian H̃(x0) of f at point x0 via Experimen-
tal design (see Algorithm 3)

2: Perform eigendecomposition of H = Q>D̃Q.
3: Transform Q>D
4: Perform kernelized Bandit algorithm with additive struc-

ture on Q>D (see Algorithm 2)

given data {(x1, y1), . . . , (xt, yt)}, the mean estimate is

µt = arg min
µ∈Hk

t∑
s=1

(µ(xs)− ys)2 + λ‖f‖2k .

A closed-form solution can be obtain with representer the-
orem for infinite dimensional Hk. Frequentist confidence
bounds µt(x) ± βt(δ)σt(x) that contain the true function
value f(x) are known also for adaptively collected data (Srini-
vas et al. 2010; Abbasi-Yadkori and Szepesvari 2012). Here
σt(x)2 is the posterior variance of the corresponding Gaus-
sian process model GP(µt(x), σ2

t (x)) and βt(δ) is a scaling
parameter to control the coverage probability. Bayesian opti-
mization algorithms use the uncertainty σt(x) associated to
a prediction µt(x) to balance exploration between uncertain
and promising parameters x. Many different methods are
known. We focus on Thompson sampling (Chowdhury and
Gopalan 2017) which samples points according to their pos-
terior probability of being optimal in the Bayesian Gaussian
process model (Algorithm 2). This approach was recently
noted to have computational advantages when used with ad-
ditive models (Mutný and Krause 2018).

Algorithm 2 Kernelized Thompson sampling

Require: Kernels {ki}di=1
1: for t = 1 . . . T do
2: Compute GP estimates µt(x)± βt(δ)σt(x)
3: αt ∼ GP (µt, βt(δ)

2σt) . Sample from a GP
4: xt = arg maxx∈D αt(x) . Acquisition step
5: yt = f(xt) + εt . Noisy feedback
6: end for
7: return xfinal = arg maxt∈[T ] µt(xt)− βt(δ)σt(xt)

3 Experimental Design for Rotations
In order to identify the unknown rotation matrix R we use the
property that the Hessian∇2f̃(Rx) of an additive function
is diagonal. Namely, due to Assumption 2 we know that at
any x ∈ D,

H(x) = ∇2f(x) = R>∇2f̃(Rx)R . (2)

As H(x) is symmetric and under the condition that all
eigenvalues are distinct, we can recover R from the unique
eigenspaces of H(x) up to a permutation of the coordinates.
Hence, in order to determine R, we first estimate the Hessian

matrix at the initial point x0 and subsequently perform an
eigendecomposition to identify R up to a permutation.

Without noise we could resort to a simple finite difference
scheme to estimate the Hessian up to machine precision by
decreasing the step-size. With noisy observations, however,
we cannot rely on the accuracy of a single measurement,
and the closer we perform our estimation to x0, the worse
the signal to noise ratio gets. On the other hand, evaluations
far apart from x0 diminish the information content about the
Hessian unless the true functions is quadratic. Hence, in order
to estimate the Hessian well, it is crucial to query at points
that balance both sources of error.

Experimental Design for the Hessian Formally, we
would like to minimize the error of our estimate H̃ of the Hes-
sian H evaluated at x0. For our further analysis, a bound with
respect to the spectral norm is sufficient but cumbersome to
optimize with optimal experimental design. Hence, we work

with the Frobenius norm
∥∥∥H̃−H

∥∥∥2

F
instead, which upper

bounds the spectral norm.
Due to the Mercer’s property (Assumption 2), f can be

represented as an element of a finite dimensional RKHS,
f(·) = Φ(·)>θ up to arbitrary precision. In what follows we
assume that θ ∈ Rm. Consequently, the Hessian at the point
x0 can be evaluated as

H(x0) =

m∑
k=1

∇2
x0

[Φk]θk.

In vectorized form, the Frobenius norm becomes the 2-
norm, that can be minimized with experimental design. Opti-
mal experimental design seeks a probability measure η over
the domain D that minimizes the norm. In other words, η
represents the budget spent on the points in D in order to
maximize the statistical efficiency of estimating Hessian.

Let θ be the true parameter and θ̂(η) be the least squares
estimate with the design η. Let Ckj = vec(∇2

x0
[Φk])j be

the subspace that defines the Hessian. Note that knowing θ
on this subspace fully specifies the Hessian at x0. Hence our
objective becomes

min
η

∥∥∥H̃(η)−H
∥∥∥
F

= min
η

∥∥∥C(θ̃(η)− θ)
∥∥∥

2
. (3)

In the next theorem, we derive a novel concentration inequal-
ity on linear subspaces, which is the key result that allows to
balance the error of local approximation and the statistical
error in the estimation.
Theorem 1 (Fixed design on a subspace). Assume a linear
regression problem with T data points in m dimensions (po-
tentially k ≤ T ). Let θ̂ be regression estimate of θ ∈ Rm s.t.
‖θ‖2 ≤ B. Let C ∈ Rk×m such that ∃A ∈ Rk×T full rank
s.t.

‖C−AΦ(X)‖2 ≤ ς ‖A‖2 , (4)
then the following holds,

P

∥∥∥C(θ̂ − θ)
∥∥∥
W−1

≥ σ
√
ξ(δ) +

ς√
1− ς

‖Φ(X)‖2

B

 ≤ δ,



where ζ(ς) := ς√
1− ς
‖Φ(X)‖2

, W = CV†C> invertible and

V = Φ(X)>Φ(X) is the empirical covariance matrix, V+

is the pseudo-inverse of V and ξ(δ) = k + 2
√
k log( 1

δ ).

Specifically we can upper bound (3) by the largest eigen-
value of the matrix W, and then apply the statement in the
theorem,∥∥∥C(θ̃(η)− θ)

∥∥∥
2
≤
√
λmax(W)

∥∥∥θ̃(η)− θ
∥∥∥
W−1

≤
√
λmax(W(η))(σ

√
ξ(δ) + ζ(ς)B) (5)

that holds with probability at least 1 − δ, where ξ(δ) =

k + 2
√
k log( 1

δ ). Having this form we need to search for
a design that minimizes the largest eigenvalue of W and
satisfies the condition in (4). This condition captures whether
the chosen design points Φ(X) can contain information about
the vector θ in the subspace C to the precision ς (ζ(ς) is close
to ς for small values), and the condition can be checked by
simply solving a linear system.

E-experimental design Minimizing the largest eigenvalue
of W is known as E-experimental design in the literature,
and it can be solved via a convex relaxation (Fedorov and
Hackl 1997). This yields a probability measure η over a
discrete subset of points from the domain D. It is important
that the subset is chosen to capture information about the
subspace of interest (condition (4)) with ζ(ς) = ε in order
to estimate the vector θ on the subspace up to precision ε.
Having this, we could optimize the objective using Frank-
Wolfe. The solution to the optimization problem leads to
φ∗ = λmax(W(η∗)). This value can be reduced by repeated
evaluation of the design such that the overall accuracy of
the estimated value on the subspace is below the desired ε.
However, in general, the design η∗ is supported at most d2m
design points (Chaloner 1984). As m can be arbitrarily large,
this straightforward approach is not satisfactory.

Instead, to avoid the dependence on m, we resort to a
specific experimental design for the Hessian. Namely, Taylor
expansions of twice differentiable functions suggest a design
based on finite differences (Quarteroni, Sacco, and Saleri
2007). These are called stencils, and one is demonstrated in
Figure 2a and formalized in Definition 1. Stencils satisfy the
condition (4) for sufficiently small h for twice differentiable
kernels and are of size d2+d+1. Informally, these evaluation
points allow to estimate a local quadratic approximation of
the function.

Definition 1 (Hessian stencil design). Let h ∈ R+ and x0 ∈
Rd. Let {x0, x0 + he1, . . . , x0 + hed, x0 − he1, . . . , x0 −
hed}∪{x0±h(ei + ej)|i < j} be a set of design points. We
call such a set Hessian stencil design and associate to it the
measure η(h).

This class of designs can be used to estimate a Hessian,
and the parameter h determines the approximation-noise
trade-off. Specifically, we choose designs η(h) parametrized
by a step size h. In contrast to the standard approach, our
designs assures a small support size O(d2). Let us define
φ(h) = λmax(W(η(h))), the value of the design and φ∗ =

minh φ(h) such that condition (4) is satisfied. The optimal
h∗ and its corresponding design η∗ can be found by a one
dimensional grid search prior to the experimental design
phase as it depends only on the kernel, the noise level and the
desired accuracy ε. Establishing the η∗, we can reduce the
value of φ∗ arbitrarily by repeating the point evaluations. This
way we increase the accuracy of the least squares estimator
on the subspace of interest.

Property 1. Let η be a probability measure leading to a
design with value φ. By performing n repeated evaluations
according η, we reduce the value of the design φ by 1

n .

Specifically, in order to reduce
∥∥∥H̃(η)−H

∥∥∥
F

to ε with

high probability, we need a design such that ζ(ς) = ε
B and

perform σφ∗ξ(δ)
ε2 repeated evaluation of the design supported

on d2 +d+1 points. Inverting the expression, the error ε(TR)
of the Hessian estimate after TR evaluations is

ε(TR) =

√
σ(d2 + d+ 1)ξ(δ)φ∗

TR
. (6)

Algorithm 3 Experimental Design for Hessian Estimation

Require: global kernel κ, bound B, accuracy ε
1: Pick a point x0 satisfying Assumption 3 . Verifiable

during runtime
2: Calculate C, Ckj = vec(∇2

x0
[Φk])j

3: Find h∗ = arg minh∈R+
λmax(W−1(η(h))) where

η(h) is a Hessian stencil design and condition (4) is
satisfied with ζ(ς) = ε.

4: Repeat the design η(h∗) to the desired accuracy ε.

Eigendecomposition Sensitivity Analysis In order to re-
cover the matrix R via eigendecomposition, we make a weak
assumption.

Assumption 3 (Non-degenerate starting point). Let f be
as in Assumption 2 and let the eigenvalues {λi}di=1 of
the Hessian H(x0) of f at x0 be all different with ∆ =
minij |λi − λj | > 0.

Assumption 3 states that x0 needs to be a non-degenerate
point that allows to recover the rotation. The condition can be
verified in practice and if it is not satisfied a different point
can be chosen. The next theorem states, that the rotation is
recovered up to a permutation, which is sufficient for our
approach.

Lemma 1. Suppose H̃ and H ∈ Rd×d be such that Assump-
tion 3 holds, and have eigendecompositions H = R>DR

and H̃ = Q>D̃Q. Also, let
∥∥∥H− H̃

∥∥∥
2
≤ ε, then

|(Q>R)ij −Pij | ≤
2εd2

∆
(7)

where ∆ = minij |λi − λj |, {λi}di=1 are eigenvalues of H̃,
and P is a permutation matrix.



As an immediate consequence of this lemma we obtain

‖R−PQ‖2 ≤
2εd3

∆
, (8)

for details we refer to Lemma 8 in the Appendix.

4 Regret Analysis
We continue to analyze the regret of Algorithm 1. We make
use of the fact that the estimated rotation Q is close to the
true rotation in the sense that RQ> ≈ P is approximately
a permutation. Therefore f(Rx) = f(RQ>x̃) becomes al-
most additive in x̃. We make this precise below and show
how to control the error induced by the miss-specification.

More formally, by (6) and (8) we can ensure that ‖RQ>−
P‖2 ≤ 2ε(TR)d3/∆. As we show in Lemma 8 in the Ap-
pendix, this implies that

|f(RQ>x̃)− f(x̃)| ≤ 2BLε(TR)d3

∆
= ω . (9)

We control how this bias affects the RKHS estimate in propo-
sition in the Appendix. Effectively, the estimate of the func-
tion f satisfies |µt(x̃) − f(x̃)| ≤ βt(δ)σt(x̃) with proba-
bility at least 1 − δ, where βt(δ) =

√
γT + 2 log(1/δ) +

λB + ω
√
T . The quantity γT is called the maximum in-

formation gain and is a standard complexity measure in
Bayesian optimization. It is equal to the log determinant
γT = log det(Kt+λI)

det(λI) of the kernel matrix Kt.
The misspecification bias ω can be reduced by increasing

the accuracy of the estimate of Q. The accuracy increases
with the number of data points TR allocated to the first stage.
The analysis above suggest that ω ≤ O(1/

√
TR). Conse-

quently, we can rely on any Bayesian optimization algo-
rithm for additive functions, that uses the rescaled confidence
bounds. Specifically, the final solution returned by Thompson
sampling satisfies the following bound

rfinal ≤ Õ

(√
d

T

(
γT +B ln

1

δ
+
√
Tω
))

(10)

where we suppress logarithmic factors with Õ(·).
This result follows by substituting our modified confidence

bounds into the analysis of Thompson sampling (Chowdhury
and Gopalan 2017; Abeille and Lazaric 2016). Note that ex-
isting results typically bound cumulative regret, but a bound
on the simple regret can be obtained for the final solution
xfinal. For further details see Appendix. By the same rea-
soning one can also use a different method to optimize the
decorrelated problem such as GP-UCB (Srinivas et al. 2010)
and SAFEOpt (Berkenkamp, Schoellig, and Krause 2016).
However other methods do not use an additive acquisition
function, which makes the acquisition step difficult; see also
the discussion in the next section. We summarize the overall
regret bound for our method in the next theorem.
Theorem 2 (Simple Regret). Suppose Assumptions 1, 2
and 3 hold. Further suppose all ki are the same with max-
imum information gain γ̃T . Let Q be the eigenvectors of
the estimated Hessian H̃(x), then using bandit Algorithm

2 as part of Algorithm 1 for a fixed horizon T such that

ε(TR) ≤
√

2λ
T

∆
d34LBD , where λ is the ridge regression

constant,D = maxx∈D ‖x− y‖22 and TR are the iterations
of the first-stage. Then with probability at least 1− 2δ

rfinal ≤ Õ

(
d3/2βT (δ)γ̃

1/2
T√

T

)
(11)

and TR = Θ(T ) is required to control the misspecification.

In particular, the analysis of Theorem 2 reveals that in
order to achieve optimal simple regret, the first stage of the
algorithm needs to use the same order of evaluations as the
horizon of the optimization. Our theoretical result requires
that all kernels are of the same complexity since the matrix
R can be recovered only up to a permutation. However, a
practitioner might approach the problem by first decorrelating
the system, and only then making modeling assumptions on
the individual additive components.

5 Optimizing the Acquisition Function

For optimizing the decorrelated objective, the evaluation
point xt = Qx̃t is sequentially determined by maximiz-
ing the additive acquisition function α(x̃) =

∑d
i=1 αi(x̃i) of

Thompson sampling (Algorithm 2). Below we discuss two
specific approaches, one for polyhedral domains (which in-
cludes commonly used box constraints) and one for spherical
domains.

Polyhedral Domain If the domain is an axes-aligned rect-
angle without the rotation, one can find the maximizer by
simply optimizing each coordinate separately, as also noted
by Rolland et al. (2018) and Mutný and Krause (2018). In
our case, however, the box constraints are rotated (Figure 1c)
and the general problem might not admit an efficient solu-
tion. A practical approach assumes that the true maximizer is
contained within a smaller, axes-aligned box that is inscribed
in the rotated domain, or respectively enlarge the domain if
permitted in the application as done by Li et al. (2016). To
obtain an exact solution on the original domain, we propose
an alternative approach that exploits the additivity via linear
integer programming and is very efficient in practice.

Assume for simplicity that D = [−1, 1]d, but the ap-
proach includes general polyhedral constraints. For the for-
mulation, we require a one-dimensional discretization τ =√

2[−N . . .N ]/N of each axis in the rotated domain, which
can be thought as a vector in R2N+1. We introduce indicator
variables zi ∈ {0, 1}2N+1 for each i ∈ [d]. Each indica-
tor variable satisfies the constraint

∑d
i=1(zi)j = 1 to select

exactly one of the grid points via xi = τ>zi. Denote by
z = (z1, . . . , zd) the concatenated vector and x = Tz for
an appropriate chosen matrix T. The constraint on the do-
main 0 ≤ x̃ ≤ 1 can be modeled as 0 ≤ Q>Tz ≤ 1.
Finally, we associate each component fj(xi) with the vector
c(ij+(i−1)(2N+1)) = fj(τi). This leads to the integer pro-



gram

maxz c
>z

s.t. 0 ≤ Q>Tz ≤ 1∑2N+1
j=1 z(i−1)(2N+1)+j = 1 for each i ∈ [d]

z ∈ {0, 1}d(2N+1)

The integer program can be solved by many established
solvers, for instance by first relaxing the integer constraints
and subsequently using a cutting plane algorithm. Impor-
tantly, if the optimal point is inside an axes-aligned box that
can be inscribed inside the rotated domain, the LP relax-
ation has an integral solution and no discrete optimization is
needed. Hence, if the optimization of the acquisition func-
tion is easy, this will be detected at the stage of the linear
relaxation.

Due to Lipschitz continuity of f , we improve the perfor-
mance of our solver by solving the problem at coarser levels
of discretization and using these solutions as upper and lower
bounds before solving the problem at the desired discretiza-
tion.

Spherical Domain If the domain D is a sphere, e.g. D =
{x : ‖x‖2 ≤ 1} the domain remains unchanged after we ap-
ply the rotation. Note that optimizing each coordinate greed-
ily still leads to suboptimal solutions in general because the
range for a coordinate xi depends on the values of all other
coordinates. To obtain an exact solution we resort to dynamic
programming which wield lied a problem of size d

τ2 . For
details please refer to the supplementary material.

6 Examples and Extensions
Groups of larger sizes The extension toward additive
groups of larger size is straightforward. Let us consider G =
{g1 . . . g|G|} be the groups of variables where each group
contains |gi| variables. Analogically to (2) the Hessian of the
group additive function is block diagonal ∇2f̃ =

⊕|G|
i=1 Yi,

where Yi ∈ R|gi|×|gi|. One can diagonalize such matrix via
S̄ =

⊕|G|
i=1 Si, where each Si is orthogonal on the respec-

tive subspace. Consequently, the eigenvectors of H, simi-
larly as in previous sections, recover an orthogonal matrix
Q> = R>S̄>P, where P is a permutation matrix. The fol-
lowing function becomes group additive as,

f(Q>x) = f̃(RR>S̄>P) = f̃(S̄>Px) = g̃(Px),

where the function g absorbs the rotations of the coordinates
within the groups, and maintains the same additivity degree.
The deficiency of this method is that because of the permuta-
tion we do not immediately get the correct group assignment
of the decorrelated variables. As an example consider the
function f̃(x1, x2, x3) = f̃12(x1, x2)+ f̃3(x3). Suppose that
the permutation swaps x1 and x3. Consequently,

f̃(S̄Px) = f̃12(S1[x3, x2]>,S1[x3, x2]>)︸ ︷︷ ︸
g̃23(x2,x3)

+ f3(S2x1)︸ ︷︷ ︸
g̃1(x1)

,

which is group additive with groups G = ((2, 3), 1). The
group assignment can be estimated again by picking a point

(a) (b)

Figure 2: a) Geometry of a Hessian stencil design (d = 2).
The optimal design is has stared points (origin included). b)
The alignment of additive components for the Michalewicz
benchmark. Two best optima of the Bayesian method and
SRI are reported in red and yellow respectively.

in the domain x and calculating Hessian at this point with
respect to the decorrelated variables. The block structure
of the new Hessian, namely the position of zero elements,
reveals the assignment of the variables to different groups.

Invariant Subspaces Our method for decorrelation of the
additive components is applicable for matrices R ∈ Rn×l
from the Stiefel manifold O(l, d), where l < d satisfying
R>R = Il. With such R, the estimated Hessian will have
d− l zero eigenvalues. The eigenvectors associated to these
eigenvalues span the invariant subspace of the function f̃ .
The remaining eigenvectors of R can be recovered in the
same fashion as previously if the distinct eigenvalue property
holds among them.

Kernel Examples We briefly mention possible choices for
the global and the additive kernel that can be used with our
method. The perhaps most natural example is to choose a
polynomial kernel for both global and additive RKHS. An-
other candidate is the finite basis approximation of stationary
kernels such as in Quadrature Fourier Features (QFF) (Mutný
and Krause 2018).

Additionally, for any kernel in the vicinity of the starting
point x0 one can calculate a finite dimensional approxima-
tion f(x) ≈ Φ(x)>θ where Φ can be calculated by SVD or
Nyström approximation of the kernel matrix that contains
points sampled around x0. Such kernel can be used as global
kernel for the first stage subject to the further constraint that
the stencil size h is not larger than the area of approximation
validity.

Lipschitz continuity in Assumption 1 can be assured if
the finite dimensional feature map Φ(x) is Lipschitz con-
tinuous, or for more general cases if the induced metric
dk(x, y) =

√
k(x, x)− 2k(x, y) + k(y, y) is Lipschitz con-

tinuous. These assumptions are satisfied for all previously
mentioned kernels.

7 Experimental Results
Implementation details In practice, we specify the value
of ε = 10−3 in the first phase of the algorithm, and we model



TR separately as our analysis suggests larger (but not unrea-
sonable) values for TR for short optimization horizons T . The
value of the design depends significantly on the observation
noise σ as in (5). On the other hand, from our experiments,
the Lipschitz constant of f plays a significant role on some
instances such as high-degree polynomials. In such circum-
stances due to the misspecification one can incur large regret,
and in such circumstances a large number of design points is
necessary - as suggested by the analysis.

For comparison, we implement an algorithm that maxi-
mizes the evidence given the rotation matrix:

arg min
R>R=Ik

L({xi, yi}ni=1|R) (12)

where L({xi, yi}ni=1|R) = y>(KR)−1y + log det(KR).
This is a common approach in fitting hyperparameters in
Gaussian process regression (Rasmussen and Williams 2006).
We call this the Bayesian solution in what follows. To solve
it, we use a Stiefel manifold optimizer from the package
pymanopt (Townsend, Koep, and Weichwald 2016). In our
experiments we find that the optimization is erratic and yields
multiple local minima with poor solutions.

Additionally, we compare to Sliced Inverse Regreesion
(SRI) of Li (1991) used by Zhang, Li, and Su (2019) to es-
timate R. This method is implemented via conditioning on
the response variables as E[X|Y = y], which is a curve in
a low dimensional manifold. The conditioning is done by
dividing values of y into non-overlapping slices in a random-
ized fashion. We define an empirical average of the algorithm
randomization on the Stiefel manifold as Bootstrap SRI.

Benchmarks We validate our methods on standard bench-
marks from the additive Bayesian optimization literature
(Gardner et al. 2017). We first focus on an explanatory ex-
ample in Figure 3a, where we optimize a two dimensional
function. We see that the Bayesian solution converges to
a suboptimal point due to the misspecification error which
is evident from the Figure 2b. The SRI on itself performs
eratically but the heuristic of averaging the SRI estimates
(bootstrap) performs competitively. For the Bayesian solu-
tion and SRI, we use the same data points as in the stencil
design for a fair comparison. For this example, we used QFF
for global and local kernel with sufficiently large basis.

In Figure 2b, we optimize a 5 dimensional function, which
is a sum of polynomials of degree 4, where the polynomial
kernel was used globally but due to sensitivity of misspeci-
fication (large Lipschitz constant), the squared exponential
kernel was used along the coordinates. We see that both esti-
mates are misspecified in comparison to the full model and
lead to suboptimal solutions.

In the last benchmark problem (Figures 3b and 3c), which
models the performance of a real-world electron laser ma-
chine, we use the local inducing point approximation of the
squared exponential kernel that we outlined in the previous
section for the global kernel, and we use QFF for the additive
components in the second stage. In both instances, the full
model acquisition function is optimized only approximately
using first-order optimization, along with polynomial or Ran-
dom Fourier Feature approximation (Rahimi and Recht 2007)

to efficiently optimize the posterior sample (which would not
otherwise have an analytical form).

The one-time evaluation of C is the most costly operation
of the algorithm. It requires second order derivatives of the
feature map Φ(x). This can be potentially very large - even
exponential in d as is the case for polynomial features.

(a) Michalewicz benchmark with
d = 2. The true additive is
run with the true rotation matrix
Q = R.

(b) StyblinskiTang benchmark
with d = 5.

(c) Electron Laser Simulator
benchmark with d = 5

(d) Electron Laser Simulator
benchmark with d = 10.

Figure 3: Numerical validation of the algorithm. To make the
comparison fair, the OPPR algorithms are shifted to account
for the Hessian estimation phase.

8 Conclusion

We presented a novel two-stage algorithm for black-box op-
timization of functions satisfying the orthogonal projection
pursuit regression model, where each component function
is modeled as a function in a RKHS. In the first stage, the
algorithm uses experimental design to provably recover the
correlating matrix such that the additive components can be
efficiently optimized in the second stage. We specifically ad-
dressed how to optimize the acquisition function of such a
model, presented extension to larger groups and invariant
subspaces, and numerically validated the method.
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