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Abstract— The amount of power that a photovoltaic (PV)
power plant generates depends on the DC voltage that is applied
to the PV panels. The relationship between this control input
and the generated power is non-convex and has multiple local
maxima. Moreover, since the generated power depends on time-
varying environmental conditions, such as solar irradiation, the
location of the global maximum changes over time. Maximizing
the amount of energy that is generated over time is known as the
maximum power point tracking (MPPT) problem. Traditional
approaches to solve the MPPT problem rely on heuristics
and data-based gradient estimates. These methods typically
converge to local optima and thus waste energy. Our approach
formalizes the MPPT problem as a Bayesian optimization
problem. This formalization admits algorithms that can find the
maximum power point after only a few evaluations at different
input voltages. Specifically, we model the power-voltage curve
as a Gaussian process (GP) and use the predictive uncertainty
information in this model to choose control inputs that are
informative about the location of the maximum. We extend
the basic approach by including operational constraints and
making it computationally tractable so that the method can be
used on real systems. We evaluate our method together with
two standard baselines in experiments, which show that our
approach outperforms both.

I. INTRODUCTION

The ability to generate renewable energy from photovoltaic
(PV) panels is an important tool towards a solution for
problems such as global warming and climate change [1].
An advantage of solar energy is that it can be used in remote
locations, where no electricity network is available. To make
solar energy more attractive in general, it is important to im-
prove the efficiency of solar panels. Improving the underlying
control algorithms is an attractive starting point, as software
on existing panels can be updated easily. The challenge for
these control algorithms is that the optimal control input
varies greatly during the day and depends on the position
of the sun, moving clouds, and shadows cast by surrounding
buildings [2], which are difficult to model. To achieve max-
imum power point tracking (MPPT), the control algorithm
must track the global optimum of a changing, non-convex
function with changing optima. State-of-the-art algorithms
used in the industry rely on gradient ascent methods, which
typically only converge to local maxima and thereby waste
energy. In contrast, the MPPT algorithm that we introduce in
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this paper is able to track the maximum power point (MPP)
globally and thereby generates significantly more energy.

At the heart of MPPT lies the problem of finding the
optimum of an unknown function, the power-voltage curve.
In general, any existing optimization technique can be used.
The amount of power generated depends, to large parts,
on the properties of the optimization method. Many dif-
ferent methods have been evaluated in the literature [3],
[4]. The most common techniques used are gradient ascent
algorithms, which operate by perturbing the applied voltage
periodically until a local power optimum is found. To avoid
oscillations around the optimum, variable steps sizes have
been explored in [5] and [6]. However, the main problem
with gradient-based methods is that they waste energy, since
they typically converge only to a local optimum.

Other methods that have been explored for MPPT include
fuzzy logic control in [7] and [8]. However, the resulting
performance depends on approximations and the manual
construction of a rule base. Another method is current
sweep [9], which computes the power-voltage curve directly
by sweeping through all input voltages. This method is
infeasible for large plants, wastes significant amounts of
energy during the sweep, and cannot track fast changes in
the MPP caused by changing environmental conditions.

More recently, learning approaches have been considered.
In particular, neural networks have been used to learn optimal
voltage inputs depending on measurements of irradiation,
temperature and various parameters of the PV array [3]. The
main disadvantage of neural networks is that they require
large amounts of training data and are specific to particular
PV models and atmospheric conditions. If a certain condition
is encountered that has not been part of the training set, the
neural network does not pick optimal actions.

A method, which has not been considered for MPPT
previously, but which is popular in the area of machine
learning, is Bayesian optimization. In general, Bayesian
optimization has the goal of finding the global optimum of
an unknown function within few evaluations. One popular
approach is to model the unknown function as a Gaussian
process (GP) [10]. GP models provide a mean estimate
and associated uncertainty information, which is used in
Bayesian optimization to guide future function evaluations
to locations that are informative about the maximum [11].
For example, this method has been used to optimize linear
quadratic controllers on a real system [12] and to optimize
controller parameters subject to safety constraints [13], [14].

Our approach for MPPT is based on Bayesian optimiza-
tion and models the power-voltage curve as a GP. The
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voltage inputs are selected with the GP-Upper Confidence
Bound (GP-UCB) algorithm [11]. We extend this algorithm
to comply with operational and computational constraints.
The result is an efficient and feasible algorithm that can
exploit previous knowledge to find and track the global
MPP. In contrast to the previously mentioned approaches, our
MPPT algorithm does not rely on a manually designed rule
base, deals gracefully with new and changing environmental
conditions and generates more energy.

II. MODEL

In this section, we review the model of a single PV power
cell. We use a series combination of these models in order
to evaluate our method experimentally in Sec. V.

Fig. 1. Equivalent circuit of a PV cell. The control input is the voltage Vpv ,
while the current Iph is dictated by environmental conditions.

An illustration of the model of a single photovoltaic cell
according to [2] is shown in Fig. 1. Environmental conditions
determine the generated current Iph, which is modeled as a
function of solar irradiance G, and ambient temperature T ,

Iph(G,T ) =
(
Isc +Ki(T − Tr)

) G
Gr

, (1)

where the parameters specific to the PV cell are the short cir-
cuit current Isc, the temperature coefficient Ki, the reference
irradiance Gr, and the reference temperature Tr.

We model the current I0 that flows through the diode as

I0 = I01

(
exp

(
q(Vpv + IpvRs)

AkbT

)
− 1

)
, (2)

which depends on the diode saturation current I01, the diode
ideality factor A, the electron charge constant q, and the
Boltzmann constant kb.

By applying Kirchoff’s law on the top-left node in Fig. 1,
the PV current Ipv is given by

Ipv = Iph − I0 −
Vpv + IpvRs

Rp
. (3)

The current Ipv of a single photovoltaic cell can be
obtained by solving (3) and the generated power is equal
to Ppv = VpvIpv .

A. Power Plants and Partial Shading

In large PV power plants, usually several PV cells are
connected in series. For safety reasons, the individual PV
cells are connected in parallel to a separate bypass diode. In
typical conditions, not all PV cells in such a series connection
receive the same amount of irradiance. This is known as
partial shading and can be caused, for example, by clouds or
shadows cast by the surrounding environment. During partial
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Fig. 2. Examples of power-voltage and current-voltage curves under partial
shading. The power-voltage curve has multiple local maxima, which are
challenging for gradient ascent methods.

shading, highly illuminated cells generate more current than
less illuminated ones. Since the current flow between all PV
cells in a series connection has to be equal, excess current,
which is generated by highly illuminated PV cells, flows
through the bypass diode.

The only directly controlled variable is the voltage that
is applied to the entire series connection. This voltage
determines the individual voltages and currents of the PV
cells through a nonlinear interaction based on (3). As a
consequence of this interaction, the power-voltage curve has
multiple local maxima during partial shading, which can be
seen in Fig. 2.

III. PROBLEM STATEMENT

The goal of MPPT is to maximize the power generated by
an array of PV cells that are connected in series. Equivalently,
we aim to minimize the power lost by not operating the plant
at the time-varying, optimal voltage v∗t that maximizes the
generated power. The optimal input voltage v∗t is not known
a priori. Moreover, it is not possible to use the model in
Sec. II in order to compute v∗t without a significant system
identification effort and access to sensors at every module to
infer all the relevant environmental variables. We formalize
the control problem as a regret minimization problem,

min
vt∈A, t≥1

∑
t=1

pt(v
∗
t )− pt(vt), (4)

which corresponds to minimizing the amount of power lost
by, at time t, operating the plant at voltage vt that is different
from the optimal voltage v∗t . The power-voltage curve at
time t is given by pt(·) and input voltages can be selected
from the set A. The formulation in (4) is equivalent to
maximizing the 1-norm of the power signal.

IV. BACKGROUND

In this section, we introduce the Bayesian optimization
algorithm that we use to optimize the amount of energy
generated. As a first step, we introduce Gaussian processes
(GPs) as a model for the power-voltage curve, pt(·) in (4).
We use this model in our MPPT algorithm in order to
estimate the optimal control voltage, v∗t .

A. Gaussian Processes (GPs)

GPs are a popular choice for nonparametric regression in
machine learning, where the goal is to find an approximation
of a nonlinear map p(v) : A → R from an input vector v ∈ A



to the function value p(v). The main assumption is that
function values p(·) associated with different voltage inputs
are random variables and have a joint Gaussian distribution.
This distribution is specified by a mean function, which
is assumed to be zero without loss of generality, and a
covariance function, k(v, v′). The covariance function is also
known as the kernel and can be interpreted as a measure
of similarity between any two voltage values, v and v′.
It encodes assumptions about the underlying function. For
common kernel choices and their interpretations see [10].
We provide more information about the kernel used in this
work in Sec. V.

The GP framework can be used to predict the generated
power, p(v), at an arbitrary input voltage, v ∈ A, based
on a set of t past observations, yt =

[
p̂(v1), . . . , p̂(vt)

]T
at

voltages At = {v1, . . . , vt}. The observations of the func-
tion values, p̂(vt) = p(vt) + ωt, are corrupted by Gaussian
noise, ωt ∼ N (0, σ2). Conditioned on these observations, the
mean and variance of the prediction at v are given by

µt(v) = kt(v)(Kt + Itσ2)−1yt, (5)

σ2
t (v) = k(v, v)− kt(v)(Kt + Itσ2)−1kTt (v), (6)

where the vector kt(v) =
[
k(v, v1), . . . , k(v, vt)

]
contains

the covariances between the new input, v, and the past
data points in At, the covariance matrix, Kt ∈ Rt×t, has
entries [Kt](i,j) = k(vi, vj) for i, j ∈ {1, . . . , t}, and the
identity matrix is denoted by It ∈ Rt×t.
B. Optimization Algorithm

In this section, we show how the GP model of the power-
voltage curve from the previous section can be used to find
the optimal operating voltage and maximize the generated
power for the static case; that is, the power-voltage curve
does not change over time. We extend this to the dynamic
case in Sec. IV-C.

In general, any Bayesian optimization algorithm is de-
signed to find the global optimum of an unknown function
within few evaluations on the real system. The algorithm that
we use here is the GP-Upper Confidence Bound (GP-UCB)
algorithm [11], which formalizes the problem as a multi-
armed bandit problem [15]. This means that at each time
step t we pick one voltage and observe a corresponding,
noisy measurement of the generated power.

The goal of the GP-UCB algorithm is to minimize the
lost power in (4). Since the optimal voltage input, v∗t , is
not known a priori, the optimal strategy has to balance
learning about the location of the MPP (exploration), and
selecting a voltage that is known to lead to high power
generation (exploitation). GP-UCB uses the GP prediction
and associated uncertainty in (5) and (6) to trade off between
exploration and exploitation by selecting the voltage at time
step t according to

vt = argmax
v∈A

µt−1(v) + β
1/2
t σt−1(v), (7)

where βt is a scalar that determines the confidence interval.
The intuition behind this algorithm is that it selects the volt-
age for which the upper confidence bound of the GP model
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Fig. 3. Example plot for GP-UCB. At iteration t, the algorithm chooses
to apply the input voltage vt based on the GP posterior over the power-
voltage curve (mean and confidence interval in blue, unknown, true function
in green). Iteratively selecting voltages with the maximum upper-confidence
bound decreases the GP’s uncertainty about the true function at positions
that could be the maximum until the global maximum is found.

of the generated power is maximal. Repeatedly evaluating the
system at voltages given by (7) improves the mean estimate
of the underlying function and decreases the uncertainty at
candidate locations for the maximum, such that the global
maximum is found eventually [11]. After each time step,
we obtain a new measurement of the generated energy and
update the GP model. An example of how (7) chooses the
input voltage can be seen in Fig. 3.

The GP-UCB algorithm guarantees that we find the global
optimum of the power-voltage curve after few evaluations
and thereby maximize the generated power. Moreover, the
algorithm has strong theoretical bounds on the amount of
energy that is lost in (4), which is known as cumulative regret
in the machine learning literature [11]. These theoretical
guarantees make the GP-UCB algorithm a favorable choice
for MPPT and other extremum seeking control applications.

C. Contextual Optimization Algorithm

The GP-UCB algorithm assumes that the underlying func-
tion does not change during the optimization procedure.
However, the power-voltage curve, pt(v), and consequently
the MPP, v∗t , change with environmental conditions. The
Contextual GP-UCB (CGP-UCB) algorithm considers this
scenario [16]. It is a conceptually simple extension of the
GP-UCB algorithm. Instead of defining the kernel of the
GP in Sec. IV-A only in terms of the input voltage, the
function is also allowed to vary depending on a context. For
example, this context can be the time or a measurement of
the irradiance. We give more details on the context used in
our experiments in Sec. V-B.

D. Streaming Algorithms

The CGP-UCB algorithm discussed in the previous section
is able to find the global optimum of the changing power-
voltage curve. However, the computational complexity in-
creases over time, O(t3), as larger kernel matrices have to
be inverted in order to compute (5) and (6). In order to
overcome this problem, a simple heuristic is to only use a
certain time window of the last data points. The disadvantage
of this approach is that the algorithm cannot learn from
data beyond this time window in order to perform better



under recurring environmental conditions. An alternative is
to summarize past data points on the fly with a smaller set of
points, S. One way to do so, similar to the approach in [17],
is to maximize a measure of information,

f(S) =
1

2
log det(IS + λ2KS), (8)

where KS is the kernel matrix of the summarized data in S,
and λ is a regularization parameter. It is possible to maxi-
mize (8) efficiently and with tight approximation guarantees
by using the Stream Greedy algorithm. For more details on
the algorithm and the theoretical properties see [18]. We
evaluate this approach in our experiments in Sec. VI-B.

V. EXPERIMENTAL SETUP

In this section, we introduce the experimental setup that
we use to to evaluate our approach in Sec. VI.

A. Simulation with Real Data

In order to evaluate our method in a realistic scenario,
we simulate the model in Sec. II based on recordings of
solar irradiance sensors from the department of electrical
engineering at Tampere University of Technology. The data
is from June 4th, 2014, a cloudy day with maximum solar
irradiance of 1172 W/m2. We use the power plant model
from Sec. II to simulate a plant with 6 strings of 10 PV
cells connected in series with a rated power of 3 kWp. The
control input is computed at a frequency of 5 Hz.

Due to the small dimensions of the research facility, partial
shading has significantly less impact than in large scale
plants. In order to produce results based on the available
data that are more relevant to large scale plants and thus
more meaningful in practice, the simulated area of the plant
has been artificially enlarged by applying a constant scaling
to the differences of the sensors at the end of each string.

In order to have a fair comparison, we split the data into
a training and test set. The training set is used to determine
the parameters of the GP model in Sec. IV-A, while the test
set is used to compare our approach to other baselines.

B. Kernel Selection for the Gaussian Process Model

In order to use the CGP-UCB algorithm from Sec. IV-
C, we have to choose an appropriate kernel for the GP
that models the power-voltage curve and how it changes
depending on the context (the environment).

We choose a multiplication of two kernels, k = kz ⊗ kv ,
where kv : A×A → R is a kernel that models how the
generated power changes depending on the input voltage
and kz : Z × Z → R is a kernel for the context, z ∈ Z .
This context can be anything general, more details on the
specific choice are given below. The intuition behind the
multiplicative kernel choice is that one would expect the
generated power to be similar only if both the input voltages
and the environmental conditions are similar.

In general, there is a lot of flexibility in the choice of
kernel and it can be used to encode specific prior knowledge
about the kind of functions one may expect to occur. In

this work, we choose a Matérn kernel to model effects of
changing voltages,

kmat(v, v
′) =

21−ν

Γ(ν)

(√
2v(v−v′)

l

)ν
Kν

(√
2v(v−v′)

l

)
, (9)

where Γ(v) is the gamma function, Kv is the modified Bessel
function of the second kind, and l is a scaling parameter.
The parameter ν encodes how often the underlying function
is expected to be differentiable. Here we chose ν = 2.5
in order to model sudden changes in the power when the
voltage changes, as can be seen in Fig. 2. Additionally,
we encode prior knowledge about known shapes of power-
voltage curves by using two different, explicit basis func-
tions, φ1/2(v), scaled by a learned factor α. These basis
functions were computed using Principal Component Anal-
ysis (PCA) on the training data set and allow us to encode
previous knowledge about commonly occurring function
shapes. The resulting combined kernel for the voltage is
given by

Kv(v, v
′) = α

2∑
i=1

φi(v)Tφi(v
′) +Kmat(v, v

′). (10)

To model changes in the environment, we have to select a
context z that reflects important factors that impact the gen-
erated power. In this work we compare two different choices.
Firstly, we can use time as a context. The advantage is that
this does not require additional sensors or knowledge about
which factors impact the power-voltage curves. However,
this model cannot recognize similar environmental conditions
and, as a result, does not benefit from past experience beyond
a certain time horizon. As a second approach, we assume
that the solar irradiance is the main factor that influences the
voltage curve and that sensor readings are available. We use
six sensors that a spread out over the plant as a context.

For both contexts we use a squared exponential kernel,

kexp(z, z′) = σ2 exp

(
−(z − z′)2

2l̄2

)
, (11)

which represents our assumption that environmental effects
will change the power-voltage curve more smoothly than
changes in the voltage. Here, l̄ is a scaling parameter.

For both kernels, the hyperparameters, e.g., the scaling
parameters, were learned from the training data set using a
mixture of cross-validation and maximum marginal likeli-
hood methods. The βt parameter in (7) was set according
to Theorem 1 in [11], but scaled down by a factor of 5
to increase empirical performance. Similar results can be
obtained with constant values of βt.

C. Comparison Baselines

In this section, we introduce two baselines that are com-
monly used in the industry. The first baseline is the Perturb
and Observe (P&O) algorithm [3]. It is a simple hill-climbing
method that follows the direction that increases power rela-
tive to the last observation. The step size for this algorithm
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Fig. 5. Zoomed-in sections of Fig. 4. The P&O baseline gets stuck in local
optima and thereby wastes energy. The CGP-UCB algorithm can escape
local optima reliably.

was learned from the training data set. This method, although
simple, is still an area of active research [19].

The second baseline is the Incremental Conductance (IC)
algorithm [3]. It is based on the observation that the slope
of the power voltage curve is zero at the MPP, positive to its
left, and negative to its right. The slope is given by

∂p(v)

∂v
=
∂(iv)

∂v
= i+ v

∂i

∂v
≈ i+ v

∆i

∆v
, (12)

where i is the current flowing through the PV module.
The MPP can be tracked by comparing the instantaneous
conductance, i/v, to the incremental conductance, ∆i/∆v.
The MPP is determined to be reached when ∂p/∂v = 0.

VI. EXPERIMENTAL RESULTS

In this section, we compare our method to the two
baselines that we introduced in Sec. V-C. Furthermore,
we show how to incorporate computational and operational
constraints.

An illustrative 10-minute experiment of CGP-UCB based
on data of the test set can be seen in Fig. 4. The background
image is a heat map of the power-voltage curves, where
the power-voltage curve at each time step is indicated by
the background color. Blue regions represent time instants
with significant shading and low output power, while in the
yellow regions output power is relatively high. It can be
seen that the CGP-UCB algorithm is able to track the MPP
reliably. Occasionally, the algorithm evaluates voltages away
from the true, unknown MPP, which causes spikes in the
blue line. This behavior occurs whenever the GP model of
the power-voltage curve does not have sufficient knowledge
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Fig. 6. Average lost power (regret) and standard error of 10 different
experiments for the two baselines and the CGP-UCB algorithm based on
time and sensor measurements. The CGP-UCB algorithm outperforms both
baselines. The version based on sensors has access to additional information
relative to the other three methods and wastes less energy.

about the underlying function in order to be confident about
the location of the MPP. In these cases the algorithm explores
other voltages until sufficient knowledge about the MPP has
been regained.

In Fig. 5 we show two zoomed-in sections of Fig. 4
along with the P&O baseline. Since the baseline is based on
gradient-ascent, it gets stuck in a local optimum of the power-
voltage curve and thereby does not generate the maximum
power possible. Moreover, we can see that the P&O baseline
keeps oscillating around the local optimum that it has found.
In comparison, the GP-UCB algorithm can escape local
optima and track the MPP.

Since the two baselines are not able to track the global
optimum, they waste energy compared to the CGP-UCB
algorithm based on either time or irradiance measurements
as a context. The average power wasted by not operating
the plant at the true MPP and associated standard error over
10 different experiments can be seen in Fig. 6, where the
lost energy is the area underneath each curve. It can be seen
that the baselines waste significant amounts of energy by
converging to local optima. Both, the CGP-UCB algorithm
based on time and sensor measurements as a context out-
perform the baselines. The CGP-UCB based on sensors has
access to additional information and can exploit previously
observed environmental conditions. As a consequence, it
outperforms the other algorithms that are based only on time.
The large difference between the algorithms at the beginning
of the experiments occurs, because the baselines take time
to converge to a local MPP from the initial voltage. There
is no good guideline to select the starting point for the two
baselines. The values shown in Fig. 6 are the average over
100, linearly-spaced initial voltages.

A. Operational Constraints

So far, we have considered a plant model without con-
straints. In practice, PV power plants have operational con-
straints, such as limitations on how fast the voltage can
be changed from one value to another. This is due to the
presence of large capacitors in the system, which take time
to charge or discharge. The original CGP-UCB algorithm in
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Sec. IV-C assumes no constraints. Here, we limit the allowed
voltage change, which corresponds to a limit on the step size
between time steps.

We introduce a simple heuristic that has proven to work
well in practice. We determine the next voltage to apply
at each time step according to (7), as in the normal CGP-
UCB algorithm. However, instead of directly jumping to this
voltage, we take a step towards it, which is limited by the
maximum step size. The impact of this step size on the
average wasted energy during the same experiments as in
Fig. 6 is shown in Fig. 7. It can be seen that, for large step
sizes, the algorithm performs similarly to the unconstrained
case, as one would expect. However, even for step sizes that
are realistic in typical plants, such as 50-70 V/s, the amount
of additionally wasted energy is small.

B. Computational Efficiency

Next to the operational constraints, we consider the impact
of using the streaming algorithm from Sec. IV-D on sensor
measurements. In this case, rather than using the entire data
history, we use a fixed number of data points. The goal is for
this set to be informative about the current location of the
MPP and, additionally, to summarize past data effectively in
order to provide information about reoccurring conditions.
To this end, we use the most recent measurements for a part
of these data points, while the rest is selected to summarize
the past data, see Sec. IV-D. We compared several different
set sizes and combinations of past and recent data. The best
performance was achieved with a set size of 200 data points,
where 100 data points were used both for the most recent
points and to summarize the past. This method performed
within the standard error of the approach that is able to access
all the past data. At the same time, this method makes the
algorithm computationally viable in practice.

VII. CONCLUSIONS

In this work, we presented the maximum power point
tracking problem as a Bayesian optimization problem. We
used a state-of-the-art Bayesian optimization algorithm,
CGP-UCB, in order to select input voltages that maximize
the amount of generated energy. We extended the algorithm
to be applicable to real-world applications and compared it
to two baselines that are commonly used in the industry.
Experiments based on measurement data in a realistic set-
ting showed that our approach generates significantly more

energy than those baselines in situations where parts of the
power plant are shaded.
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