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Abstract
Learning set functions is a key challenge arising in many domains, ranging from sketching

graphs to black-box optimization with discrete parameters. In this paper we consider the prob-
lem of efficiently learning set functions that are defined over a ground set of size n and that
are sparse (say k-sparse) in the Fourier domain. This is a wide class, that includes graph and
hypergraph cut functions, decision trees and more. Our central contribution is the first algo-
rithm that allows learning functions whose Fourier support only contains low degree (say degree
d = o(n)) polynomials using O(kd logn) sample complexity and runtime O(kn log2 k logn log d).
This implies that sparse graphs with k edges can, for the first time, be learned from O(k logn)
observations of cut values and in linear time in the number of vertices. Our algorithm can also
efficiently learn (sums of) decision trees of small depth. The algorithm exploits techniques from
the sparse Fourier transform literature and is easily implementable. Lastly, we also develop an
efficient robust version of our algorithm and prove `2/`2 approximation guarantees without any
statistical assumptions on the noise.

1 Introduction
How can we learn the structure of a graph by observing the values of a small number of cuts? Can
we learn a decision tree efficiently by observing its evaluation on a few samples? Both of these
important applications are instances of the more general problem of learning set functions.
Consider a set function which maps subsets of a ground set V of size n to real numbers, x : 2V → R.
Set functions that arise in applications often exhibit structure, which can be effectively captured in
the Fourier (also called Walsh-Hadamard) basis. One common studied structure for set functions is
Fourier sparsity [GL89]. A k-Fourier-sparse set function contains no more than k nonzero Fourier
coefficients. A natural example for k-Fourier-sparse set functions are cut functions of graphs with
k edges or evaluations of a decision tree of depth d [SK12, KM93, Man94]. The cut function of
a graph only contains polynomials of degree at most two in the Fourier basis and in the general
case, thecut function of a hypergraph of degree d only contains polynomials of degree at most d in
∗The first two authors contributed equally
†Supported by ERC Starting Grant SUBLINEAR.
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the Fourier basis [SK12]. Intuitively this means that these set functions can be written as sums of
terms where each term depends on at most d elements in the ground set. Also a decision tree of
depth d only contains polynomials of degree at most d in the Fourier basis [KM93][Man94]. Learn-
ing such functions has recently found applications in neural network hyper-parameter optimization
[HKY18]. Therefore, the family of Fourier sparse set functions whose Fourier support only contains
low order terms is a natural and important class of functions to consider.

Related work One approach for learning Fourier sparse functions uses Compressive Sensing (CS)
methods [SK12]. Suppose we know that the Fourier transform of our function x̂ is k-sparse i.e.
|supp(x̂)| ≤ k, and supp(x̂) ⊆ P for some known set P of size p. In [SK12] it is shown that recovery
of x̂ is possible (with high probability) by observing the value of x on O(k log4 p) subsets chosen inde-
pendently and uniformly at random. They utilize results from [RV08, Ver10] which prove that pick-
ing O(k log4 p) rows of the Walsh-Hadamard matrix independently and uniformly at random results
in a matrix satisfying the RIP which is required for recovery. For the case of graphs p =

(n
2
)

= O(n2)
and one can essentially learn the underlying graph with O(k log4 n) samples. In fact this result can
be further improved, and O(k log2 k logn) samples suffice[HR17]. Computationally, for the CS ap-
proach, one may use matching pursuit which takes Ω(kp) time and thus results in runtime of Ω(knd)
for k Fourier sparse functions of order d. This equals Ω(kn2) for graphs, where d = 2. In [SK12],
proximal methods are used to optimize the Lagrangian form of the `1 norm minimization problem.
Optimization is performed on p variables which results in Ω(n2) runtime for graphs and to Ω(nd)
time for the general order d sparse recovery case. Hence, these algorithms scale exponentially with d
and have at least quadratic dependence on n even in the simple case of learning graph cut functions.

There is another line of work on this problem in the sparse Fourier transform literature. [SHV15]
provides a non-robust version of the sparse Walsh Hadamard Transform (WHT). This algorithm
makes restrictive assumptions on the signal, namely that the k non-zero Fourier coefficients are
chosen uniformly at random from the Fourier domain. This is a strong assumption that does not
hold for the case of cut functions or decision trees. This work is extended in [HR17] to a robust
sparse WHT coined as SPRIGHT. In addition to the the random uniform support assumption,
[HR17] further presumes that the Fourier coefficients are finite valued and the noise is Gaussian.
Furthermore, all existing sparse WHT algorithms are unable to exploit low-degree Fourier structure.

Our results We build on techniques from the sparse Fourier transform literature [HIKP12,
IKP14, GL89] and develop an algorithm to compute the Walsh-Hadamard transform (WHT) of
a k-Fourier-sparse signal whose Fourier support is constrained to low degree frequencies (low de-
gree polynomials). For recovering frequencies with low degree we utilize ideas that are related to
compressive sensing over finite fields [DV13]. We show that if the frequencies present in the support
of x̂ are of low order then there exists an algorithm that computes WHT in O(kn log2 k logn log d)
time using O(kd logn) samples. As opposed to [SHV15], we avoid distributional assumptions on
the support using hashing schemes. Our approach is the first one to achieve the sampling com-
plexity of O(kd logn). Moreover its running time scales linearly in n and there is no exponential
dependence on d. For the important special case of graphs, where d = 2, our sampling complexity
is near optimally O(k logn) and our runtime is O(kn log2 k logn) which is strictly better than CS
methods which take at least quadratic time in n. This allows us to learn sparse graphs which have
in the range of 800 vertices in ≈ 2 seconds whereas the previous methods [SK12] were constrained
to the range of 100 for similar runtimes.
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For the case where x̂ is not exactly k-sparse, we provide novel robust algorithms that re-
cover the k dominant Fourier coefficients with provable `2/`2 approximation guarantees. We pro-
vide a robust algorithm using appropriate hashing schemes and a novel analysis. We further
develop a robust recovery algorithm that uses O(kd logn log(d logn)) samples and runs in time
O
(
nk log3 k + nk log2 k logn log(d logn) log d

)
.

2 Problem Statement
Here we define the problem of learning set functions. Consider a set function which maps subsets
of a ground set V , {1, . . . , n} = [n] of size n to real numbers, x : 2V → R. We assume oracle
access to this function, that is, we can observe the function value x(A) for any subset A that we
desire. The goal is to learn the function, that is to be able to evaluate it for all subsets B ⊆ V .
A problem which has received considerable interest is learning cut functions of sparse (in terms of
edges) graphs [SK12]. Given a weighted undirected graph G = (V,E,w), the cut function associated
to G is defined as x(A) =

∑
s∈A,t∈V \Aw(s, t), for every A ⊆ V .

Note that we can equivalently represent each subset A ⊆ V by a vector t ∈ Fn2 which is the
indicator of set A. Here F denotes the finite field with 2 elements. Hence the set function can be
viewed as x : Fn2 → R. We denote the Walsh-Hadamard transform of x : Fn2 → R by x̂ : Fn2 → R.
It is defined as:

x̂f = 1√
N

∑
t∈Fn2

xt · (−1)〈f,t〉 , f ∈ Fn2 .

The inner product 〈f, t〉 throughout the paper is performed modulo 2.
The Fourier transform of the graph cut function x̂ is the following,

x̂f =


1
2
∑
s,t∈V w(s, t) if f = (0, . . . , 0)

−w(s, t)/2 if fs = ft = 1 and fi = 0 ∀i 6= s, t

0 otherwise
.

It is clear that the Fourier support of the cut function for graph G contains only |E| + 1 nonzero
elements (and hence it is sparse). Furthermore, the nonzero Fourier coefficients correspond to
frequencies with hamming weights at most 2.

One of the classes of set functions that we consider is that of exactly low order Fourier
sparse functions. Under this model we address the following problem:

Input: oracle access to x : Fn2 → R
such that ‖x̂‖0 ≤ k and |f | ≤ d for all f ∈ support(x̂)

Output: nonzero coefficients of x̂ and their corresponding frequencies
(1)

where |f | denotes the Hamming weight of f .
We also consider the robust version of problem (1) where we only have access to noisy mea-

surements of the input set function. We make no assumption about the noise, which can be chosen
adversarially. Equivalently one can think of a general set function whose spectrum is well approxi-
mated by a low order sparse function which we refer to as head. Head of x̂ is just the top k Fourier
coefficients x̂f such that the frequency has low Hamming weight |f | ≤ d. We refer to the noise
spectrum as tail.
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Definition 1 (Head and Tail norm). For all integers n, d, and k we define the head of x̂ : Fn2 → R
as,

x̂head := arg min
y:Fn2→R
‖y‖0≤k

|j|≤d for all j∈supp(y)

‖x̂− y‖2.

The tail norm of x̂ is defined as, Err(x̂, k, d) := ‖x̂− x̂head‖22.

Since the set function to be learned is only approximately in the low order Fourier sparse model,
it makes sense to consider the approximate version of problem (1). We use the well known `2/`2
approximation to formally define the robust version of problem (1) as follows,

Input: oracle access to x : Fn2 → R
Output: function χ̂ : Fn2 → R

such that ‖χ̂− x̂‖22 ≤ (1 + δ)Err(x̂, k, d),
|f | ≤ d for all f ∈ support(χ̂)

(2)

Note that no assumptions are made about the function x and it can be any general set function.

3 Algorithm and Analysis
In this section we present our algorithm and analysis. We use techniques from the sparse FFT
literature [HIKP12, IKP14, GL89]. Our main technical novelty is a new primitive for estimating a
low order frequency –i.e., |f | ≤ d, efficiently using optimal number of samples O(d logn) given in
Section 3.1. This primitive relies heavily on the fact that a low order frequency is constrained on
a subset of size

(n
d

)
as opposed to the whole universe of size 2n. We show that problem (1) can be

solved quickly and using a few samples from the function x by proving the following theorem,

Theorem 2. For any integers n, k, and d, the procedure ExactSHT solves problem (1) with
probability 9/10. Moreover the runtime of this algorithm is O

(
kn log2 k logn log d

)
and the sample

complexity of this procedure is O (kd logn).

We also show that problem (2) can be solved efficiently by proving the following theorem in
Section 4,

Theorem 3. For any integers n, k, and d, the procedure RobustSHT solves problem (2) with prob-
ability 9/10. Moreover the runtime of this procedure is O

(
nk log3 k + nk log2 k logn log(d logn) log d

)
and the sample complexity of the procedure is, O (kd logn log(d logn)).

Remark: This theorem proves that for any arbitrary input signal, we are able to achieve the
`2/`2 guarantee using O (kd · logn · log(d logn)) samples. Using the techniques of [PW11] one can
prove that the sample complexity is optimal up to log(d logn) factor. Note that it’s impossible to
achieve this sample complexity without exploiting the low degree structure of the Fourier support.

3.1 Low order frequency recovery

In this section we provide a novel method for recovering a frequency f ∈ Fn2 with bounded Hamming
weight |f | ≤ d, from measurements 〈mi, f〉 i ∈ [s] for some s = O(d logn). The goal of this section
is to design a measurement matrix M ∈ Fs×n2 with small s, such that for any f ∈ Fn2 with |f | ≤ d
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the following system of constraints, with constant probability, has a unique solution j = f and has
an efficient solver,

j ∈ Fn2 such that
{
Mj = Mf

|j| ≤ d
.

To design an efficient solver for the above problem with optimal s, we first need to have an optimal
algorithm for recovering frequencies with weight one |f | ≤ 1. In this case, we can locate the index of
the nonzero coordinate of f optimally via binary search using O(logn) measurements and runtime.

Definition 4 (Binary search vectors). For any integer n, the ensemble of vectors {vl}dlog2 ne
l=0 ⊆ Fn2

corresponding to binary search on n elements is defined as follows. Let v0 = {1}n. For every
l ∈ {1, · · · , dlog2 ne} and every j ∈ [n], vlj =

⌊
(j mod 2l)

2l−1

⌋
.

Lemma 5. There exists a set of measurements {mi}si=1 for s = dlog2 ne + 1 together with an
algorithm such that for every f ∈ Fn2 with |f | ≤ 1 the algorithm can recover f from the measurements
〈f,mi〉 in time O(log2 n).

Proof. Let us denote by f̃ what the algorithm recovers from the measurements. Let the measure-
ments correspond to the binary search vectors vl for l = 0, 1, · · · dlog2 ne (Definition 4). Note that
for any f with |f | ≤ 1 and any vector m ∈ Fn2 , if 〈f,m〉 = 1 then supp(f) ⊆ supp(m) and otherwise
supp(f) ⊆ supp(m̄) where m̄ is the entrywise complement of m. Therefore the following algorithm
can recover f ,
1: f̃ ← {0}n.
2: if 〈f, v0〉 = 1 then
3: index← {0}dlog2 ne, a dlog2 ne bits number initialized at 0.
4: For every l = 1, 2, · · · , dlog2 ne, if 〈f, vl〉 = 1 then [index]l ← 1, lth bit of index sets to 1.
5: f̃(index)← 1, the nonzero coordinate of f̃ is positioned at index.

The proof of why the above algorithm works is by induction and fairly straightforward. Above
algorithm runs in time O(logn).

To recover a frequency f with Hamming weight d, we hash the coordinates of f randomly into
O(d) buckets. In expectation a constant fraction of nonzero elements of f get isolated in buckets,
and hence the problem reduces to the weight one recovery. We know how to solve this using binary
search as shown in Lemma 5 in time O(logn) and with sample complexity O(logn). We recover a
constant fraction of the nonzero indices of f and then we subtract those from f and recurse on the
residual. We decrease the number of buckets we hash the coordinates into by a factor of 1

2 in each
step. We expect the sparsity of the frequency (the hamming weight of the frequency) to go down
by a factor of 1

4 in each step. The recovery procedure is presented in Algorithm 1.

Lemma 6. For any integers n and d , any power of two integer D ≥ 128d, and any frequency
f ∈ Fn2 with |f | ≤ d, the procedure RecoverFrequency given in Algorithm 1 outputs f with
probability at least 7/8, if the following holds,

1. For every r = 0, 1, · · · , log4D, the hash function hr : [n] → [D/2r] is an instance from a
pairwise independent hash family.

2. For every l = 0, 1, · · · , dlog2 ne and every r = 0, 1, · · · , log4D, the measurements φlr(i) are
equal to φlr(i) =

∑
j∈h−1

r (i) fj · v
l
j for every i ∈ [D/2r].

Moreover, the runtime of this procedure is O(D logD logn) and the number of measurements is
O(D logn).
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Algorithm 1 RecoverFrequency
input: power of two integer D, hash functions hr : [n] → [D/2r] for every r ∈ {0, 1, · · · , log4D},
measurement vectors φlr ∈ FD/2r

2 for every l = 0, 1, · · · dlog2 ne and every r = 0, 1, · · · , log4D.
output: recovered frequency f̃ .
1: Let {vl}dlog2 ne

l=0 be the binary search vectors on n elements (Definition 4).
2: T ← log4D.
3: f̃ (0) ← {0}n.
4: for r = 0 to T do
5: w ← {0}n.
6: for i = 1 to D/2r do
7: if φ0

r(i)−
∑
j∈h−1

r (i) f̃
(r)
j · v0

j = 1 then
8: index← {0}dlog2 ne, a dlog2 ne bits pointer.
9: for l = 1 to dlog2 ne do

10: if φlr(i)−
∑
j∈h−1

r (i) f̃
(r)
j · vlj = 1 then

11: [index]l ← 1, set lth bit of index to 1.
12: w(index)← 1, set the coordinate of w positioned at index to 1.
13: f̃ (r+1) ← f̃ (r) + w.
14: return f̃ (T+1).

Proof. The proof is by induction on the iteration number r = 0, 1, · · · , T . We denote by Er the
event |f − f̃ (r)| ≤ d

4r , that is the sparsity goes down by a factor of 4 in every iteration up to rth
iteration. The inductive hypothesis is

Pr[Er+1|Er] ≥ 1− 1
16 · 2r .

Conditioning on Er we have that |f−f̃ (r)| ≤ d
4r . For every i ∈ [D/2r] and every l ∈ {0, 1, · · · , dlog2 ne}

it follows from the definition of φlr that,

φlr(i)−
∑

j∈h−1
r (i)

f̃
(r)
j · v

l
j =

∑
j∈h−1

r (i)

(
fj − f̃ (r)

j

)
· vlj .

Let us denote by S the support of vector f − f̃ (r),

S = supp
(
f − f̃ (r)

)
.

From the pairwise independence of the hash function hr the following holds for every a ∈ S,

Pr[hr(a) ∈ hr(S \ {a})] ≤ 2r · |S|
D

≤ 2r · 1
128 · 4r

≤ 1
128 · 2r .

This shows that for every a ∈ S, with probability 1 − 1
128·2r , the bucket hr(a) contains no other

element of S. Because the vector f − f̃ (r) restricted to the elements in bucket h−1
r (hr(a)) has

Hamming weight one, hence for every a ∈ S,

Pr
[∣∣∣∣(f − f̃ (r−1)

)
h−1
r (hr(a))

∣∣∣∣ = 1
]
≥ 1− 1

128 · 2r .
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If the above condition holds then it is possible to find the index of the nonzero element via binary
search as in Lemma 5. The for loop in line 9 of Algorithm 1 implements this. Therefore with
probability 1 − 1

16·2r by Markov’s inequality a 1 − 1/8 fraction of the support elements, S, gets
recovered correctly and at most 1/8 fraction of elements remain unrecovered and possibly result
in false positive. Since the algorithm recovers at most one element per bucket, the total number
of falsely recovered indices is no more than the number of non-isolated buckets which is at most
1/8 · |S|. Therefore with probability 1− 1

16·2r , the residual at the end of rth iteration has sparsity
1/8 · |S|+ 1/8 · |S| = 1/4 · |S|, ∣∣∣f − f̃ (r+1)

∣∣∣ ≤ |S|4 ≤ d

4r+1 .

This proves the inductive step.
It follows from the event ET for T = log4D that f̃ (T ) = f , where f̃ (T ) is the output of Algorithm

1. The inductive hypothesis along with union bound implies that,

Pr
[
ĒT
]
≤

T∑
r=1

Pr
[
Ēr|Er−1

]
+ Pr

[
Ē0
]

≤
T∑
r=0

1
16 · 2r

≤ 1/8.

Runtime: the algorithm has three nested loops and the total number of repetitions of all loops
together is O(D logn). The recovered frequency f̃ (r) always has at most O(D) nonzero entries
therefore the time to calculate

∑
j∈h−1

r (i) f̃
(r−1)
j · vlj for a fixed r and a fixed l and all i ∈ [D/2r] is

O(D). Therefore the total runtime is O(D logD logn).

Number of measurements: the number of measurements is the total size of the measurement
vectors φlr which is O(D · logn).

3.2 Signal reduction

The main tool for estimating a sparse signal is the Hash2Bins primitive. If we hash the frequencies
of a k-sparse signal into O(k) buckets then we expect each bucket of contain at most one of the
elements of the support of our signal. Next definition shows how to compute the hashing of a signal
in the time domain.

Definition 7. For every n, b ∈ N, every a ∈ Fn2 , and every σ ∈ Fn×b2 and every x : Fn2 → R, we
define the hashing of x̂ as uaσ : Fb2 → R given by,

uaσ(t) =
√

2n
2b · xσt+a,

for every t ∈ Fb2.

We denote by B = 2b the number of buckets of the hash function. In the next claim we show
that the Fourier transform of uaσ corresponds to hashing x̂ into B buckets.

Claim 8. For every j ∈ Fb2,
ûaσ(j) =

∑
f∈Fn2 :σ>f=j

x̂f · (−1)〈a,f〉
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Proof. We know that xt = 1√
N

∑
f∈Fn2

x̂f · (−1)〈f,t〉. Hence it follows that:

xσt+a = 1√
N

∑
f∈Fn2

x̂f · (−1)〈f,σt+a〉 = 1√
N

∑
f∈Fn2

x̂f · (−1)〈σ>f,t〉+〈f,a〉 (3)

By definition of the WHT we have that:

ûaσ(j) = 1√
B

√
2n
2b
∑
t∈Fb2

xσt+a · (−1)〈j,t〉 = 1
B

∑
t∈Fb2

xσt+a · (−1)〈j,t〉 (4)

Inserting Equation (3) into Equation (4) yields:

ûaσ(j) = 1
B

∑
f∈Fn2

x̂f (−1)〈a,f〉
∑
t∈Fb2

(−1)〈σ>f+j,t〉

The second summation is zero σ>f 6= j and equal to 2b = B otherwise. Hence:

ûaσ(j) =
∑

f∈Fn2 :σ>f=j
x̂f · (−1)〈a,f〉

Let h(f) , σ>f . For every j ∈ Fb2, ûaσ is the sum of x̂f · (−1)〈a,f〉 for all frequencies f ∈ Fn2 such
that h(f) = j, hence h(f) can be thought of as the bucket that f is hashed into. In next claim we
show that if the matrix σ is chosen uniformly at random then the hash function h(·) is pairwise
independent.

Claim 9. For any n, b ∈ N, if the hash function h : Fn2 → Fb2 is defined as h(·) = σ>(·), where
σ ∈ Fn×b2 is a random matrix whose entries are distributed independently and uniformly at random
on F2, then for any f 6= f ′ ∈ Fn2 it holds that

Pr[h(f) = h(f ′)] = 1
B
,

where the probability is over picking n · b random bits of σ.

Proof. The difference of h(f) and h(f ′) is equal to the summation of the columns in σ> corre-
sponding to the bits that f and f ′ differ in. Since f and f ′ differ in at least one bit it follows that
Pr[h(f) = h(f ′)] = 1

2b = 1
B .

Algorithm 2 Hash2Bins
input: signal x ∈ R2n , signal χ̂ ∈ R2n , integer b, binary matrix σ ∈ Fn×b2 , shift vector a ∈ Fn2 .
output: hashed signal ûaσ.
1: Compute ûaσ = FHT

(√
2n
2b · xσ(·)+a

)
. . FHT is the fast Hadamard transform algorithm

2: ûaσ(j)← ûaσ(j)−
∑
f∈Fn2 :σ>f=j χ̂f · (−1)〈a,f〉 for every j ∈ Fb2.

3: return ûaσ.

The Hash2Bins primitive computes the Fourier coefficients of the residue signal that are hashed
to each of the buckets. We denote by χ̂ the estimate of x̂ in each iteration. As we will see in Section
3.3, the recovery algorithm is iterative in the sense that we iterate over x̂− χ̂ (the residue) whose
sparsity is guaranteed to decrease by a constant factor in each step.
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Claim 10. For any signals x, χ̂ : Fn2 → R, integer b, matrix σ ∈ Fn×b2 , and vector a ∈ Fn2 the
procedure Hash2Bins(x, χ̂, b, σ, a) given in Algorithm 2 computes the following using O(B) samples
from x in time O(Bn logB + ‖χ̂‖0 · n logB)

ûaσ(j) =
∑

f∈Fn2 :σ>f=j
(x̂− χ)f · (−1)〈a,f〉.

3.3 Exact Fourier recovery

In this section we present our algorithm for solving the exact low order Fourier sparse problem
defined in (1) and prove Theorem 2. Let

S = supp(x̂) = {f ∈ Fn2 |x̂f 6= 0}.

Problem (1) implies that |S| ≤ k and also for every f ∈ S, |f | ≤ d. The recovery algorithm hashes
the frequencies into B = 2b buckets using Algorithm 2. Every frequency in the support f ∈ S
is recoverable if no other frequency from the support collides with it in the hashed signal. The
collision event is formally defined below,

Definition 11 (Collision). For any frequency f ∈ Fn2 and every sparse signal x̂ with support
S = supp(x̂) we define the collision event Ecoll(f) corresponding to the hash function h(f) = σ>f
as,

• Ecoll(f): holds iff h(f) ∈ h(S \ {f}).

Claim 12 (Probability of collision). For every f ∈ Fn2 , if the hash function h : Fn2 → Fb2 is defined
as h(·) = σ>(·), where σ ∈ Fn×b2 is a random matrix whose entries are distributed independently
and uniformly at random on F2 then the collision probability (see Definition 11) satisfies,

Pr[Ecoll(f)] ≤ k

B
.

The above probability is over the randomness of matrix σ.

Proof. The probability of collision is equal to the probability that at least one of the elements of
S \ {f} get hashed into the bucket h(f). Hence, Claim 9 implies that Pr[Ecoll(f)] ≤ |S|B ≤

k
B .

If the hash function h(·) = σ>(·) is such that the collision event Ecoll(f) doesn’t occur for a
frequency f , then it follows from Claim 8 and Definition 11 that for every a ∈ Fn2 ,

ûaσ(h(f)) = x̂f · (−1)〈a,f〉.

Therefore under this condition, the problem reduces to one sparse recovery. If a = {0}n then,
ûaσ(h(f)) = x̂f . Hence for any m ∈ Fn2 , one can learn the inner product 〈m, f〉 by comparing the
sign of ûmσ (h(f)) = x̂f · (−1)〈m,f〉 and ûaσ(h(f)). If the signs are the same then (−1)〈m,f〉 = 1
meaning that 〈m, f〉 = 0 and if the signs are different then 〈m, f〉 = 1. In previous section we gave
an algorithm for learning a low order frequency |f | ≤ d from measurements of the form 〈m, f〉 so
putting these together gives the inner subroutine for our sparse fast Hadamard transform which
performs one round of hashing, presented in Algorithm 3.
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Algorithm 3 SHTInner
input: signal x ∈ R2n , signal χ̂ ∈ R2n , failure probability p, integer b, integer d.
output: recovered signal χ̂′.
1: Let {vl}dlog2 ne

l=0 ⊂ Fn2 be the binary search vectors on n elements (Definition 4).
2: D ← smallest power of two integer such that D ≥ 128d.
3: R← d2 log2(1/p)e.
4: For every r ∈ {0, 1, · · · , log4D} and every s ∈ [R], let hsr : [n] → [D/2r] be an independent

copy of a pairwise independent hash function.
5: For every r ∈ {0, 1, · · · , log4D}, every s ∈ [R], and every j ∈ [D/2r] let wjr,s ∈ Fn2 be the binary

indicator vector of the set hsr(j)−1.
6: For every s ∈ [R], every r ∈ {0, 1, · · · , log4D} and every l ∈ {0, 1, · · · , dlog2 ne} and every
j ∈ [D/2r], add wjr,s · vl to set As.

7: Let σ ∈ Fn×b2 be a random matrix. Each entry is independent and uniform on F2.
8: For every a ∈ ∪s∈[R]As compute ûaσ = Hash2Bins(x, χ̂, b, σ, a).
9: for j = 1 to B do

10: Let L be an empty multi-set.
11: for s ∈ [R] do
12: for every r ∈ {0, 1, · · · , log4D}, every i ∈ [D/2r], and every l ∈ {0, 1, · · · , dlog2 ne} do
13: if ûcσ(j) 6= 0, where c = {0}n then
14: if ûcσ(j) and ûw

i
r,s·vl

σ (j) have same sign then
15: φlr(i)← 0.
16: else
17: φlr(i)← 1.
18: f̃ ← RecoverFrequency

(
D, {hsr}

log2 D
r=0 ,

{
{φlr}

log4 D
r=0

}dlog2 ne

l=0

)
.

19: Append f̃ to multi-set L.
20: f ← majority(L)
21: χ̂′f ← ûc(j), where c = {0}n.
22: return χ̂′.

Lemma 13. For all integers b and d, every signals x, χ̂ ∈ R2n such that |ξ| ≤ d for every ξ ∈
supp(x̂− χ), and any parameter p > 0, Algorithm 3 outputs a signal χ̂′ ∈ R2n such that |supp(χ̂′)| ≤
|supp(x̂− χ)| and also for every frequency f ∈ supp(x̂− χ), if the collision event Ecoll(f) doesn’t
hold then,

Pr
[
χ̂′f = (x̂− χ)f

]
≥ 1− p.

Moreover the sample complexity of this procedure is O(Bd logn log 1
p) and also its time complexity

is O
(
B logB(n+ d logn log 1

p) + nB logn log d log 1
p + ‖χ̂‖0 · n(logB + logn log d log 1

p)
)
.

Proof. Because of the if condition in line 13 of the algorithm the empty buckets don’t contribute
to nonzero elements in the recovered signal χ̂′. Hence, |supp(χ̂′)| ≤ |supp(x̂− χ)|. Assume that
Ecoll(f) does not hold for some arbitrary f ∈ supp(x̂− χ). Therefore, for every a ∈ Fn2 ,

ûaσ(h(f)) = (x̂− χ)f · (−1)〈a,f〉.

Fix one s ∈ [R]. For every r ∈ {0, 1, · · · , log4D}, every i ∈ [D/2r] and every l ∈ {0, 1, · · · , dlog2 ne},
the algorithm compares the sign of ûcσ(j) and û

wir,s·vl
σ (j), where c = {0}n. If they have the same
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sign then it means that 〈f, wir,s · vl〉 = 0 otherwise 〈f, wir · vl〉 = 1. Hence, φlr(i) = 〈f, wir · vl〉 =∑
j∈h−1

r (i) fj · v
l
j . Lemma 6 implies that RecoverFrequency

(
D, {hr}log2 D

r=0 ,
{
{φlr}

log4 D
r=0

}dlog2 ne

l=0

)
recovers f with probability 1 − 1/8 in each iteration of the for loop over s ∈ [R]. The algorithm
repeats this independently for every s ∈ [R] and then takes a majority vote over all the outputted
frequencies by RecoverFrequency. Frequency f in line 20 of the algorithm is the frequency
which appears the most in the output of RecoverFrequency. The probability of failing to
recover f is the following, (

R

R/2

)
· (1/8)R/2 ≤ (1/2)R/2 ≤ p.

Then the algorithm estimates the value of χ̂′f in line 21 as χ̂′f = ûc(h(f)) = (x̂− χ)f which is
correct with probability one.

Runtime: Computing the hashing ûaσ with all the different shift parameters a ∈ ∪s∈[R]As is one
of the most expensive operations in this procedure. For a fixed a ∈ Fn2 , in order to compute xσt+a
we need B time samples, one for each t ∈ Fb2. The computation of the indices σt and all t ∈ Fb2
is upper bounded by O(nB logB) operations. Given that we have computed σt for all t ∈ Fb2 and
stored it in memory, for a fixed a computing σt+ a for all t takes O(B‖a‖0) operation. Note that
vectors a ∈ ∪s∈[R]As are sparse because for every r, s, j the vector wjr,s in line 5 of Algorithm 3 has
only 2rn/D non-zero entries. Therefore, the total complexity of forming the reduced signals xσt+a
for all a ∈ ∪s∈[R]As is O(nB logB+nB logn log d log(1/p)). The computational complexity of a fast
Walsh Hadamard transform on xσt+a is equal to B log2B. Hence, the computational complexity
of computing the hashings ûaσ is O(B logB(d logn log(1/p) + n) + nB logn log d log(1/p)).
We also need to subtract off the current estimate χ. For each frequency f ∈ supp(χ̂) we compute
j = σ>f . This takes O(‖χ̂‖0n logB) time in total. Next for each frequency f ∈ supp(χ̂) and each
a ∈ ∪s∈[R]As the inner product 〈f, a〉 needs to be computed. This takes total time of O(‖χ̂‖0 ·
n logn log d log(1/p)). Hence the total runtime for this part is:

O (B logB(n+ d logn log(1/p)) + nB logn log d log(1/p) + ‖χ̂‖0 · n(logB + logn log d log(1/p)))

By Lemma 6, time to run RecoverFrequency on all the buckets is O(Bd logn log d log(1/p)),
hence the total runtime of Algorithm 3 is,

O

(
B logB

(
n+ d logn log 1

p

)
+ nB logn log d log 1

p
+ ‖χ̂‖0 · n

(
logB + logn log d log 1

p

))

Sample complexity: Samples are only consumed for computing the hashings ûaσ for all a ∈
∪s∈[R]As. Hence, the total sample complexity is O(Bd logn log 1

p).

Lemma 14. For any parameter p > 0, all integers k, d, and b ≥ log2(k/p), every signals x, χ̂ ∈ R2n

such that ‖x̂− χ‖0 ≤ k and |ξ| ≤ d for every ξ ∈ supp(x̂− χ), the output of SHTInner(x, χ̂, p, b, d),
χ̂′ satisfies the following with probability 1− 32p,

‖x̂− χ̂− χ̂′‖0 ≤ k/8.

Proof. The number of buckets is B = 2b ≥ k
p , hence, for every f ∈ supp(x̂ − χ̂) the probability of

the collision event Ecoll(f) is at most k/B ≤ p. Hence, from Lemma 13 along with a union bound
it follows that, for every f ∈ supp(x̂− χ),

Pr[χ̂′f = (x̂− χ)f ] ≥ 1− 2p.
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Therefore by Markov’s inequality it follows that with probability 1− 32p,∣∣∣{f ∈ supp(x̂− χ) : χ̂′f 6= (x̂− χ)f
}∣∣∣ ≤ k/16,

It also follows from Lemma 13 that ‖χ̂′‖0 ≤ k, hence, ‖x̂− χ̂− χ̂′‖0 ≤ k/8.

Our sparse Hadamard transform algorithm iteratively calls the primitive SHTInner to reduces
the sparsity of the residual signal by a constant factor hence it terminates in O(log k) iteration.
See Algorithm 4.

Algorithm 4 ExactSHT
input: signal x ∈ R2n , failure probability q, sparsity k, integer d.
output: estimate χ̂ ∈ R2n .
1: p(1) ← q/32.
2: b(1) ← dlog2

64k
q e.

3: T ← dlog8 ke.
4: w(0) ← {0}2n .
5: for r = 1 to T do
6: χ̃← SHTInner(x,w(r−1), p(r), b(r), d)
7: w(r) ← w(r−1) + χ̃.
8: p(r+1) ← p(r)/2.
9: b(r+1) ← b(r) − 2.

10: χ̂← w(T ).
11: return χ̂.

Proof of Theorem 2: The proof is by induction. We denote by Er the event corresponding to
‖x̂− w(r)‖0 ≤ k

8r . The inductive hypothesis is that,

Pr[Er|Er−1] ≥ 1− 16p(r).

Conditioned on Er−1 we have that ‖x̂ − w(r−1)‖0 ≤ k
8r−1 . The number of buckets in iteration r

of the algorithm is B(r) = 2br ≥ 64k
4r−1·q . Hence, it follows from Lemma 14, that with probability

1− 32p(r),
‖x̂− w(r)‖0 ≤

k

8r .

This proves the inductive step.

Runtime and Sample complexity: In iteration r ∈ [dlog8 ke], the size of the bucket B(r) =
2b(r) = 64k

q·4r and the error probability p(r) = q
32·2r . Moreover at most

∑
r B

(r) elements are added to
χ̂, hence we can assume that ‖χ̂‖0 ≤ 128k

q . From Lemma 13 it follows that the runtime at iteration
r is:

O

(
k

4r log k

4r (n+ d logn log 2r) + k

4rn logn log d log 2r + kn

(
log k

4r + logn log d log 2r
))

.

Summing over all r = 1, . . . , dlog8 ke, the total runtime is O
(
kn log2 k logn log d

)
.

The sample complexity of iteration r is O
(
kd
2r logn log 2r

)
hence the total sample complexity is

dominated by the sample complexity of the first iteration which is equal to O (kd logn).
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4 Robust recovery
In this section we present an algorithm to solve the robust set function learning, Problem (2). We
also analyze our algorithm and prove Theorem 2. We show that our robust recovery algorithm
achieves the well studied `2/`2 sparse recovery guarantee without making any assumptions on the
input signal. Any general signal can be decomposed into two parts, head and tail which are defined
in Definition 1. The head is basically the top k coefficients of x̂f such that their corresponding
frequencies, f , have Hamming weight at most d.

We use hashing techniques similar to our exact recovery algorithm to solve the robust Problem
(2). We can achieve the `2/`2 guarantee for general signals using O(kd log2 n log2(d log2 n)) samples
which heavily relies on our novel and sample optimal primitive for recovery of low Hamming weight
frequencies presented in Section 3.1.

Note that the sample complexity of our robust algorithm in comparison to the known lower
bound for this problem is only off by a log(d logn) [PW11]. The reason for this extra factor is that
when we hash a general and non-sparse signal x̂ into O(k) buckets, the noise in each bucket might
add up constructively and dominate the head of signal, x̂head. Therefore we need to repeat the
hashing a number of times and use median trick to get and accurate estimate to the head elements
up to noise level.

4.1 Preliminaries

We consider general signals which are not necessarily sparse nor their support contains low order
frequencies only. We first need to define the notion of approximate support for a signal. We repeat
Definition 1 here.

Definition 15 (Head and Tail norm). For all integers n, d, and k we define the head of x̂ : Fn2 → R
as,

x̂head := arg min
y:Fn2→R
‖y‖0≤k

|j|≤d for all j∈supp(y)

‖x̂− y‖2.

The tail norm of x̂ is defined as, Err(x̂, k, d) := ‖x̂− x̂head‖22.

For ease of notation, we state the next definitions and claims in terms of the residual signal
x̂′ , x̂− χ̂ since we will be working with this signal in all iterations.

Definition 16 (Covered frequencies). The average tail norm per bucket is denoted by ρ,

ρ := Err(x̂′, k, d)
B

.

The set of covered frequencies is defined as,

Sα := {f ∈ Fn2 : |f | ≤ d and |x̂′f |2 ≥ α · ρ}

for some α > 1.

Sα contains those frequencies that are recoverable by our algorithm. Intuitively, it contains all
the frequencies that have large Fourier coefficients compared to average noise in each bucket. We
show how recovering the frequencies in Sα provides a good `2/`2 approximation.
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It follows from the definition of the set of covered frequencies Sα that if we let x̂′Sα be the residual
signal x̂′ restricted to set Sα then the following holds,

‖x̂′ − x̂′Sα‖
2
2 = ‖(x̂′head + x̂′tail)− (x̂′head∩Sα + x̂′tail∩Sα)‖22

= ‖x̂′head − x̂′head∩Sα‖
2
2 + ‖x̂′tail − x̂′tail∩Sα‖

2
2

≤ |head \ Sα| · (αρ) + ‖x̂′tail‖22

≤
(

1 + α · k
B

)
· Err(x̂′, k, d). (5)

It also follows that,
|Sα| ≤

B

α
+ k. (6)

The reason is that out of the k elements in the support of x̂′head, Sα can contains all of them and
out of the components in the tail it can not contain more than B

α elements since this would imply
the energy present in these components is at least B

α · (αρ) = Err(x̂′, k, d) which is a contradiction.
We provide an algorithm that recovers Sα with constant probability. We face a trade-off when
picking the value of α. If α is small, we are guaranteed a better approximation however the number
of elements of Sα increase meaning extra runtime.

Definition 17 (Collision and Large noise events). For any frequency f ∈ Fn2 and every residual
signal x̂′ ∈ RFn2 we define two types of bad events, Enoise(f) and Ecoll(f) corresponding to the hash
function h(f) = σ>f ,

1. Large noise, Enoise(f): holds iff ‖x̂′h−1(h(f))\Sα‖
2
2 ≥ β · ρ for some β > 1.

2. Collision, Ecoll(f): holds iff h(f) ∈ h(Sα \ {f}).

If the large noise event happen, the noise might dominate the frequency f ∈ Sα. The collision
event happens if at least two elements of Sα are hashed to the same bucket.

Claim 18 (Probability of collision and large noise). For every f ∈ Fn2 the collision probability (see
Definition 17) is upper bounded as follows,

Pr[Ecoll(f)] ≤ 1
α

+ k

B
.

Also the probability of large noise (see Definition 17) is bounded as follows,

Pr[Enoise(f)] ≤ 1 + α(k/B)
β

.

The above probabilities are over the randomness of matrix σ which is used for hashing.

Proof. The probability of collision is equal to the probability that at least one of the elements of
Sα \ {f} get hashed into the bucket h(f). Hence, it follows from Claim 9 along with (6) that,

Pr[Ecoll(f)] ≤ |Sα|
B
≤ 1
α

+ k

B
.
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To calculate the probability of large noise, first note that (5) implies the following for the expected
noise energy per bucket (the randomness is over the hashing),

E
[
‖x̂′h−1(h(f))\Sα‖

2
2

]
=

∑
j∈Fn2 \Sα

|x̂′j |2 · Pr[j ∈ h−1(h(f))]

= 1
B
· ‖x̂′ − x̂′Sα‖

2
2

≤
(

1 + α · k
B

)
· Err(x̂

′, k, d)
B

=
(

1 + α · k
B

)
· ρ

Hence, by Markov’s inequality we have,

Pr
[
‖x̂′h−1(h(f))\Sα‖

2
2 ≥ β · ρ

]
≤ 1 + α · (k/B)

β
.

4.2 Location

In this section we design a primitive to locate any covered frequency f ∈ Sα with constant proba-
bility (Algorithm 5). More precisely, for any covered frequency f ∈ Sα if neither of the bad events
Ecoll(f) and Enoise(f) occur then f can be recovered with constant probability. Moreover, the
events Ecoll(f) and Enoise(f) also occur with constant probability by Claim 18.
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Algorithm 5 Locate
input: signal x ∈ R2n , signal χ̂ ∈ R2n , failure probability p, integer b, integer d.
output: list of covered frequencies L.
1: Let {vl}dlog2 ne

l=0 ⊂ Fn2 be the binary search vectors on n elements (Definition 4).
2: D ← smallest power of two integer such that D ≥ 128d.
3: R← d6 log2(1/p)e.
4: Let A be a set of Θ(log(D logn)) iid uniform random vectors in Fn2 .
5: For every r ∈ {0, 1, · · · , log4D} and every s ∈ [R] let hsr : [n]→ [D/2r] be an independent copy

of a pairwise independent hash function.
6: For every r ∈ {0, 1, · · · , log4D}, every s ∈ [R], and every j ∈ [D/2r] let wjr,s ∈ Fn2 be the binary

indicator vector of the set hsr(j)−1.
7: For every a ∈ A, every r ∈ {0, 1, · · · , log4D}, every s ∈ [R], every l ∈ {0, 1, · · · , dlog2 ne}, and

every j ∈ [D/2r], add a+ wjr,s · vl to set A′s.
8: Let σ ∈ Fn×b2 be a random matrix. Each entry is independent and uniform on F2.
9: For every a ∈ A ∪

(
∪s∈[R]A

′
s

)
compute ûaσ = Hash2Bins(x, χ̂, b, σ, a).

10: L← ∅.
11: for j = 1 to B do
12: S ← Empty multi-set.
13: for s ∈ [R] do
14: for every r ∈ {0, 1, · · · , log4D}, every i ∈ [D/2r], and every l ∈ {0, 1, · · · , dlog2 ne} do
15: C ← 0.
16: for every a ∈ A do
17: if ûaσ(j) and ûa+wir,s·vl

σ (j) have same sign then
18: C ← C + 1.
19: if C ≥ |A|2 then
20: φlr(i)← 0.
21: else
22: φlr(i)← 1.
23: f̃ ← RecoverFrequency

(
D, {hsr}

log2 D
r=0 ,

{
{φlr}

log4 D
r=0

}dlog2 ne

l=0

)
.

24: Append f̃ to multi-set S.
25: f∗ ← majority(S).
26: L← L ∪ {f∗}.
27: return L.

Lemma 19. For any positive integers n, b, d, every signals x, χ̂ : Fn2 → R, every p > 0 and every
covered frequency f ∈ Sα, assuming that neither Ecoll(f) nor Enoise(f) hold, if α ≥ 10β then the
procedure Locate (Algorithm 5) returns a list L of size |L| ≤ B such that,

Pr[f ∈ L] ≥ 1− p.

Moreover the runtime of this procedure is

O

(
nB logB + (d logB + n)B logn log(d logn) log d log 1

p
+ n‖χ̂‖0(logB + logn log(d logn) log d log 1

p
)
)

and the number of accesses to the signal x is O (Bd logn log(d logn) log(1/p)).
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Proof. Let j be the bucket that f is hashed into, j = h(f) = σ>f . By the assumption of the
lemma, Ecoll(f) doesn’t hold and hence j /∈ h(Sα \ {f}). Also it is assumed that Enoise(f) doesn’t
hold, hence,

‖x̂′h−1(j)\{f}‖
2
2 < βρ.

Therefore, for a uniformly random a ∈ Fn2 we have,

Ea
[∣∣∣ûaσ(j)− x̂′f · (−1)〈a,f〉

∣∣∣2] = Ea


∣∣∣∣∣∣

∑
f ′∈h−1(j)\{f}

x̂′f ′ · (−1)〈a,f ′〉
∣∣∣∣∣∣
2


=
∑

f ′∈h−1(j)\{f}
|x̂′f ′ |2

< βρ.

By Markov’s inequality,

Pr
[∣∣∣ûaσ − x̂′f · (−1)〈a,f〉

∣∣∣2 < 10βρ
]
≥ 9/10.

By the assumption α ≥ 10β, the above implies that ûa and x̂′f · (−1)〈a,f〉 have the same sign
with probability 9/10. Now, fix one s ∈ [R]. Similar to the above argument, for every r ∈
{0, 1, · · · , log4D}, every i ∈ [D/2r], and every l ∈ {0, 1, · · · , dlog2 ne}, ûa+wir,s·vl and x̂′f ·(−1)〈a+wir,s·vl,f〉

have the same sign with probability 9/10. Therefore for every a ∈ A, every r ∈ {0, 1, · · · , log4D},
every i ∈ [D/2r], and every l ∈ {0, 1, · · · , dlog2 ne}, line 17 of Algorithm 5 correctly determines the
inner product 〈wir,s · vl, f〉 with probability 8/10. Then Algorithm 5 uses the median trick to boost
the success probability. The failure probability after taking the median over all elements of A is,(

|A|
|A|/2

)
· (2/10)|A|/2 ≤ (4

5)|A|/2 ≤ O
( 1
D logn

)
.

By a union bound over all r, l, and i, the algorithm can determine the inner products 〈wir,s · vl, f〉
simultaneously for all r, l, and i with probability 1 − 1/16. By Lemma 6, the procedure Recov-
erFrequency

(
D, {hsr}

log2 D
r=0 ,

{
{φlr}

log4 D
r=0

}dlog2 ne

l=0

)
outputs f correctly with probability 1 − 1/8.

Hence, by union bound, the frequency f gets recovered with probability 1− 3/16 in each iteration
of the for loop over s ∈ [R]. The algorithm repeats this independently for every s ∈ [R] and then
takes a majority vote over all the outputted frequencies by RecoverFrequency. Frequency f∗
in line 25 of Algorithm 5 is the frequency which appears the most in the output of RecoverFre-
quency. The probability of failing to recover f is the following,(

R

R/2

)
· (3/16)R/2 ≤ (3/4)R/2 ≤ p.

Runtime: Computing the hashing ûaσ with all the different shift parameters a ∈ A ∪ (∪s∈[R]A
′
s)

dominates the runtime of this procedure. For a fixed a ∈ Fn2 , in order to compute xσt+a we need B
time samples, one for each t ∈ Fb2. The computation of the indices σt and all t ∈ Fb2 is upper bounded
by O(nB logB) operations. Given that we have computed σt for all t ∈ Fb2 and stored it in memory,
for a fixed a′ computing σt + a′ for all t takes O(Bn) operation. Note that vectors a ∈ ∪s∈[R]As
can be written as a = a′ + wjr,s · vl for some r, s, j, l and some a′ ∈ A. We can compute σt+ a′ for

17



all t ∈ Fb2 and all a′ ∈ A and stored it in memory in time O(nB(logB + log(d logn))). Note that
for every r, s, j the vector wjr,s in line 6 of Algorithm 5 has only 2rn/D non-zero entries. Therefore,
given that σt+ a′ is computed and stored in memory for all t ∈ Fb2 and all a′ ∈ A, we can compute
σt+ a for all t ∈ Fb2 and a ∈ A ∪ (∪s∈[R]As), in time O(Bn logn log(d logn) log d log 1

p). Hence, the
total complexity of forming the reduced signals xσt+a for all a ∈ A ∪ (∪s∈[R]As) is O(nB(logB +
logn log(d logn) log d log 1

p)). The computational complexity of a fast Walsh Hadamard transform
on xσt+a is equal to B log2B. Hence, the computational complexity of computing the hashings ûaσ
is O(B logB(d logn log(d logn) log(1/p) + n) + nB logn log(d logn) log d log(1/p)).
We also need to subtract off the current estimate χ. For each frequency f ∈ supp(χ̂) we compute
j = σ>f . This takes O(‖χ̂‖0n logB) time in total. Next for each frequency f ∈ supp(χ̂) and
each a ∈ A ∪ (∪s∈[R]As) the inner product 〈f, a〉 needs to be computed. This takes total time of
O(‖χ̂‖0 · n logn log(d logn) log d log(1/p)). Hence the total runtime for this part is:

O

(
nB logB + (d logB + n)B logn log(d logn) log d log 1

p
+ n‖χ̂‖0(logB + logn log(d logn) log d log 1

p
)
)

Sample complexity: The sample complexity is the number of samples taken to form the hash-
ings. The algorithm hashes the signal with

∣∣∣A ∪ (∪s∈[R]A
′
s

)∣∣∣ different shift parameters each of
which requiring B samples hence the total sample complexity is O(Bd logn log(d logn) log 1

p).

Lemma 20. For every f ∈ Sα, the output L of the procedure Locate satisfies,

Pr[f ∈ L] ≥ 1−
(
p+ 1

α
+ k

B
+ 1 + α(k/B)

β

)
.

Proof. Note that for every f ∈ Sα, by Claim 18,

Pr [Ecoll(f) or Enoise(f)] ≤ 1
α

+ k

B
+ 1 + α(k/B)

β
.

Therefore the preconditions of Lemma 19 hold with probability 1−
(

1
α + k

B + 1+α(k/B)
β

)
. By Lemma

19 given that its preconditions hold we have,

Pr[f ∈ L|Ecoll and Enoise not holding] ≥ 1− p.

Hence the lemma follows by a union bound.

Lemma 21.
E
[
‖x̂′Sα\L‖

2
2

]
≤
(
p+ 1

α
+ k

B
+ 1 + α(k/B)

β

)
· ‖x̂′‖22.

Proof. By Lemma 20 we have,

E
[
‖x̂′Sα\L‖

2
2

]
=
∑
f∈Sα

|x̂′f |2 · Pr[f /∈ L]

≤
∑
f∈Sα

|x̂′f |2 ·
(

2p+ 1
α

+ k

B
+ 1 + α(k/B)

β

)

≤
(

2p+ 1
α

+ k

B
+ 1 + α(k/B)

β

)
· ‖x̂′‖22.
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If we let β = 10
δq and α = β and B = 10αk and run the procedure Locate with failure

probability p = δq/10, then by Markov’s inequality the following holds,

Pr
[
‖x̂′Sα\L‖

2
2 ≤ δ · ‖x̂′‖22

]
≥ 1− q.

4.3 Estimation

In this section we use the hashing technique to estimate the values of the signal x̂ at frequencies
f ∈ L for some set of locations L ⊂ Fn2 . This is done in Algorithm 6.

Algorithm 6 Estimate
input: signal x ∈ R2n , signal χ̂ ∈ R2n , failure probability p, integer b, list of frequencies L, integer
k, parameter γ.
output: estimated signal χ̂′.
1: B ← 2b.
2: T ← O(log B

pγk ).
3: for r = 1 to T do
4: Let ar be a uniformly random vector in Fn2 .
5: Let σr ∈ Fn×b2 be a random matrix. Each entry is independent and uniform on F2.
6: Compute ûarσr = Hash2Bins(x, χ̂, b, σr, ar).
7: ŵ ← {0}2n .
8: for f ∈ L do
9: ŵf ← medianr∈[T ]

(
ûarσr(σ

>
r f) · (−1)〈f,ar〉

)
.

10: J ← argmaxJ :|J |=2k ‖ŵJ‖22
11: χ̂′ ← ŵJ .
12: return χ̂′.

Lemma 22 (Estimation guarantee for a single frequency). For any L ⊂ Fn2 with size |L| ≤ B, any
γ > 0, and any f ∈ L, if β ≥ 40 and α ≥ 4β and B ≥ 10αk then

1. Pr
[∣∣∣x̂′f − ŵf ∣∣∣2 ≥ 6βρ

]
≤ pγ kB , where x̂

′ = x̂−χ̂ is the input signal to the estimation procedure.

2. Pr [Err(x̂′L − χ̂′, γk) ≤ Err(x̂′L, k) + 24βkρ] ≥ 1− p.

Moreover the runtime of this procedure is O (Bn log(B/pγk) logB + ‖χ̂‖0 · n log(B/pγk) logB) and
the number of accesses to the signal x is O (B · log(B/pγk)).

Proof. For every f ∈ L and every r, let j = σ>r f be the bucket that f is hashed into by the rth

hash function. Note that for every r, with probability 1−
(
1/α+ k/B + 1+α(k/B)

β

)
, neither of the

events Ecoll(f) and Enoise(f) hold. Conditioning on Ecoll(f) and Enoise(f) not holding, we have,

Ear
[∣∣∣x̂′f − ûarσr · (−1)〈f,ar〉

∣∣∣2] = E


∣∣∣∣∣∣

∑
f ′∈h−1(j)\{f}

x̂′f ′ · (−1)〈f,ar〉
∣∣∣∣∣∣
2


≤
∑

f ′∈h−1(j)\{f}
|x̂′f ′ |2

≤ βρ.
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Therefore by Markov’s inequality and a union bound,

Pr

[∣∣∣x̂′f − ûarσr · (−1)〈f,ar〉
∣∣∣2 ≥ 6βρ

]
≤ 1/6 + 1/α+ k/B + 1 + α(k/B)

β
≤ 1/5.

Hence when we take the median of ûar ·(−1)〈f,ar〉 for all r the error probability goes down as follows,

Pr
[∣∣∣x̂′f − ŵf ∣∣∣2 ≥ 6βρ

]
≤
(
T

T/2

)
· (1

5)T/2 ≤ (4
5)T/2 ≤ pγk/(2B).

This proves the first claim of the lemma.
Let U =

{
f ∈ L :

∣∣∣x̂′f − ŵf ∣∣∣2 ≥ 6βρ
}
. It follows from the first claim of the lemma along with

Markov’s inequality that |U | ≤ |L| · γk/B ≤ γk with probability 1 − p/2. Conditioning on this
happening we have,

‖(x̂′ − ŵ)L\U‖2∞ ≤ 6βρ.

Let T denote the top k coordinates of ŵL\U . It follows from the above that,

‖x̂′L\U − ŵT ‖
2
2 ≤ Err(x̂′L\U , k) + (3k) · (6βρ)
≤ Err(x̂′L, k) + 18βkρ. (7)

Because J is the top 2k ≥ (1 + γ)k coordinates of ŵ, T ⊆ J \ U . Let J ′ = J \ (T ∪ U), so |J ′| ≤ k.
Therefore,

Err(x̂L − χ̂′, γk) ≤ ‖x̂′L\U − χ̂
′
J\U‖

2
2

= ‖x̂L\(U∪J ′) − χ̂′T ‖22 + ‖(x̂− χ̂′)J ′‖22
≤ ‖x̂L\U − χ̂′T ‖22 + |J ′| · ‖(x̂− χ̂′)J ′‖2∞
≤ Err(x̂L, k, d) + 18βkρ+ 6βkρ
= Err(x̂L, k, d) + 24βkρ.

Third inequality above follows from (7).

Runtime: The runtime is dominated by the time to compute the hashings ûarσr for every r ∈ [T ].
By Claim 10, this computation takes a total of O(Bn log2(B/kpγ) logB+‖χ̂‖0·n log2(B/kpγ) logB)
operations.

Sample complexity: The sample complexity is the number of samples taken to form the hashings
uarσr . The algorithm uses O(log(B/kpγ)) hashes each of which requiring B samples and hence the
total sample complexity is O(B log(B/kpγ)).

4.4 Reduce SNR

In this section we put the primitives Locate and Estimate together to design a procedure which
reduces the norm of the head of the signal ‖x̂head‖2 by a large constant factor while the norm of
tail Err(x̂, k) only mildly increases hence the signal to noise ratio decreases by a constant factor.
Algorithm 7 does this task. We also show that the residual x̂ − χ̂′ after running this procedure is
sparser than the original signal x̂− χ̂.
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Algorithm 7 ReduceSNR
input: signal x ∈ R2n , signal χ̂ ∈ R2n , parameter δ > 0, failure probability q, sparsity k, integer d,
parameter γ.
output: refined estimate χ̂′.
1: p← qγδ/10.
2: b←

⌈
log2(10k

pδ )
⌉
.

3: L← Locate(x, χ̂, p, b, d).
4: L′ ← {f ∈ L : |f | ≤ d}.
5: χ̃← Estimate(x, χ̂, p, b, L′, k, d, γ).
6: χ̂′ ← χ̂+ χ̃.
7: return χ̂′.

Lemma 23. For all integers n, k, and d, every parameters 0 < γ < 1/2, 0 < δ < 0.1, and
0 < q < 1/2, every signals x, χ̂ : Fn2 → R, the procedure ReduceSNR outputs a signal χ̂′ : Fn2 → R
such that the following holds,

Pr
[
Err(x̂− χ̂′, 2γk, d) ≤ (1 + 4δ) · Err(x̂− χ̂, k, d)

]
≥ 1− q.

Moreover, the runtime of this procedure is

O

(
log 1

qγδ

(
k

qγδ2 (n log k

qγδ
+ (d log k

qγδ
+ n) logn log(d logn) log d) + n‖χ̂‖0(log k

qγδ
+ logn log(d logn) log d)

))
and the sample complexity of the procedure is, O

(
kd
qγδ2 · logn · log(d logn) · log 1

qγδ

)
.

Proof. Let β = 1/p, α = 10β, and B = (α/δ) · k = 10k
pδ . Let Sα be the set of covered frequencies

of x̂′ = x̂− χ̂. Let us denote the output of Estimate(x, χ̂, p, b, L′, k, γ) by χ̃. The support of χ̃ is
denoted by J = supp(χ̃). Also let L be the output of the procedure Locate(x, χ̂, p, b, d). Since by
definition of covered frequencies, |f | ≤ d for every f ∈ Sα, by Lemma 20 we have,

Pr[f ∈ L′|f ∈ Sα] = Pr[f ∈ L|f ∈ Sα] ≥ 1− qγδ/2.

The above along with |Sα| ≤ (1 + 1/δ)k, which follows from (6), and Markov’s inequality gives the
following,

Pr[|Sα \ L′| ≤ γk] ≥ 1− 2q/3.
Therefore, conditioning on the above event,

Err(x̂′ − x̂′L′ , γk, d) ≤ ‖x̂′ − x̂′(L′∪Sα)‖
2
2

≤ Err(x̂′ − x̂′(L′∪Sα), k, n) + k · ‖x̂′ − x̂′(L′∪Sα)‖
2
∞

≤ Err(x̂′ − x̂′L′ , k, n) + k · ‖x̂′ − x̂′Sα‖
2
∞

≤ Err(x̂′ − x̂′L′ , k, d) + k · αρ,

where the first inequality follows because ∀f ∈ Sα \ L′, |f | ≤ d. Note that supp(χ̃) ⊆ L, hence,

Err(x̂− χ̂′, 2γk, d) = Err(x̂′ − χ̃, 2γk, d)
≤ Err(x̂′L′ − χ̃, γk, d) + Err(x̂′ − x̂′L′ , γk, d)
≤ Err(x̂′L′ − χ̃, γk, d) + Err(x̂′ − x̂′L′ , k, d) + αkρ
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By second part of Lemma 22, Err(x̂′L′ − χ̃, γk, d) ≤ Err(x̂′L′ , k, d) + 24βkρ with probability 1 − p,
therefore,

Err(x̂− χ̂′, 2γk, d) ≤ Err(x̂′L′ , k, d) + 24βkρ+ Err(x̂′ − x̂′L′ , k, d) + αkρ

≤ Err(x̂′L′ , k, d) + Err(x̂′ − x̂′L′ , k, d) + 34βkρ
≤ Err(x̂′, k, d) + 34βkρ
≤ (1 + 4δ)Err(x̂′, k, d).

By a union bound over the randomness of Locate and Estimate primitives the above holds with
probability at least 1− q.

Runtime and Sample complexity: The runtime and sample complexity follow from invoking
Lemma 19 and Lemma 22 with B = O( k

qδ2γ ) and p = O(qγδ).

4.5 Iterative Peeling

Here we present an iterative algorithm which reduces the SNR of the input signal as well as its
sparsity by a constant factor in each iteration and hence terminates in O(log2 k) rounds.

Algorithm 8 RobustSHT
input: signal x ∈ R2n , parameter δ > 0, failure probability q, sparsity k, integer d.
output: estimate χ̂ ∈ R2n .
1: γ ← 1/64.
2: T ← dlog1/γ ke.
3: q(1) ← q/2.
4: δ(1) ← δ/20.
5: k(1) ← k.
6: w(0) ← {0}2n .
7: for r = 1 to T do
8: w(r) ← ReduceSNR(x,w(r−1), δ(r), q(r), k(r), d, γ/2).
9: δ(r+1) ← δ(r)/2.

10: q(r+1) ← q(r)/2.
11: k(r+1) ← γ · k(r).
12: χ̂← w(T ).
13: return χ̂.

Proof of Theorem 3: The proof is by induction. The induction hypothesis is that for every
iteration r the followings hold,

Pr [Er|Er−1] ≥ 1− q(r),

where event Er for every r is defined as the following,

Er =

1) |supp(w(r))| ≤
∑r
t=0 2k(t)

2)Err(x̂− w(r), γk(r), d) ≤
∏r
t=0

(
1 + 3δ(t)

)
· Err(x̂, k, d)

.
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It follows from Lemma 23 that the inductive hypothesis holds for every r. Therefore by a union
bound we have the following,

Pr
[
ĒT
]
≤

T∑
r=1

Pr
[
Ēr|Er−1

]
+ Pr

[
Ē0
]

≤
T∑
r=1

q(r)

≤ q.

Conditioning on ET happening which occurs with probability 1− q the following holds,

|supp(χ̂)| ≤
T∑
r=1

2k(r) ≤ 3k.

And also,

Err(x̂− χ̂, 0) = ‖x̂− χ̂‖22

≤
T∏
r=1

(
1 + 4δ(r)

)
· Err(x̂, k)

≤ (1 + δ) · Err(x̂, k).

This concludes the first and third claims of the theorem. Second claim of the theorem follows from
line 4 of Algorithm 7.

Runtime and Sample complexity: At iteration r of the algorithm the values of the input
parameters to ReduceSNR primitive are as follows, δ(r) = O(δ/2r), q(r) = O(q/2r), k(r) =
O(k/64r) and γ = O(1) and also it follows from the inductive proof that ‖w(t)‖0 = O(k). Hence
by Lemma 23, the runtime of this iteration is the following,

O

(
log 4r

(
k

8rδ2 (n log k + (d log k + n) logn log(d logn) log d) + nk(log k + logn log(d logn) log d)
))

.

Therefore the total runtime is O
(
nk log3 k + nk log2 k logn log(d logn) log d

)
. Also the sample

complexity of the rth iteration is O
(
kd

8rδ2 logn log(d logn) log 4r
)

which leads to a total sample

complexity of O
(
kd
δ2 logn log(d logn)

)
.

5 Experiments
We test our ExactSHT algorithm for graph sketching on a real world data set. We utilize the
autonomous systems dataset from the SNAP data collection.1 In order to compare our methods
with [SK12] we reproduce their experimental setup. The dataset consists of 9 snapshots of an
autonomous system in Oregon on 9 different dates. The goal is detect which edges are added and
removed when comparing the system on two different dates. As a pre-processing step, we find the
common vertices that exist on all dates and look at the induced subgraphs on these vertices. We
take the symmetric differences (over the edges) of dates 7 and 9. Results for other date combina-
tions can be found in the supplementary material. This results in a sparse graph (sparse in the
number of edges). Recall that the running time of our algorithm is O(kn log2 k logn log d) which
reduces to O(nk log2 k logn) for the case of cut functions where d = 2.

1snap.stanford.edu/data/
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Table 1: Sampling and computational complexity

No. of vertices CS method Our method
Runtime Samples Runtime Samples

70 1.14 767 0.85 6428
90 1.88 812 0.92 6490
110 3.00 850 0.82 6491
130 4.31 880 1.01 7549
150 5.34 905 1.16 7942
170 6.13 927 1.22 7942
190 7.36 947 1.18 7271
210 8.24 965 1.28 7271
230 ∗ ∗ 1.38 7942
250 ∗ ∗ 1.38 7271
300 ∗ ∗ 1.66 8051
400 ∗ ∗ 2.06 8794
500 ∗ ∗ 2.42 8794
600 ∗ ∗ 3.10 9646
700 ∗ ∗ 3.35 9646
800 ∗ ∗ 3.60 9646

5.1 Sample and time complexities as number of vertices varies

In the first experiment depicted in Figures 1b-4b we order the vertices of the graph by their degree
and look at the induced subgraph on the n largest vertices in terms of degree where n varies. For
each n we pick e = 50 edges uniformly at random. The goal is to learn the underlying graph by
observing the values of cuts. We choose parameters of our algorithm such that the probability of
success is at least 0.9. The parameters tuned in our algorithm to reach this error probability are
the initial number of buckets the frequencies are hashed to and the ratio at which they reduce in
each iteration. We plot running times as n varies. We compare our algorithm with that of [SK12]
which utilizes a CS approach. We fine-tune their algorithm by the only tuneable parameter which
is sampling complexity. Both algorithms are run in a way such that each sample (each observation
of a cut value) takes the same time. As one can see our algorithm scales linear in n whereas the
CS approach scales quadratically. Our algorithm continues to work in a reasonable amount of time
for vertex sizes as much as 900 in under 2 seconds. The error bars show the standard deviation of
the running times.

In Table 1 we include both sampling complexities (number of observed cuts) and running times
as n varies. Our sampling complexity is equal to O(k logn). In practice they perform around a
constant factor of 10 worse than the compressive sensing method, which are not provably optimal
(see Section 1) but perform well in practice. In terms of computational cost, however, the CS
approach quickly becomes intractable, taking large amounts of time on instance sizes around 200
and larger [SK12]. Asterisks in Table 1 refer to experiments that have taken too long to be feasible
to run.
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5.2 Time complexities as number of edges varies

Here we fix the number of vertices to n = 100 and consider the induced subgraph on these vertices.
We randomly pick e edges to include in the graph. We plot computational complexities. Our
running time provably scales linearly in the number of edges as can be seen in Figures 1a-4a.

(a) Avg. time vs. no. edges (b) Avg. time vs. no. vertices

Figure 1: Comparison of scaling of runtimes of our algorithm vs CS approaches

(a) Avg. time vs. no. edges (b) Avg. time vs. no. vertices

Figure 2: Comparison of scaling of runtimes of our algorithm vs CS approaches
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(a) Avg. time vs. no. edges (b) Avg. time vs. no. vertices

Figure 3: Comparison of scaling of runtimes of our algorithm vs CS approaches

(a) Avg. time vs. no. edges (b) Avg. time vs. no. vertices

Figure 4: Comparison of scaling of runtimes of our algorithm vs CS approaches
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