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Abstract
Scalable training of Bayesian nonparametric
models is a notoriously difficult challenge. We
explore the use of coresets – a data summariza-
tion technique originating from computational
geometry – for this task. Coresets are weighted
subsets of the data such that models trained on
these coresets are provably competitive with
models trained on the full dataset. Coresets
sublinear in the dataset size allow for fast
approximate inference with provable guarantees.
Existing constructions, however, are limited to
parametric problems. Using novel techniques
in coreset construction we show the existence
of coresets for DP-Means – a prototypical
nonparametric clustering problem – and provide
a practical construction algorithm. We empiri-
cally demonstrate that our algorithm allows us
to efficiently trade off computation time and
approximation error and thus scale DP-Means
to large datasets. For instance, with coresets we
can obtain a computational speedup of 45× at
an approximation error of only 2.4% compared
to solving on the full data set. In contrast, for
the same subsample size, the “naive” approach
of uniformly subsampling the data incurs an
approximation error of 22.5%.

1. Introduction
Traditional models in machine learning often require an
explicit choice of the model capacity via hyperparameters.
For example, in K-Means clustering, the number of
clusters must be selected a priori even though this quantity
is not known for many practical applications. The standard
remedy to this problem is to consider models of varying
capacities and to perform model selection using criteria
such as AIC or BIC.
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Instead of comparing models of different complexity,
Bayesian nonparametric models infer the complexity from
the data. The fact that the model complexity can scale
with the amount of observed data enables one to fit a
single model to datasets of varying sizes, making non-
parametric models especially appealing in the age of Big
Data. This flexibility is a consequence of Bayesian non-
parametric models having an infinite-dimensional parame-
ter space (Orbanz & Teh, 2010). At the same time a finite
number of observations can be fully explained by only a fi-
nite subset of parameters ensuring tractability of the prob-
lem. Of course, this flexibility comes at a cost: Training
nonparametric models on massive data sets is notoriously
difficult.

As a concrete example, consider the Dirichlet process (DP)
mixture model (Antoniak, 1974) which is a widely used
Bayesian nonparametric model for clustering. It assumes
that the i-th observation depends on a parameter θi which
is sampled from a Dirichlet process. Since Dirichlet pro-
cesses are almost surely discrete, the model can be viewed
as a mixture model with an unbounded number of clus-
ter centers. If the base distribution of the Dirichlet pro-
cess and the distribution of an observation i given θi are
both Gaussian, we obtain the Gaussian Dirichlet process
mixture which can be viewed as an unbounded extension
of the Gaussian mixture model. Recently, Kulis & Jor-
dan (2012) apply the technique of small variance asymp-
totics to the Gibbs sampler of a Gaussian Dirichlet pro-
cess mixture model. This leads to a hard clustering algo-
rithm that monotonically decreases an object function sim-
ilar to the K-Means objective. In contrast to K-Means, DP-
Means clustering allows solutions with an arbitrary num-
ber of clusters, but introduces a penalty term proportional
to the number of clusters used in the solution. One motiva-
tion for DP-Means instead of DP mixtures is that inference
becomes more efficient. Nevertheless, scaling it to massive
datasets remains a difficult challenge.

Related Work. In case of DP mixtures, the traditional
approaches are based on MCMC sampling (MacEachern,
1994; Escobar & West, 1995; Neal, 2000). Yet, they can
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be slow to converge which prevents them from being ap-
plied in large-scale settings. As a result there has been
an increased interest in alternative inference methods for
Bayesian nonparametrics. In the case of Dirichlet process
mixtures the most popular approaches include recursive ap-
proximations (Newton & Zhang, 1999), sequential impor-
tance sampling (MacEachern et al., 1999) and variational
Bayes (Blei & Jordan, 2006).

Our Contributions. We investigate a novel approach to
scaling Bayesian nonparametrics. We apply coresets –
a technique from computational geometry – that allows
one to efficiently summarize a large dataset by a small
weighted subset of representative points. Coresets come
with strong theoretical guarantees on how well they
approximate the original point set while usually being
sublinear, if not independent, in the number of observa-
tions. This allows for fast approximate inference for large
datasets by running potentially slow algorithms on small
coresets. However, to the authors’ knowledge, all previous
work on coresets was focused exclusively on parametric
models such as K-Means (Har-Peled & Mazumdar, 2004;
Har-Peled & Kushal, 2005; Feldman et al., 2007; Chen,
2009; Langberg & Schulman, 2010; Feldman & Langberg,
2011a) and Gaussian mixtures (Feldman et al., 2011).
We extend the existing coreset theory and show that it
is possible to apply coresets to nonparametric models.
DP-Means clustering is an ideal target for our approach as
it is similar to K-Means clustering, yet nonparametric in
nature. Due to the unbounded parameter space, coresets
are not trivially applied to nonparametric models. Several
steps of the standard coreset construction methodology
require adaptation and development of new techniques.
The existence and successful construction of coresets for
DP-Means is thus a first step to building coresets for a
more general class of Bayesian nonparametric models.
Similarly, coresets have first been developed for hard clus-
tering problems such as K-Means and then later extended
to more advanced models such as Gaussian mixtures.

As our key contributions, we:

• theoretically prove the existence of coresets even for
unbounded queries,
• propose a practical coreset construction algorithm that

retains strong theoretical guarantees, and
• empirically validate our theoretical findings and

demonstrate the effectiveness of our algorithm com-
pared to full inference and uniform subsampling.

2. Background
DP-Means clustering It is known that LLoyd’s algo-
rithm may be derived as the limit of the expectation-
maximization algorithm used to fit Gaussian mixture mod-

els as the variance approaches zero (Kulis & Jordan, 2012).
Similarly, Kulis & Jordan (2012) consider the limit of the
Gaussian Dirichlet process mixture model where both clus-
ter centers and the individual data points are sampled from
a multivariate Gaussian. More specifically, each data point
xi is sampled from a spherical Gaussian with mean µi
and variance σ where the means are again sampled from
a Dirichlet process with a concentration parameter α and
a spherical Gaussian prior with variance ρ as its base dis-
tribution. An equivalent but more intuitive interpretation
of this generative model assumes that a potentially infinite
number of cluster centers are generated from a Gaussian
prior with variance ρ. Cluster assignments of n data points
are then sampled using a Chinese Restaurant Process with
concentration parameter α. Each data point is finally gen-
erated from a Gaussian with the assigned cluster center as
its mean and variance σ.

By analyzing the case where σ approaches zero, Kulis &
Jordan (2012) show that the Gibbs sampler of Neal (2000)
converges to a hard clustering algorithm. Essentially, this
algorithm strongly resembles LLoyd’s algorithm for K-
Means, except that the number of cluster centers is not
fixed. Instead, during the assignment step, a point is as-
signed to the closest center only if it is within distance λ
from the closest center, otherwise it is chosen as a new clus-
ter center. The algorithm is deterministic as the initial solu-
tion consists of one cluster center at the global mean of the
data and it monotonically decreases the following objective
function (also called the DP-Means cost function)

costDP (P, Q) =
∑
p∈P

wp min
q∈Q

dist(p, q)2 + |Q|λ

where λ > 0, P is a weighted set of n points in Rd and
Q ⊂ Rd a non-empty set of cluster centers.

This cost function gives rise to the DP-Means clustering
problem where the goal is to find a finite, non-empty set of
cluster centers Q ⊂ Rd minimizing the DP-Means objec-
tive function. The first term of the objective is identical to
the quantization error in K-Means and measures how well
the clusters approximate the data. The second term is a pe-
nalization term that is proportional to the number of cluster
centers used in Q.

The DP-Means clustering problem can be viewed as a
nonparametric extension of the K-Means objective since
an arbitrary number of cluster centers may be used. The
model complexity is inferred from the data via a tradeoff
between the number of cluster centers used and the quality
of the clustering. Interestingly, the DP-Means objective
has other natural motivations such as the Elbow method
and, as noted in Kulis & Jordan (2012), is related to
objective functions studied in connection with the Akaike
Information Criterion.
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As with K-Means clustering, it is challenging to solve the
DP-Means clustering problem for datasets where the num-
ber of samples is prohibitively large. A “naive” approach is
to solve the clustering problem on a random subset of the
data with the hope that the solution on this subset is close to
the solution on the full dataset. However, uniform subsam-
pling provides no theoretical guarantees and one can easily
construct examples where this approach is guaranteed to
fail. For example, consider K-Means clustering with k = 2
applied to two well separated clusters where the first cluster
consists of log n data points. A finite uniform subsample
of the data will, with high probability, include only points
from the second cluster and the solution on the subsample
will produce two centers in the second cluster. Hence,
by increasing the distance between the two clusters, the
objective value can be made arbitrarily large. Coresets in-
troduced in the next section provide a remedy for this issue.

Coresets A coreset is a weighted subset of the data such
that the quality of any clustering evaluated on the coreset
closely approximates the true quality on the full dataset.
Consider a cost function depending on a set of pointsP and
a query or solution Q ∈ Q that is additively decomposable
into non-negative functions {fQ(p)}p∈P , i.e.

cost(P, Q) =
∑
p∈P

fQ(p).

The idea of coresets is to find a weighted subset C such
that the cost of a query Q can be approximated on C by

cost(C, Q) =
∑

(w,c)∈C

wfQ(c).

The notion of approximation is formalized as the coreset
property: A weighted subset C is an ε-coreset of P if it
approximates the cost function of the full dataset up to
a multiplicative factor of 1 ± ε uniformly for all queries
Q ∈ Q, i.e.,

|cost(P, Q)− cost(C, Q)| ≤ ε cost(P, Q).

We note that since the cost contributions fQ(p) and the
possible space of solutions Q depend on the considered
problem, coresets are inherently problem-specific.

The main motivation for constructing coresets is to ap-
proximately solve optimization problems by running any
solver on the coreset instead of the full dataset. The idea is
that since the coreset property bounds the approximation
error for all queries, the difference between the solution on
the full dataset and the solution on the coreset is bounded.
Furthermore, coresets are generally small, i.e., sublinear
in, or even independent of, the number of samples. This
allows one to apply optimization algorithms with higher
computational complexity, such as squared or cubic depen-
dence on the number of samples, making coresets an ideal

choice for computationally hard problems. For K-Means,
coresets even allow for a polynomial time approximation
scheme (Feldman et al., 2007).

Additionally, coresets are a practical and flexible tool that
requires no assumptions on the data. While the theory be-
hind coresets is very technical and requires elaborate tools
from computational geometry to prove the strong theo-
retical guarantees, the resulting coreset construction algo-
rithms are simple to implement.

A key property of coresets is that they can be constructed
both in a distributed and a streaming setting. The construc-
tions rely on the property that both unions of coresets and
coresets of coresets are coresets (Har-Peled & Mazumdar,
2004) – albeit with different ε. Feldman et al. (2011) use
these properties to construct coresets in a tree-wise fashion
which can be parallelized in a Map-Reduce style or used to
maintain an up-to-date coreset in a streaming setting.

3. Coresets for DP-Means
Our main contribution is the first construction of coresets
for a class of nonparametric models: DP-Means.
Definition 3.1. Let ε > 0 and P be a set of n points in Rd.
The weighted set C is an (ε, k̄)-coreset for the DP-Means
clustering of P if for any query, i.e. any non-empty set Q,
of at most k̄ centers in Rd

|costDP (P, Q)− costDP (C, Q)| ≤ ε costDP (P, Q).

If this property holds with k̄ = ∞, the weighted set C is
called an ε-coreset.

This definition already highlights the challenge of applying
coresets to the nonparametric setting. The size of queries
Q is not fixed as in the parametric setting and the coreset
property has to hold uniformly for all query sizes. For the
case of k̄ =∞, queries can even be of unbounded size.

3.1. Theoretical existence result using exponential grids

Our first result shows the existence of ε-coresets for the DP-
Means clustering problem that are sublinear in the number
of data points n if the optimal number of centers k∗ is sub-
linear in n. Naturally, if the optimal number of centers is
linear in n, then no coreset sublinear in n can exist.
Theorem 3.2. Let 0 < ε ≤ 1 and let P be a set of n points
in Rd. Then there exists an ε-coreset for the DP-Means
clustering of P with size O

(
ddk∗ logn

εd

)
where k∗ is the

optimal number of centers.

Proof sketch. This result is obtained by applying the ex-
ponential grid approach of Har-Peled & Mazumdar (2004)
to the DP-Means cost function. Assume that the optimal
solution to the DP-Means clustering problem is known.
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One can then build an exponential grid around each of the
cluster centers and project all data points in a grid cell
to an arbitrary representative. It can be shown that the
number of grid cells is O

(
ddk∗ logn

εd

)
and that the sum of

the cost differences induced by the projection is bounded
by ε costDP (P, Q) implying the required result. The full
proof can be found in the Supplementary Materials.

Remarkably, this result proves that coresets of sublinear
size exist for queries of unbounded size. While this is an
encouraging theoretical result, this coreset construction is
not practical. Implementing the construction using expo-
nential grids is tedious and the coreset size has an expo-
nential dependence on the ambient dimension. Moreover,
this construction assumes knowledge of the optimal solu-
tion – the very thing we aim to compute. Nevertheless, in
the following section we show a practical coreset construc-
tion using importance sampling.

3.2. Practical coresets using importance sampling

Our practical coreset construction scheme builds upon
the framework by Feldman & Langberg (2011a). The
idea is to first find a rough approximation (bicriteria
approximation) to the optimal solution and then use this
solution to calculate a non-uniform sampling distribution
for the data points. The coreset is obtained by sampling
a sufficient number of points from this distribution and
setting the weights of the points inversely proportional to
the sampling probabilities. The intuition is that any im-
portance sampling scheme produces an unbiased estimator
and that the variance of this estimator can be bounded.
Using the theory of ε-approximators from computational
geometry it can then be shown that for enough samples
this leads to the required coreset property.

Constructing a rough approximation to the optimal solu-
tion of a nonparametric model is a non-trivial task. For K-
Means it is usually found by relaxing the clustering prob-
lem such as allowing the use of more than k cluster centers.
This relaxation is not possible for DP-Means as the num-
ber of cluster centers used has a direct impact on the ob-
jective function. It is even harder as the rough approxima-
tion needs to be nonparametric and itself infer a reasonable
number of cluster centers.

For a DP-Means problem instance defined by a set of points
P in Rd and a hyperparameter λ > 0, we propose the fol-
lowing coreset construction which is illustrated in Figure 1.
It consists of three steps:

Step 1 To find a (rough) approximation of the opti-
mal solution we propose the algorithm DP-Means++
(Algorithm 1) which is inspired by the seeding step of
K-Means++ (Arthur & Vassilvitskii, 2007). K-Means++
selects the initial cluster centers using k rounds of

Algorithm 1 DP-Means++
Require: Set of data points P , parameter λ

Uniformly sample a ∈ P and set A = {a}
while

∑
p∈P dist(p,A)2 > 16λ|A|(log2 |A|+ 2) do

Sample point a ∈ P with probability m(a) =
dist(a,A)2∑

p′∈P dist(p′,A)2 and add it to A

Return approximate solution A of cardinality k′

Algorithm 2 Importance sampling scheme
Require: Set of data points P , approximate DP-Means so-

lution A of cardinality k′

α← 16(log2 k
′ + 2) + 2

c̄← costDP (P, A)/|P|
for a ∈ A do
Pa ← points p ∈ P whose closest center in A is a

for a ∈ A and p ∈ Pa do
s(p)← 2α dist(p,A)2

c̄ +
4α

∑
p′∈Pa dist(p′,A)2

|Pa|c̄ + 4|P|
|Pa| +1

for p ∈ P do
q(p)← s(p)∑

p′∈P s(p
′) ;

m← O
(
dk′3 log k′

ε2

)
C ← samplemweighted points fromP where each point
p has weight 1

m·q(p) and is sampled with probability q(p)
Return coreset C

D2-sampling where the first cluster center is sampled
uniformly and additional points are then sampled with
probability proportional to the minimum squared distance
to the already selected cluster centers. DP-Means++ also
uses D2-sampling but with a critical twist - the number
of centers sampled is not fixed but inferred from the
data using a stopping condition. Intuitively, this stopping
condition manages the tradeoff between quantization error
and penalization term which is the essential challenge of
DP-Means clustering. Algorithm 1 produces solutions of
size k′ and isO(log k′) competitive to the optimal solution.
Furthermore, it can be shown that Algorithm 1 also pro-
vides us with an upper bound k̄ = k′(16(log2 k

′ + 2) + 1)
on the optimal number of cluster centers k∗.

Step 2 We sample an (ε, k̄)-coreset using the importance
sampling scheme proposed in Algorithm 2. To bound the
variance of our importance sampling scheme we sample
each point with probability proportional to its sensitivity
(Langberg & Schulman, 2010). The sensitivity s(p) of a
point p ∈ P is an upper bound on the maximum ratio be-
tween the cost contribution of the point and the average
contribution of all points. We derive the necessary bounds
based on the results for DP-Means++ and bound the re-
quired coreset size for the DP-Means clustering problem
(see Theorem 3.3 and Supplementary Materials).
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(a) DP-Means++ solution (b) Sampling probabilities (c) Coreset with weights (d) Solution

Figure 1. Coreset construction: (a) original dataset and the DP-Means++ approximate solution (red); (b) sampling probabilities (red
signifies high probability); (c) resulting coreset and weights (red signifies a large weight); (d) cluster centers of the coreset solution (red).

(Step 3) To approximately solve the full problem, any DP-
Means solver can finally be applied to the (ε, k̄)-coreset if
the solver can be extended to weighted data and to respect
the known upper bound k̄, i.e. it can be ensured that it only
evaluates the DP-Means cost function for clusterings with
less than k̄ cluster centers. Both a brute-force approach
based on solving K-Means for different values of k
(explained in Section 4.2) and the DP-Means algorithm
(Kulis & Jordan, 2012) satisfy this requirement.

3.3. Analysis

Our main contribution is stated in Theorem 3.3. It shows
that the proposed method constructs valid (ε, k̄)-coresets.
This implies that, given an optimal solver for the DP-Means
problem, an arbitrarily small approximation error can be
obtained by solving on the coreset (Corollary 3.4).
Theorem 3.3. Let 0 < ε < 1/4, λ > 0 and let P be a set of
n data points in Rd. Let C be the weighted set returned by
Algorithm 2 when applied to the result of Algorithm 1.
Then the weighted set C is with constant probability an
(ε, k̂)-coreset with k̂ = k′(16(log2 k

′ + 2) + 1) where k′

is the number of centers returned by Algorithm 1. The re-
sult holds with probability at least 1 − δ if Algorithm 1 is
repeated log 1

δ times andO
(
dk′3 log k′+k′2 log 1

δ

ε2

)
points are

sampled in Algorithm 2.

Proof sketch. The proof builds upon Theorem 4.1 and
Theorem 4.4 of Feldman & Langberg (2011a). Firstly, we
bound the sensitivities s(p) for the DP-Means cost func-
tion using the (rough) approximation of the optimal solu-
tion obtained in DP-Means++. This allows us to derive the
sampling probabilities q(p). Secondly, we show that the
total sensitivity is upper bounded by O(k′) and that the di-
mension of the function space induced by the DP-Means
cost function is upper bounded by d(k̄ + 1) where k̄ is the
maximal number of cluster centers.
Corollary 3.4. Let 0 < ε < 1/4, λ > 0 and let P be a set
of n data points in Rd. Let C be the weighted set returned

by Algorithm 2 when applied to the results of Algorithm 1.
For any optimal solver Q mapping a set of data points
to a set of cluster centers, we have costDP (P, Q(C)) ≤
1+ε
1−ε costDP (P, Q(P))

The number of points m to be sampled in Algorithm 2 de-
pends on the size k′ of the DP-Means++ solution. Our core-
sets are thus data-dependent and nonparametric since the
size of the coreset scales with the complexity of the data.
This stands in contrast to the fixed coreset sizes of existing
constructions for parametric models. For theoretical com-
pleteness we provide comparable worst-case bounds on the
required coreset size in Theorem 3.5. While there is an
exponential dependency on d, the coreset size is sublinear
in the number of data points n and only exhibits quadratic
dependence on 1/ε.
Theorem 3.5. Let 0 < ε < 1/4, λ > 0 and let P be
a set of n data points in Rd. Let C be the weighted set
returned by Algorithm 2 when applied to the result of
Algorithm 1. Then the weighted set C has size at most
Õ
(
d3d+2k∗3(log n)3/ε2

)
where k∗ is the optimal number

of centers of the DP-Means clustering problem and the
Õ(·) notation subsumes any log k∗, log d and log log n
terms.

Proof. The proof relies on bounding k′ based on k∗. By
setting ε to 1 in Theorem 3.2, we know that there exists
a 1-coreset of size m = O(ddk∗ log n). Consider all data
points in such a coreset as a solution to the DP-Means prob-
lem. Its DP-Means cost on the same coreset is equal to mλ
as the quantization error is zero. The DP-Means error on
the full data set is upper bounded by 2mλ due to the core-
set property. The quantization error on the full data set is
thus smaller than or equal to mλ which in turn bounds the
quantization error of the optimal K-Means++ solution for
k = m. Since D2-sampling provides us with a O(logm)
approximation, the stopping condition in Algorithm 1 is
satisfied for m implying that k′ is of O(ddk∗ log n).



Coresets for Nonparametric Estimation — the Case of DP-Means

4. Experimental results
In this section we validate our theoretical results and
demonstrate the usefulness of our coreset construction. We
use the following datasets:

• USGS (United States Geological Survey, 2010) — lo-
cations of 59’209 earthquakes between 1972 and 2010
mapped to 3D space using WGS 84.
• CSN (Faulkner et al., 2011) — 7GB of cellphone ac-

celerometer data processed into 80’000 observations
and 17 features.
• KDD (KDD Cup 2004, 2004) — 145’751 samples with

74 features measuring the match between a protein and
a native sequence.
• MSYP (Bertin-Mahieux et al., 2011) — 90 features

from 515’345 songs of the Million Song datasets used
for predicting the year of songs.
• MNIST (LeCun et al., 1998) — 70’000 images of

handwritten digits of size 28×28 pixels transformed us-
ing randomized PCA with whitening to 10 dimensions.

Our method works for instances of DP-Means with any
value of λ; yet, for our experiments, we need to select
a specific value. Choosing the “correct” value of λ for a
dataset is a non-trivial task that is beyond the scope of this
paper. For our purposes it is sufficient to use “reasonable”
values of λ such that we can verify our theoretical results in
a robust experimental setup. We want to ensure that our in-
stances are neither degenerate (only one cluster in optimal
solution) nor computationally infeasible (too many cluster
centers in optimal solution). To ensure this, we solve K-
Means for values of k between 5 and 200 to obtain a lower
and upper bound on suitable values of λ. For each dataset
we then select a value λ from this range (see Table 1) and
roughly estimate the number of clusters k̃ in the optimal
solution from the K-Means results. A similar approach
was used by Kulis & Jordan (2012) where they first de-
fine the number of clusters k and then calculate λ based on
a farthest-first heuristic.

4.1. Random evaluations

Both uniform subsampling and our coreset construction are
instances of importance sampling and thus provide unbi-
ased estimators of the cost function. The key difference is
that coresets provide a bound on the variance leading to the
coreset property as in Definition 3.1. In the first experiment
we seek to validate this variance-reducing property.

We first obtain a random queryQ by sampling k̃ points uni-
formly at random from the original dataset. We then con-
struct a weighted subset C of the data using either uniform
subsampling or our coreset construction method. We cal-
culate the DP-Means cost on the full dataset costDP (P, Q)

Table 1. Parametrization of λ for different datasets and corre-
sponding estimated number of clusters in optimal solution k̃ (val-
ues of λ are not comparable as λ is not invariant of the data)

DATA SET λ k̃

USGS 1 160
KDD 109 60
CSN 103 60
MSYP 1010 30
MNIST 103 70

Table 2. Normalized Shannon entropy of coreset sampling prob-
abilities (a value of one signifies uniform sampling) and ratio
between average variance νcs of coresets and average variance
νunif of uniform subsampling

DATA SET NORM. ENTROPY νcs/νunif

USGS 0.97 0.33
KDD 0.94 0.01
CSN 0.85 0.01
MSYP 0.95 0.02
MNIST 0.99 0.75

and the weighted subset costDP (C, Q). By repeating this
procedure 500 times we obtain an unbiased estimator ν̂2 of
E
[
ν2
]
, for both coresets and uniform subsampling where

ν = (costDP (C, Q)− costDP (P, Q))/ costDP (P, Q).

Figure 2 shows the estimated variance for different
subsample sizes on several datasets. As expected, the
variance decreases for both coresets and the uniform
subsample as the sample size increases. For all datasets
except MNIST, we further observe that coresets exhibit a
significantly lower variance than the uniform subsamples
which confirms our theoretical results. Interestingly, for
MNIST coresets and uniform subsample perform simi-
larly. One might think that this is a failure of the coreset
method. However, a closer look at Table 2 reveals that the
calculated coreset sampling weights are almost uniform
(the normalized entropy is close to one). It turns out
that for this dataset uniform subsampling is comparable
with coresets due to the balanced nature of the data. In
contrast, for the other datasets the coreset construction
leads to less uniform sampling weights. For those cases,
coresets exhibit the expected variance-reducing property
and outperform uniform subsampling by up to a factor of
100. This gap in variance widens, the more non-uniform
the sampling weights are (see Table 2).
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Figure 2. The variance of random query evaluations for coresets is lower or equal to the variance of uniform subsampling (averaged
across 500 trials)

4.2. Solving DP-Means on the subsample

From the machine learning perspective, the ultimate inter-
est in coresets is not the coreset property, but rather the
solution to the original DP-Means clustering problem. In
the following, we show that coresets indeed allow us to ef-
ficiently solve the clustering problem.

Again, we compute a weighted subsample of the data ei-
ther through uniform subsampling or our coreset construc-
tion. We then solve the DP-Means clustering problem on
the weighted subset and compute the DP-Means cost Css
of this solution on the full dataset. We further solve the
clustering problem on the full dataset and obtain the corre-
sponding DP-Means cost Cfull. We are finally interested
in the relative error η = (Css − Cfull)/Cfull. We use
the following K-Means based procedure to solve the DP-
Means clustering problem: We solve the K-Means cluster-
ing problem for different values of k chosen from a log-
arithmic grid1 of 20 points between 2−1k̃ and 22k̃ (see
Table 1 for values of k̃). To solve one instance of the K-
Means clustering we use a weighted version of K-Means++
and LLoyd’s algorithm. We then compute the DP-Means
cost for all solutions and choose the solution with the low-
est error. The results in Table 3 demonstrate that this K-
Means based solver significantly outperforms the original
DP-Means algorithm (Kulis & Jordan, 2012) in terms of
cost. The original DP-Means algorithm can easily get stuck
in a local optimum with too few cluster centers, making it
unsuitable for our experiments.

Figure 3 shows the relative DP-Means error η for both uni-
form subsampling and coresets compared to the full so-
lution. Again, we observe that the cost for the weighted
subsamples converges to the cost of the full solution as we
increase the subsample size. As in the results for random
evaluations, coresets outperform uniform subsampling ex-
cept for MNIST where they perform similarly.

1The logarithmic grid leads to a very robust solver with results
comparable across different runs for both coresets and uniform
subsamples. In practice, if k̂ is unknown, one can solve K-Means
for exponentially increasing values of k until the DP-Means error
decreases and then use binary search to find the final solution.

Table 3. DP-Means cost and number of clusters (#) for solutions
based on K-Means grid solver and original DP-Means algorithm
(Kulis & Jordan, 2012) as well as corresponding ratio (×) in cost

GRID KM ORIG. DP-MEANS

DATASET # COST # COST ×

USGS 156 278.3 8 6634.7 23.8
KDD (109) 55 244.6 4 733.1 3.0
CSN (103) 58 167.5 16 379.8 2.3
MSYP (1012) 32 2.1 1 4.9 2.4
MNIST (103) 65 279.5 1 701.0 2.5

While coresets offer better performance, they come at a
price. We need to invest a fixed time to compute the sam-
pling probabilities for the coreset construction while uni-
form subsampling is essentially free. We thus investigate
whether it makes sense to invest this time into the coreset
construction instead of using it to solve the problem on a
slightly larger uniform subsample of the data.

Figure 4 shows the DP-Means cost achieved in relation to
the total time spent computing the subsample and solving
the DP-Means problem. We observe that coresets offer a
better time-quality tradeoff for USGS, KDD and CSN. For
MSYP, the impact of construction time can be clearly seen.
For a small time budget uniform subsampling is more effi-
cient while coreset perform better for a larger time budget.
For MNIST, coresets and uniform subsampling perform
similarly; thus, coresets offer a slightly worse quality-time
tradeoff due to the construction cost. Lucic et al. (2015) re-
cently investigated tradeoffs in a more general setting and
both empirically and theoretically demonstrated similar fa-
vorable time-quality tradeoffs for (parametric) coresets.

There are several reasons why coresets are preferable to
uniform subsampling. While uniform subsampling is com-
petitive on some datasets, it can fail arbitrarily badly on
other datasets. On the other hand, coresets can be seen as
offering insurance against such “bad” datasets as their the-
oretical guarantees hold on all datasets. The cost for this
“insurance” is the fixed time we require for the construction
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Figure 3. Relative DP-Means error using coresets is lower than the one using uniform subsamples for fixed subsample size (500 trials)
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Figure 4. Relative DP-Means error for coresets and uniform subsamples compared to total time used (500 trials). In most settings,
coresets require less time to achieve fixed error than uniform subsampling.

Table 4. Results for KDD (5000 subsamples)

UNIFORM CORESET FULL

SAMPLING TIME (S) 0.01 0.49 -
SOLVER TIME (S) 13.33 13.49 635.07
TOTAL TIME (S) 13.33 13.98 635.07
SPEEDUP 47.6X 45.4X 1.0X
DP-MEANS COST (109) 299.54 250.36 244.57
RELATIVE ERROR η 22.5% 2.4% 0.0%

of the dataset which is almost linear in the number of data
points, i.e., O(n log n). Furthermore, in any practical case,
we want to spend most time on solving the actual clustering
problem by, e.g. choosing the subsample size reasonably
large or running the solving algorithms several times with
different initial seeds. This again reduces the impact of the
construction time. For the case where the number of sam-
ples is prohibitively large to construct a coreset on the full
dataset, a practical solution is to uniformly subsample the
data to a size for which we can construct coresets and then
to run the coreset generation. While having no theoretical
guarantees with regards to the full clustering problem this
generally still outperforms uniform subsampling.

The results in Table 4 for the KDD dataset and subsample
size 5000 illustrate the practical relevance of coresets in
speeding up inference for DP-Means. Instead of using the
full data, coresets with size 3.43% of the full data allow us
to achieve a speedup of 45.4 times with only 2.4% relative
error. At the same time naive uniform subsampling leads
to an relative error of 22.5% with a runtime comparable to
that of coresets. The runtime of the sampling step for core-
sets, i.e., DP-Means++, is negligible requiring only 0.49
seconds or 3.5% of the total runtime of 13.98 seconds2.

5. Conclusion
In this paper, we have demonstrated how coresets can be
used to address large-scale nonparametric DP-Means clus-
tering problems. We have shown the theoretical existence
of coresets for queries of arbitrary size – a key theoretical
challenge in applying coresets to Bayesian nonparametrics.
We also showed that it is sufficient to bound the maximal
size of queries dependent on the data and have provided a
simple, practical algorithm providing such data dependent
coresets. We also empirically demonstrated that this prac-
tical method allows us to scale inference in DP-Means by
several orders of magnitude while retaining guarantees on
the approximation error.

We believe that our results provide an important first step
towards applying the technique of coresets to a more gen-
eral class of Bayesian nonparametric models. We expect
that – similar to recent developments in parametric models
– it is possible to extend our techniques to more complex
objective functions such as the log-likelihood of the Gaus-
sian Dirichlet process mixture model or the HDP-Means
problem (Kulis & Jordan, 2012). Coresets are a flexible
tool as they only replace the full data set by a smaller rep-
resentative set and thus can be combined with any method
used to solve the original problem. As a result, we expect
additional benefits by combining coresets with techniques
for speeding up inference in Bayesian nonparametrics such
as variational inference.

2All experiments were run on an Intel Xeon machine with 24
2.9GHz processors and 256GB RAM.
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6. Appendix
We first prove the theoretical existence result of Theo-
rem 3.2, then provide an analysis of the DP-Means++ al-
gorithm and finally show that the importance sampling
scheme in Algorithm 2 produces valid coresets.

6.1. Proof of Theorem 3.2

Theorem 3.2. Let 0 < ε ≤ 1 and let P be a set of n points
in Rd. Then there exists an ε-coreset for the DP-Means
clustering of P with size O

(
ddk∗ logn

εd

)
where k∗ is the

optimal number of centers.

Proof. To show existence we provide a coreset construc-
tion based on the exponential grid approach by Har-
Peled & Mazumdar (2004). Let the k∗-sized set A =
{a1, a2, . . . , ak∗} be an optimal solution to the DP-Means
clustering problem. We partition the dataset P into subsets
{Pi}i=1,2,...,k∗ by assigning each point in P to the closest

center in A and we define R =
√

costDP (P,A)
n .

As in Har-Peled & Mazumdar (2004), we build an expo-
nential grid around the centroids A = {a1, a2, . . . , ak∗}.
Let M = dlog2(n)/2e and define the axis-parallel squares
Qi,j with side length R2j+1 centered at ai for j =
0, 1, . . . ,M and i = 1, 2, . . . , k∗. Let Vi,0 = Qi,0 for
i = 1, 2, . . . , k∗ and let Vi,j = Qi,j \ Qi,j−1 for j =
1, 2, . . . ,M and i = 1, 2, . . . , k∗. Now we partition each
Vi,j into a grid with side length rj = ε

10dR2j−1 and denote
the resulting exponential grid by Gi. Finally, we assign all
points in Pi to their grid cell in Gi and pick an arbitrary
representative for each grid cell with weight equal to the
number of points in the cell. The coreset C is formed by
the union of all representative points.

We first show by contradiction that all points in P fall
within a cell of the resulting exponential grid G = ∪iGi.
Suppose p ∈ P is not in a grid cell. Then we have

dist(p,A) > R2M ≥ R
√
n.

This implies

dist(p,A)2 > nR2 =
∑
p′∈P

dist(p′, A)2

which leads to the contradiction dist(p,A)2 > dist(p,A)2.

In order for C to be a valid ε-coreset, we need to show that
for any query B ⊂ Rd

|costDP (P, B)− costDP (C, B)| ≤ ε costDP (P, B) (1)

For any point p ∈ P we denote by p′ the corresponding
image (the closest point) in the coreset C and by dist(p, p′)

the distance between p and p′. Using the triangle inequality,
we deduce that

E = |costDP (P, B)− costDP (C, B)|

=

∣∣∣∣∣∣
∑
p∈P

dist(p,B)2 −
∑

(p,w)∈C

w dist(p′, B)2)

∣∣∣∣∣∣
≤
∑
p∈P

∣∣dist(p,B)2 − dist(p′, B)2
∣∣

≤
∑
p∈P
|(dist(p,B)− dist(p′, B))(dist(p,B) + dist(p′, B))|

≤
∑
p∈P

dist(p, p′)(2 dist(p,B) + dist(p, p′)).

To bound the total error, we partition the setP into the three
subsets PR, PA and PB , and bound the error separately.
For the set PR = {p ∈ P | dist(p,B) ≤ R ∧ dist(p,A) ≤
R} we have dist(p, p′) ≤ ε

10R and dist(p,B) ≤ R. Hence

ER =
∑
p∈PR

dist(p, p′)(2 dist(p,B) + dist(p, p′))

≤
∑
p∈PR

ε

10
R
(

2R+
ε

10
R
)

≤
∑
p∈PR

ε

3
R2 ≤ ε

3

∑
p∈P

dist(p,A)2.

For the set PA = {p ∈ P \ PR | dist(p,B) ≤ dist(p,A)}
we use that dist(p, p′) ≤ ε

10 dist(p,A) and dist(p,A) ≤
Rλ. Thus

EA =
∑
p∈PA

dist(p, p′)(2 dist(p,B) + dist(p, p′))

≤
∑
p∈PA

ε

10

(
2 +

ε

10

)
dist(p,A)2

≤ ε

3

∑
p∈PA

dist(p,A)2.

For the remaining set PB = P \ (PR ∪ PA) we use
that dist(p, p′) ≤ ε

10 dist(p,A) ≤ ε
10 dist(p,B) since

dist(p,B) > R and dist(p,B) > dist(p,A). Hence

EB =
∑
p∈PB

dist(p, p′)(2 dist(p,B) + dist(p, p′))

≤
∑
p∈PB

ε

10

(
2 +

ε

10

)
dist(p,B)2

≤ ε

3

∑
p∈PB

dist(p,B)2.

The optimality of A allows us to bound E and thus show
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that (1) holds for all finite B ⊂ Rd

E ≤ ER + EA + EB

≤ 2ε

3

∑
p∈PA

dist(p,A)2 +
ε

3

∑
p∈PB

dist(p,B)2

≤ ε costDP (P, B).

To complete the proof note that each of the Vi,j contains at
most O(ddε−d) cells which implies that the resulting set C
is of size O

(
ddk∗ log(n)

εd

)
.

6.2. Analysis of DP-Means++

We first show that DP-Means++ is O(log k′)-competitive
to the optimal solution and then prove that the optimal num-
ber of centers k∗ is bounded by O(k′ log k′).
Lemma 6.1. Let λ > 0. Suppose the set A was sampled
using Algorithm 1. Then with probability at least 1/2 the
set A is a O(log k′)-competitive solution to the DP-Means
optimization problem with k′ = |A|, i.e.

costDP (P, A) ≤ (16 log2 k
′ + 34) OPTDP (P, λ). (2)

The probability can be boosted to 1 − δ by repeating the
sampling log(1/δ) times and picking the solution with the
lowest DP-Means cost.

Proof. We first recall a main result on D2-sampling. De-
note by ∆k the quantization error after k rounds of D2-
sampling and by ∆∗k the optimal quantization error for
K-Means with k cluster centers. Arthur & Vassilvitskii
(2007) show that in expectation D2-sampling is O(log k)-
competitive, i.e.

E[∆k] ≤ 8(log2 k + 2)∆∗k (3)

Algorithm 1 is an instance of D2-sampling that stops after
k′ iterations such that for k′

∆k′

16(log2 k
′ + 2)

< k′λ (4)

while for k′ − 1

∆k′−1

16(log2(k′ − 1) + 2)
≥ (k′ − 1)λ. (5)

Let k∗ denote the number of centers in the optimal solution
of the DP-Means problem. We show (2) by considering
two cases for k∗.

Case k∗ < k′. In this case the quantization error of the
optimal clustering with k′ − 1 centers bounds the optimal
DP-Means cost from below, i.e.

OPTDP (P, λ) ≥ ∆∗k′−1.

Applying Markov’s inequality to (3), we have with proba-
bility at least 1/2

∆k′−1 ≤ 16(log2[k′ − 1] + 2)∆∗k′−1.

This result in combination with (5) implies

∆∗k′−1 ≥ (k′ − 1)λ.

With probability at least 1/2, we thus have

costDP (P, A) = ∆k′ + k′λ

≤ ∆∗k′−1 + 2(k′ − 1)λ

≤ 16(log2[k′ − 1] + 2)∆∗k′−1 + 2∆∗k′−1

≤ (16 log2 k
′ + 34) OPTDP (P, λ).

Case k∗ ≥ k′. In this case, the optimal DP-Means cost is
bounded from below by

OPTDP (P, λ) ≥ k′λ.

This in combination with (4) is sufficient to show

costDP (P, A) = ∆k′ + k′λ

≤ 16(log2 k
′ + 2)k′λ+ k′λ

≤ (16 log2 k
′ + 33) OPTDP (P, λ)

which concludes the proof.

Note that Algorithm 1 has an additional property: after run-
ning it, we already obtain an upper bound on the optimal
number of clusters k∗.
Lemma 6.2. Let λ > 0. Denote by k∗ the optimal num-
ber of centers for the DP-Means clustering problem and
suppose k′ points are sampled using Algorithm 1 with pa-
rameter λ. Then

k∗ ≤ k′(16(log2 k
′ + 2) + 1)

Proof. Denote by ∆k′ the quantization error after k′ iter-
ations. The result then follows from the fact that k∗ ≤
k′ + ∆k′/λ and (4).

6.3. Analysis of importance sampling scheme

Our coreset construction builds upon the framework of
Feldman & Langberg (2011a) in which it is shown that
importance sampling with probabilities proportional to the
“sensitivity” of each point leads to valid coresets. The num-
ber of required points depends on the paramter ε, the bound
on the total sensitivity S and the “combinatorial complex-
ity” induced by the query space Q and the cost function
fQ(·). This notion is formalized in Definition 6.3 and the
main theorem is presented in Theorem 6.4.
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Definition 6.3 (Feldman & Langberg (2011a)). Let P be a
finite set and denote by fQ(p) a cost function fromQ×P to
[0,∞). Define the set of functions F = {fQ(p) | p ∈ P}
from the set Q to [0,∞). The dimension dim(F ) of F is
the minimum integer d such that

∀S ⊆ F : |S ∩ ranges(F )| ≤ |S|d

where ranges(F ) = {range(Q, r) | Q ∈ Q, r ≥ 0} and
range(Q, r) = {f ∈ F | f(Q) ≤ r} for everyQ ∈ Q and
r ≥ 0.
Theorem 6.4 (Feldman & Langberg (2011a)). Let 0 < ε <
1/4. Let P be a finite set and denote by fQ(p) a cost
function from Q × P to [0,∞). Define the set of func-
tions F = {fQ(p) | p ∈ P} from the set Q to [0,∞). Let
s : P → N \ {0} be a function such that

s(p) ≥ max
Q∈Q

fQ(p)

f̄Q

and let S =
∑
p∈P s(p)/n. For each p ∈ P , let gp : Q →

[0,∞) be defined as gp(Q) = fQ(p)/s(p). Let Gp consist
of sp copies of gp, and let C be a random sample of

t =
dim(F )

(∑
p∈P s(p)

)
2

(εn)2
=

dim(F )S2

ε2

functions from the set G =
⋃
p∈P Gp. Then for every Q ∈

Q ∣∣∣∣∣∣
∑
p∈P

fQ(p)−
∑
c∈C

gc(Q)

∣∣∣∣∣∣ ≤ ε
∑
p∈P

fQ(p).

We use these results to show that our sampling scheme pro-
duces valid coresets. We first derive sampling probabilities
for the DP-Means problem and then bound the total sensi-
tivity S as well as dim(F ) to obtain the coreset size.
Lemma 6.5. Let the set A be an α-competitive solution to
the DP-Means clustering problem with β centers. Let P be
the point set of size n. For each point p ∈ P denote by
ai the closest center in the set A and by Pi the containing
Voronoi cell induced byA onP . Then for each point p ∈ P
the sensitivity σ(p) = maxQ⊂Rd fQ(p)/f̄Q is bounded by

s(p) =
2α dist(p,A)2

costDP (P, A)/n
+

4α
∑
p′∈Pi dist(p′, A)2

|Pi| costDP (P, A)/n

+
4n

|Pi|
+ 1

and the total sensitivity S =
∑
p∈P σ(p)/n is bounded by

S = 6α+ 4β + 1.

Proof. Using the triangle inequality and the fact that (a +
b)2 ≤ 2a2 + 2b2 for non-negative a and b, we have for any
query W ⊂ Rd, any center ai ∈ A and any point p ∈ Pi in
the center’s Voronoi region Pi

dist(ai, Q)2 ≤ 2 dist(p, ai)
2 + 2 dist(p,Q)2.

For each center ai ∈ A we may sum all points in the
Voronoi region Pi to get

dist(ai, Q)2 ≤ 2

|Pi|

∑
p∈Pi

dist(p, ai)
2 +

∑
p∈Pi

dist(p,Q)2

.
For any query Q we have

fQ(p)

f̄Q
≤ dist(p,Q)2 + |Q|λ/n∑

p′∈P dist(p′, Q)2/n+ |Q|λ/n

≤ 2 dist(p, ai)
2

OPTDP (P, λ)/n

+
2 dist(ai, Q)2∑

p′∈P dist(p′, Q)2/n+ |Q|λ/n
+ 1

≤ 2 dist(p, ai)
2

OPTDP (P, λ)/n
+

4
∑
p′∈Pi dist(p′, ai)

2

|Pi|OPTDP (P, λ)/n

+
4
∑
p∈Pi dist(p′, Q)2

|Pi|
∑
p′∈P dist(p′, Q)2/n

+ 1

≤ 2 dist(p, ai)
2

OPTDP (P, λ)/n
+

4
∑
p′∈Pi dist(p′, ai)

2

|Pi|OPTDP (P, λ)/n

+
4n

|Pi|
+ 1

≤ 2α dist(p,A)2

costDP (P, A)/n
+

4α
∑
p′∈Pi dist(p′, A)2

|Pi| costDP (P, A)/n

+
4n

|Pi|
+ 1.

The last expression is independent of Q and thus a valid
upper bound on σ(p). Furthermore, the total sensitivity S
is bounded by S since

S =
1

n

∑
p∈P

σ(p)

≤
∑
p∈P

[
2α dist(p,A)2

costDP (P, A)
+

4α
∑
p′∈Pi dist(p′, A)2

|Pi| costDP (P, A)

+
4

|Pi|

]
+ 1

=
6α
∑
p∈P dist(p,A)2

costDP (P, A)
+ 4β + 1

≤6α+ 4β + 1 = S.
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Lemma 6.6. Let Q be the set of all non-empty subsets of
Rd with at most k elements. Let P be a finite set and de-
note by fQ(p) the DP-Means cost function from Q× P to
[0,∞). Define the set of functions F = {fQ(p) | p ∈ P}
from the set Q to [0,∞). Then it holds that

dim(F ) = d(k + 1).

Proof. We need to show that

∀S ⊆ F : |S ∩ ranges(F )| ≤ |S|d(k+1)

where ranges(F ) = {range(Q, r) | Q ∈ Q, r ≥ 0} and
range(Q, r) = {f ∈ F | f(Q) ≤ r} for everyQ ∈ Q and
r ≥ 0.

This is equivalent to showing ∀S ⊆ F∑
i=1,...,k

|S ∩ {range(Q, r) | Q ∈ Qi, r ≥ 0}| ≤ |S|kd+1

where Qi is the set of all subsets of Rd with i elements.

We recall the DP-Means cost function fQ(p) =

dist(p,Q)2 + |Q|λ
n and easily see that for each query Q

and r ≥ 0 the range range(Q, r) for the DP-Means
problem is the same as the equivalently defined range
rangeKM (Q, r − |Q|λn ) of the K-Means clustering prob-
lem with |Q| centers since the DP-Means penalization term
|Q|λ
n is constant. We hence use the result from Feld-

man & Langberg (2011b) (see proof of Theorem 15.7)
that in d-dimensional Euclidean space K-Means cluster-
ing with i centers has dimensionality id which implies for
i = 1, 2, . . . , k

∀S ⊆ F : |S ∩ {range(Q, r) | Q ∈ Qi, r ≥ 0}| ≤ |S|id.

This gives us the required result

∀S ⊆ F : |S ∩ ranges(F )| ≤
∑

i=1,2,...,k

|S|id ≤ |S|d(k+1).

Now we have all the prerequisites to prove our main results,
Theorem 3.3 and Corollary 3.4.
Theorem 3.3. Let 0 < ε < 1/4, λ > 0 and let P be a set of
n data points in Rd. Let C be the weighted set returned by
Algorithm 2 when applied to the results of Algorithm 1.
Then the weighted set C is with constant probability an
(ε, k̂)-coreset with k̂ = k′(16(log2 k

′ + 2) + 1) where k′

is the number of centers returned by Algorithm 1. The re-
sult holds with probability at least 1 − δ if Algorithm 1 is
repeated log 1

δ times andO
(
dk′3 log k′+k′2 log 1

δ

ε2

)
points are

sampled in Algorithm 2.

Proof. Apply Lemma 6.1, Lemma 6.5 and Lemma 6.6 to
Theorem 6.4. The results can be extended to hold with
arbitrary probability 1 − δ by Theorem 4.4 of Feldman &
Langberg (2011a).

Corollary 3.4. Let 0 < ε < 1/4, λ > 0 and let P be a set
of n data points in Rd. Let C be the weighted set returned
by Algorithm 2 when applied to the results of Algorithm 1.
For any optimal solver Q mapping a set of data points
to a set of cluster centers, we have costDP (P, Q(C)) ≤
1+ε
1−ε costDP (P, Q(P))

Proof. Since the solver Q is optimal, we have

costDP (C, Q(C)) ≤ costDP (C, Q(P)).

By Theorem 3.3 we have both

costDP (C, Q(C)) ≥ (1− ε) costDP (P, Q(C))
costDP (C, Q(P)) ≤ (1 + ε) costDP (P, Q(P)).

This leads to the desired result, i.e.

costDP (P, Q(C)) ≤ 1 + ε

1− ε
costDP (P, Q(P)).


