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ABSTRACT
How can one summarize a massive data set “on the fly”, i.e.,
without even having seen it in its entirety? In this paper,
we address the problem of extracting representative elements
from a large stream of data. I.e., we would like to select a
subset of say k data points from the stream that are most
representative according to some objective function. Many
natural notions of “representativeness” satisfy submodular-
ity, an intuitive notion of diminishing returns. Thus, such
problems can be reduced to maximizing a submodular set
function subject to a cardinality constraint. Classical ap-
proaches to submodular maximization require full access to
the data set. We develop the first efficient streaming algo-
rithm with constant factor 1/2 − ε approximation guaran-
tee to the optimum solution, requiring only a single pass
through the data, and memory independent of data size. In
our experiments, we extensively evaluate the effectiveness
of our approach on several applications, including training
large-scale kernel methods and exemplar-based clustering,
on millions of data points. We observe that our streaming
method, while achieving practically the same utility value,
runs about 100 times faster than previous work.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data mining

Keywords
Submodular functions; Streaming algorithms

1. INTRODUCTION
The unprecedented growth in modern datasets – coming

from different sources and modalities such as images, videos,
sensor data, social networks, etc. – demands novel tech-
niques that extract useful information from massive data,
while still remaining computationally tractable. One com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623637.

pelling approach that has gained a lot of interest in recent
years is data summarization: selecting representative subsets
of manageable size out of large data sets. Applications range
from exemplar-based clustering [8], to document [23, 7] and
corpus summarization [33], to recommender systems [10, 9],
just to name a few. A systematic way for data summariza-
tion, used in all the aforementioned applications, is to turn
the problem into selecting a subset of data elements opti-
mizing a utility function that quantifies “representativeness”
of the selected set. Often-times, these objective functions
satisfy submodularity, an intuitive notion of diminishing re-
turns (c.f., [27]), stating that selecting any given element
earlier helps more than selecting it later. Thus, many prob-
lems in data summarization require maximizing submodular
set functions subject to cardinality constraints [14, 18], and
big data means we have to solve this problem at scale.

Submodularity is a property of set functions with deep
theoretical and practical consequences. The seminal result
of Nemhauser et al. [27], that has been of great importance in
data mining, is that a simple greedy algorithm produces so-
lutions competitive with the optimal (intractable) solution.
This greedy algorithm starts with the empty set, and iter-
atively locates the element with maximal marginal benefit
(increasing the utility the most over the elements picked so
far). This greedy algorithm (and other standard algorithms
for submodular optimization), however, unfortunately re-
quires random access to the data. Hence, while it can easily
be applied if the data fits in main memory, it is impractical
for data residing on disk, or arriving over time at a fast pace.

In many domains, data volumes are increasing faster than
the ability of individual computers to store them in main
memory. In some cases, data may be produced so rapidly
that it cannot even be stored. Thus, it becomes of crucial
importance to process the data in a streaming fashion where
at any point of time the algorithm has access only to a small
fraction of data stored in primary memory. This approach
not only avoids the need for vast amounts of random-access
memory but also provides predictions in a timely manner
based on the data seen so far, facilitating real-time analytics.

In this paper, we provide a simple streaming protocol,
called Sieve-Streaming, for monotone submodular func-
tion maximization, subject to the constraint that at most
k points are selected. It requires only a single pass over
the data, in arbitrary order, and provides a constant fac-
tor 1/2− ε approximation to the optimum solution, for any
ε > 0. At the same time, it only requires O((k log k)/ε)



memory (i.e., independent of the data set size), and pro-
cesses data points with O((log k)/ε) update time. To the
best of our knowledge, it is the first streaming protocol
that provides such strong theoretical guarantees if nothing
but monotone submodularity is assumed. Our experimen-
tal results demonstrate the effectiveness of our approach
on several submodular maximization problems. We show
that for problems such as exemplar-based clustering and ac-
tive set selection in nonparametric learning, our approach
leads to streaming solutions that provide competitive utility
when compared with those obtained via classical methods,
at a dramatically reduced fraction of the computational cost
(about 1% in both the exemplar based clustering and active
set selection applications).

2. BACKGROUND AND RELATED WORK
Over the recent years, submodular optimization has been

identified as a powerful tool for numerous data mining and
machine learning applications including viral marketing [17],
network monitoring [22], news article recommendation [10],
nonparametric learning [14, 29], document and corpus sum-
marization [23, 7, 33], network inference [30], and Determi-
nantal Point Processes [13]. A problem of key importance in
all these applications is to maximize a monotone submodu-
lar function subject to a cardinality constraint (i.e., a bound
on the number k of elements that can be selected). See [18]
for a survey on submodular maximization.

Classical approaches for cardinality-constrained submod-
ular optimization, such as the celebrated greedy algorithm
of Nemhauser et al. [27], or its accelerated variants [24, 22,
3] require random access to the data. Once the size of the
dataset increases beyond the memory capacity (typical in
many modern datasets) or the data is arriving incrementally
over time, neither the greedy algorithm, nor its accelerated
versions can be used.

Scaling up: distributed algorithms.
One possible approach to scale up submodular optimiza-

tion is to distribute data to several machines, and seek par-
allel computation methods. In particular, Mirzasoleiman et
al. [25] in parallel to Kumar et al. [20] devised distributed al-
gorithms for maximizing submodular functions, under some
additional assumptions on the objective function: Lipschitz
continuity [25] or bounded spread of the non-zero marginal
gains [20]. Prior to [25] and [20], specific instances of dis-
tributed submodular maximization, that often arise in large-
scale graph mining problems, have been studied. In par-
ticular, Chierichetti et al. [6] and later Blelloch et al. [5]
addressed the MAX-COVER problem and provided a con-
stant approximation to the centralized algorithm. Lattanzi
et al. [21] addressed more general graph problems by intro-
ducing the idea of filtering : reduce the size of the input in
a distributed fashion so that the resulting, much smaller,
problem instance can be solved on a single machine. Our
streaming method Sieve-Streaming employs a similar fil-
tering idea.

Streaming algorithms for submodular maximization.
Another natural approach to scale up submodular opti-

mization, explored in this paper, is to use streaming algo-
rithms. In fact, in applications where data arrives at a pace
that does not allow even storing it, this is the only viable op-
tion. The first approach, Stream-Greedy, for submodular

maximization on data streams is presented by [14]. How-
ever, their approach makes strong assumptions about the
way the data stream is generated, and unless their assump-
tions are met, it is fairly easy to construct examples (and
we demonstrate one in this paper) where the performance
of their algorithm degrades quickly when compared to the
optimum solution. Furthermore, the update time (compu-
tational cost to process one data point) of their approach is
Ω(k), which is prohibitive for large k. We compare against
their approach in this paper.

The work of [20] claims a multi-pass and a single-pass
streaming algorithm. The claimed guarantees for the sin-
gle pass algorithm depend on the maximum increase in the
objective any element can offer (Thm. 27, [20]), while the
multi-pass algorithm has a memory requirement depending
on the data size n (Thm. 28, [20]). Our algorithm Sieve-
Streaming lazily tracks the maximum valued element, en-
abling a single pass streaming algorithm which does not de-
pend on the maximum increase in the objective any element
can offer. We cannot empirically compare against [20] as the
details of both algorithms are omitted.

There is further related work on the submodular secretary
problem [15, 4]. While also processing elements in a stream,
these approaches are different in two important ways: (i)
they work in the stronger model where they must either
commit to or permanently discard newly arriving elements;
(ii) they require random arrival of elements, and have a worse
approximation ratio (≤ 0.1 vs. 1/2−ε). If elements arrive in
arbitrary order, performance can degrade arbitrarily. Some
approaches also require large (i.e., O(n)) memory [15].

In this paper, we provide the first streaming algorithm
for cardinality-constrained submodular maximization with
1) constant factor approximation guarantees, that 2) makes
no assumptions on the data stream, 3) requires only a single
pass, 4) only O(k log k) memory and 5) only O(log k) update
time, assuming 6) nothing but monotone submodularity.

3. STREAMING SUBMODULAR MAX
We consider the problem of selecting subsets out of a large

data set of size n, indexed by V (called ground set). Our
goal is to maximize a non-negative set function f : 2V → R+,
where, for S ⊆ V , f(S) quantifies the utility of set S, cap-
turing, e.g., how well S represents V according to some ob-
jective. We will discuss concrete instances of functions f in
Section 4. A set function f is naturally associated with a
discrete derivative, also called the marginal gain,

4f (e|S)
.
= f(S ∪ {e})− f(S), (1)

where S ⊆ V and e ∈ V , which quantifies the increase in
utility obtained when adding e to set S. f is called mono-
tone iff for all e and S it holds that 4f (e|S) ≥ 0. Further,
f is submodular iff for all A ⊆ B ⊆ V and e ∈ V \ B the
following diminishing returns condition holds:

4f (e|A) ≥ 4f (e|B). (2)

That means, adding an element e in context of a set A helps
at least as much as adding e in context of a superset B of A.
Throughout this paper, we focus on such monotone submod-
ular functions. For now, we adopt the common assumption
that f is given in terms of a value oracle (a black box) that
computes f(S) for any S ⊆ V . In Section 6, we will discuss
the setting where f(S) itself depends on the entire data set
V , and not just the selected subset S. Submodular functions



contain a large class of functions that naturally arise in data
mining and machine learning applications (c.f., [17, 22, 10,
14, 9, 23, 7, 33, 30, 18]).

Cardinality-constrained submodular maximization.
The focus of this paper is on maximizing a monotone sub-

modular function subject to a cardinality constraint, i.e.,

max
S⊆V

f(S) s.t. |S| ≤ k. (3)

We will denote by S∗ the subset of size at most k that
achieves the above maximization, i.e., the optimal solution,
with value OPT = f(S∗). Unfortunately, problem (3) is NP-
hard, for many classes of submodular functions [11]. How-
ever, a seminal result by Nemhauser et al. [27] shows that
a simple greedy algorithm is highly effective. It starts with
the empty set S0 = ∅, and at each iteration i over the whole
dataset, it chooses an element e ∈ V maximizing (1), i.e.,

Si = Si−1 ∪ {arg max
e∈V
4f (e|Si−1)}. (4)

Let Sg denote this greedy solution of size at most k. Nemhauser
et al. prove that f(Sg) ≥ (1− 1/e)OPT, i.e., the greedy algo-
rithm obtains a (1−1/e) ≈ 0.63 approximation. For several
classes of monotone submodular functions, it is known that
(1− 1/e) is the best approximation guarantee that one can
hope for [26, 11, 19]. Moreover, the greedy algorithm can
be accelerated using lazy evaluations [24, 22].

Submodular optimization over data streams.
In many today’s data mining and machine learning appli-

cations, running the standard greedy algorithm or its vari-
ants [24, 22] is computationally prohibitive: either the data
set does not fit in main memory on a single computer, pre-
cluding random access, or the data itself arrives in a stream
(e.g., activity logs, video streams), possibly in a pace that
precludes storage. Hence, in such applications, we seek
methods that can process quickly arriving data in a timely
manner. Streaming algorithms with a limited memory avail-
able to them (much less than the ground set) and limited
processing time per item [12] are practical solutions in such
scenarios. They access only a small fraction of data at any
point in time and provide approximate solutions.

More formally, in context of streaming submodular max-
imization, we assume that the ground set V = {e1, . . . , en}
is ordered (in some arbitrary manner, w.l.o.g., the natural
order 1, 2, . . . , n), and any streaming algorithm must process
V in the given order. At each iteration t, the algorithm may
maintain a memory Mt ⊂ V of points, and must be ready to
output a candidate feasible solution St ⊂Mt of size at most
|St| ≤ k. Whenever a new point arrives from the stream,
the algorithm may elect to remember it (i.e., insert it into
its memory). However, if the memory exceeds a specified ca-
pacity bound, it must discard elements before accepting new
ones. The performance of a streaming algorithm is measured
by four basic parameters:

• the number of passes the algorithm needs to make over
the data stream,

• the memory required by the algorithm (i.e., maxt |Mt|),
• the running time of the algorithm, in particular the

number of oracle queries (evaluations of f) made,

• the approximation ratio, i.e., f(ST )/OPT where ST is
the final solution produced by the algorithm1.

1Note that T can be bigger than n, if the algorithm makes
multiple passes over the data.

Towards Streaming Submodular Maximization.
The standard greedy algorithm (4) requires access to all

elements of the ground set and hence cannot be directly ap-
plied in the streaming setting. A naive way to implement
it in a streaming fashion, when the data is static and does
not increase over time, is to pass k times over the ground
set and at each iteration select an element with the max-
imum marginal gain. This naive approach will provide a
(1 − 1/e) approximation at the price of passing many (i.e,
k) times over the data, using O(k) memory, O(nk) func-
tion evaluations. Note that, if the data size increases over
time (e.g., new elements are added to a log, video is be-
ing recorded, etc.) we can no longer implement this naive
approach. Moreover, the accelerated versions of the greedy
algorithm do not provide any benefit in the streaming set-
ting as the full ground set is not available for random access.

An alternative approach is to keep a memory of the best
elements seen so far. For instance, we can start from the
empty set S0 = ∅. As long as no more than k elements
e1, e2, . . . , et have arrived (or no more than k elements are
read from the ground set), we keep all of them, i.e., St =
St−1 ∪ {et}, for t ≤ k. Then for each new data point et,
where t > k, we check whether switching it with an element
in St−1 will increase the value of the utility function f . If
so, we switch it with the one that maximizes the utility.
Formally, if there exists an e ∈ St−1 such that f(St−1∪{et}\
{e}) > f(St−1), then we swap e and et, setting St = St−1 ∪
{et} \ {e}. This greedy approach is the essence of Stream-
Greedy of [14]. However, unless strong conditions are met,
the performance of Stream-Greedy degrades arbitrarily
with k (see Appendix).

Very recently, the existence of another streaming algo-
rithm – Greedy-Scaling – was claimed in [20]. As nei-
ther the algorithm nor its proof were described in the pa-
per, we were unable to identify its running time in theory
and its performance in practice. Based on their claim, if
nothing but monotone submodularity is assumed, Greedy-
Scaling has to pass over the dataset O(1/δ) times in or-
der to provide a solution with δ/2 approximation guarantee.
Moreover, the required memory also increases with data as
O(knδ logn). With a stronger assumption, namely that all
(non-zero) marginals are bounded between 1 and ∆, the exis-
tence of a one-pass streaming algorithm with approximation
guarantee 1/2−ε, and memory k/ε log(n∆) is claimed. Note
that the above requirement on the bounded spread of the
nonzero marginal gains is rather strong and does not hold
in certain applications, such as the objective in (6) (here, ∆
may increase exponentially in k).

In this paper, we devise an algorithm– Sieve-Streaming –
that, for any ε > 0, within only one pass over the data
stream, using only O(k log(k)/ε) memory, running time of
at most O(n log(k)/ε) produces a 1/2− ε approximate solu-
tion to (3). So, while the approximation guarantee is slightly
worse compared to the classical greedy algorithm, a single
pass suffices, and the running time is dramatically improved.
Moreover, ε serves as a tuning parameter for trading accu-
racy and cost.

4. APPLICATIONS
We now discuss two concrete applications, with their sub-

modular objective functions f , where the size of the datasets
or the nature of the problem often requires a streaming solu-
tion. We report experimental results in Section 7. Note that



# passes approx. guarantee memory update time
Standard Greedy [27] O(k) (1− 1/e) O(k) O(k)

Greedy-Scaling [20] O(1/δ) δ/2 knδ logn ?
Stream-Greedy [14] multiple (1/2− ε) O(k) O(k)
Sieve-Streaming 1 (1/2− ε) O(k log(k)/ε) O(log(k)/ε)

Table 1: Comparisons between the existing streaming methods in terms of number of passes over the data, required memory,
update time per new element and approximation guarantee. For Greedy-Scaling we report here the performance guarantees
claimed in [20]. However, as the details of the streaming algorithm are not presented in [20] we were unable to identify the
update time and compare with them in our experiments. For Stream-Greedy no upper bound on the number of rounds is
provided in [14]. The memory and update times are not explicitly tied to ε.

many more data mining applications have been identified to
rely on submodular optimization (e.g., [17, 22, 10, 9, 23, 33,
30]), which can potentially benefit from our work. Providing
a comprehensive survey is beyond the scope of this article.

4.1 Exemplar Based Clustering
We start with a classical data mining application. Sup-

pose we wish to select a set of exemplars, that best represent
a massive data set. One approach for finding such exemplars
is solving the k-medoid problem [16], which aims to mini-
mize the sum of pairwise dissimilarities between exemplars
and elements of the dataset. More precisely, let us assume
that for the data set V we are given a distance function
d : V ×V → R such that d(·, ·) encodes dissimilarity between
elements of the underlying set V . Then, the k-medoid loss
function can be defined as follows:

L(S) =
1

|V |
∑
e∈V

min
υ∈S

d(e, υ).

By introducing an auxiliary element e0 (e.g., = 0, the all
zero vector) we can turn L into a monotone submodular
function [14]:

f(S) = L({e0})− L(S ∪ {e0}). (5)

In words, f measures the decrease in the loss associated with
the set S versus the loss associated with just the auxiliary
element. It is easy to see that for suitable choice of e0, max-
imizing f is equivalent to minimizing L. Hence, the stan-
dard greedy algorithm provides a very good solution. But
the problem becomes computationally challenging when we
have a large data set and we wish to extract a small subset
S of exemplars. Our streaming solution Sieve-Streaming
addresses this challenge.

Note that in contrast to classical clustering algorithms
(such as k-means), the submodularity-based approach is very
general: It does not require any properties of the distance
function d, except nonnegativity (i.e., d(·, ·) ≥ 0). In par-
ticular, d is not necessarily assumed to be symmetric, nor
obey the triangle inequality.

4.2 Large-scale Nonparametric Learning
Besides extracting representative elements for sake of ex-

plorative data analysis, data summarization is a powerful
technique for speeding up learning algorithms.

As a concrete example, consider kernel machines [31] (such
as kernelized SVMs/logistic regression, Gaussian processes,
etc.), which are powerful non-parametric learning techniques.
The key idea in these approaches is to reduce non-linear
problems such as classification, regression, clustering etc. to
linear problems – for which good algorithms are available

– in a, typically high-dimensional, transformed space. Cru-
cially, the data set V = {e1, . . . , en} is represented in this
transformed space only implicitly via a kernel matrix

KV,V =

Ke1,e1 . . . Ke1,en
...

...
Ken,e1 . . . Ken,en

 .

Hereby Kei,ej is the similarity of item i and j measured via
a symmetric positive definite kernel function. For example,
a commonly used kernel function in practice where elements
of the ground set V are embedded in a Euclidean space is
the squared exponential kernel

Kei,ej = exp(−|ei − ej |22/h2).

Many different kernel functions are available for modeling
various types of data beyond Euclidean vectors, such as se-
quences, sets, graphs etc. Unfortunately, when scaling to
large data sets, even representing the kernel matrix KV,V

requires space quadratic in n. Moreover, solving the learn-
ing problems (such as kernelized SVMs, Gaussian processes,
etc.) typically has cost Ω(n2) (e.g., O(n3) for Gaussian pro-
cess regression).

Thus, a common approach to scale kernel methods to large
data sets is to perform active set selection (c.f., [28, 32]), i.e.,
select a small, representative subset S ⊆ V , and only work
with the kernel matrix KS,S restricted to this subset. The
key challenge is to select such a representative set S.

One prominent procedure that is often used in practice is
the Informative Vector Machine (IVM) [32], which aims to
select a set S maximizing the following objective function

f(S) =
1

2
log det(I + σ−2ΣS,S), (6)

where σ is a regularization parameter. Thus, sets maximiz-
ing f(S) maximize the log-determinant I + σ−2ΣS,S , and
therefore capture diversity of the selected elements S. It
can be shown that f is monotone submodular [32]. Note
that similar objective functions arise when performing MAP
inference in Determinantal Point Processes, powerful prob-
abilistic models for data summarization [13].

When the size of the ground set is small, standard greedy
algorithms (akin to (4)) provide good solutions. Note that
the objective function f only depends on the selected ele-
ments (i.e., the cost of evaluating f does not depend on the
size of V ). For massive data sets, however, classical greedy
algorithms do not scale, and we must resort to streaming.

In Section 7, we will show how Sieve-Streaming can
choose near-optimal subsets out of a data set of 45 million
vectors (user visits from Yahoo! Front Page) by only ac-
cessing a small portion of the dataset. Note that in many



nonparametric learning applications, data naturally arrives
over time. For instance, the Yahoo! Front Page is visited
by thousands of people every hour. It is then advantageous,
or sometimes the only way, to make predictions with kernel
methods by choosing the active set on the fly.

5. THE SIEVE-STREAMING ALGORITHM
We now present our main contribution, the Sieve-Streaming

algorithm for streaming submodular maximization. Our ap-
proach builds on three key ideas: 1) a way of simulating the
(intractable) optimum algorithm via thresholding, 2) guess-
ing the threshold based on the maximum singleton element,
and 3) lazily running the algorithm for different thresholds
when the maximum singleton element is updated. As our
final algorithm is a careful mixture of these ideas, we show-
case each of them by making certain assumptions and then
removing each assumption to get the final algorithm.

5.1 Knowing OPT helps
The key reason why the classical greedy algorithm for sub-

modular maximization works, is that at every iteration, an
element is identified that reduces the “gap” to the optimal
solution by a significant amount. More formally, it can be
seen that, if Si is the set of the first i elements picked by the
greedy algorithm (4), then the marginal value 4f (ei+1|Si)
of the next element ei+1 added is at least (OPT − f(Si))/k.
Thus, our main strategy for developing our streaming al-
gorithm is identify elements with similarly high marginal
value. The challenge in the streaming setting is that, when
we receive the next element from the stream, we must im-
mediately decide whether it has “sufficient” marginal value.
This will require us to compare it to OPT in some way which
gives the intuition that knowing OPT should help.

With the above intuition, we could try to pick the first
element with marginal value OPT/k. This specific attempt
does not work for instances that contain a single element
with marginal value just above OPT/k towards the end of
the stream, and where the rest of elements with marginal
value just below OPT/k appear towards the beginning of the
stream. Our algorithm would have then rejected these ele-
ments with marginal value just below OPT/k and can never
get their value. But we can immediately observe that if
we had instead lowered our threshold from OPT/k to some
βOPT/k, we could have still gotten these lower valued ele-
ments while still making sure that we get the high valued
elements when β is reasonably large. Below, we use β = 1/2.

Our algorithm will be based on the above intuition. Sup-
pose we know OPT up to a constant factor α, i.e., we have a
value v such that OPT ≥ v ≥ α ·OPT for some 0 ≤ α ≤ 1. The
algorithm starts with setting S = ∅ and then, after observ-
ing each element, it adds it to S if the marginal value is at
least (v/2−f(S))/(k−|S|) and we are still below the cardi-
nality constraint. Thus, it “sieves” out elements with large
marginal value. The pseudocode is given in algorithm 1

Proposition 5.1. Assuming input v to algorithm 1 sat-
isfies OPT ≥ v ≥ α OPT, the algorithm satisfies the following
properties

• It outputs a set S such that |S| ≤ k and f(S) ≥ α
2
OPT

• It does 1 pass over the data set, stores at most k ele-
ments and has O(1) update time per element.

Algorithm 1 SIEVE-STREAMING-KNOW-OPT-VAL

Input: v such that OPT ≥ v ≥ α OPT

1: S = ∅
2: for i = 1 to n do
3: if 4f (ei | S) ≥ v/2−f(S)

k−|S| and |Sv| < k then

4: S := S ∪ {ei}
5: return S

5.2 Knowing maxe∈V f({e}) is enough
Algorithm 1 requires that we know (a good approxima-

tion) to the value of the optimal solution OPT. However,
obtaining this value is a kind of chicken and egg problem
where we have to estimate OPT to get the solution and use
the solution to estimate OPT. The crucial insight is that,
in order to get a very crude estimate on OPT, it is enough
to know the maximum value of any singleton element m =
maxe∈V f({e}). From submodularity, we have that

m ≤ OPT ≤ k ·m.

This estimate is not too useful yet; if we apply Proposi-
tion 5.1 directly with v = km and α = 1/k, we only obtain
the guarantee that the solution will obtain a value of OPT/2k.

Fortunately, once we get this crude upper bound k · m
on OPT, we can immediately refine it. In fact, consider the
following set

O = {(1 + ε)i|i ∈ Z,m ≤ (1 + ε)i ≤ k ·m}.

At least one of the thresholds v ∈ O should be a pretty good
estimate of OPT, i.e there should exist at least some v ∈ O
such that (1 − ε)OPT ≤ v ≤ OPT. That means, we could
run Algorithm 1 once for each value v ∈ O, requiring mul-
tiple passes over the data. In fact, instead of using multiple
passes, a single pass is enough: We simply run several copies
of Algorithm 1 in parallel, producing one candidate solution
for each threshold v ∈ O. As final output, we return the
best solution obtained.

More formally, the algorithm proceeds as follows. It as-
sumes that the value m = maxe∈V f({e}) is given at the
beginning of the algorithm. The algorithm discretizes the
range [m, k ·m] to get the set O. Since the algorithm does
not know which value among O is a good estimate for OPT,
it simulates Algorithm 1 for each of these values v: Formally
it starts with a set Sv for each v ∈ O and after observing
each element, it adds to every Sv for which it has a marginal
value of at least (v/2 − f(Sv))/(k − |Sv|) and Sv is below
the cardinality constraint. Note that |O| = O((log k)/ε),
i.e., we only need to keep track of O((log k)/ε) many sets
Sv of size at most k each, bounding the size of the mem-
ory M = ∪v∈OSv by O((k log k)/ε). Moreover, the update
time is O((log k)/ε) per element. The pseudocode is given
in Algorithm 2.

Proposition 5.2. Assuming input m to Algorithm 2 sat-
isfies m = maxe∈V f({e}), the algorithm satisfies the follow-
ing properties

• It outputs a set S such that |S| ≤ k and f(S) ≥(
1
2
− ε
)
OPT

• It does 1 pass over the data set, stores at most O
(
k log k
ε

)
elements and has O

(
log k
ε

)
update time per element.



Algorithm 2 SIEVE-STREAMING-KNOW-MAX-VAL

Input: m = maxe∈V f({e})
1: O = {(1 + ε)i|i ∈ Z,m ≤ (1 + ε)i ≤ k ·m}
2: For each v ∈ O,Sv := ∅
3: for i = 1 to n do
4: for v ∈ O do
5: if 4f (ei | Sv) ≥ v/2−f(Sv)

k−|Sv| and |Sv| < k then

6: Sv := Sv ∪ {ei}
7: return argmaxv∈On

f(Sv)

5.3 Lazy updates: The final algorithm
While Algorithm 2 successfully removed the unrealistic

requirement of knowing OPT, obtaining the maximum value
m of all singletons still requires one pass over the full data
set, resulting in a two-pass algorithm.

It turns out that it is in fact possible to estimate m on
the fly, within a single pass over the data. We will need two
ideas to achieve this. The first natural idea is to maintain
an auxiliary variable m which holds the current maximum
singleton element after observing each element ei and lazily
instantiate the thresholds v = (1 + ε)i,m ≤ (1 + ε)i ≤ k ·m.
Unfortunately, this idea alone does not yet work: This is be-
cause when we instantiate a threshold v we could potentially
have already seen elements with marginal value v/(2k) that
we should have taken for the solution corresponding to Sv.

The second idea is to instead instantiate thresholds for an
increased range v = (1 + ε)i,m ≤ (1 + ε)i ≤ 2 · k ·m. It can
be seen that when a threshold v is instantiated from this
expanded set O, every element with marginal value v/(2k)
to Sv will appear on or after v is instantiated.

We now state the algorithm formally. It maintains an aux-
iliary variable m that holds the current maximum singleton
element after observing each element ei. Whenever m gets
updated, the algorithm lazily instantiates the set Oi and
deletes all thresholds outside Oi. Then it includes the ele-
ment ei into every Sv for v ∈ Oi if ei has the marginal value
(v/2− f(Sv))/(k − |Sv|) to Sv. Finally, it outputs the best
solution among Sv. We call the resulting algorithm Sieve-
Streaming, and present its pseudocode in Algorithm 3, as
well as an illustration in Figure 1.

Algorithm 3 Sieve-Streaming

1: O = {(1 + ε)i|i ∈ Z}
2: For each v ∈ O,Sv := ∅ (maintain the sets only for the

necessary v’s lazily)
3: m := 0
4: for i = 1 to n do
5: m := max(m, f({ei}))
6: Oi = {(1 + ε)i|m ≤ (1 + ε)i ≤ 2 · k ·m}
7: Delete all Sv such that v /∈ Oi.
8: for v ∈ Oi do
9: if 4f (ei | Sv) ≥ v/2−f(Sv)

k−|Sv| and |Sv| < k then

10: Sv := Sv ∪ {ei}
11: return argmaxv∈On

f(Sv)

Theorem 5.3. Sieve-Streaming (Algorithm 3) satisfies
the following properties

• It outputs a set S such that |S| ≤ k and f(S) ≥(
1
2
− ε
)
OPT

Data Stream

Sieves

Thresholds

Max

Figure 1: Illustration of Sieve-Streaming. Data arrives
in any order. The marginal gain of any new data point is
computed with respect to all of the sieves. If it exceeds the
specific threshold of any sieve that does not yet meet the
cardinality constraint, the point will be added. Otherwise it
will be discarded. Sieve-Streaming ensures that the num-
ber of sieves is bounded. Moreover, it can provide statistics
about the data accumulated at any time by returning the
elements of the sieve with maximum utility.

• It does 1 pass over the data set, stores at most O
(
k log k
ε

)
elements and has O

(
log k
ε

)
update time per element.

Note that the total computation cost of Sieve-Streaming
is O

(
n log k
ε

)
. This is in contrast to the cost of O(nk) for

the classical greedy algorithm. Thus, not only does Sieve-
Streaming require only a single pass through the data, it
also offers an accuracy–performance tradeoff by providing
the tuning parameter ε. We empirically evaluate this trade-
off in our experiments in Section 7. Further note that when
executing Sieve-Streaming, some sets Sv do not “fill up”
(i.e., meet the cardinality constraint). The empirical per-
formance can be improved – without sacrificing any guaran-
tees – by maintaining a reservoir (cf., Sec. 6) of O(k log k)
random elements, and augment the non-full sets Sv upon
termination by greedily adding elements from this reservoir.

6. BEYOND THE BLACK-BOX
In the previous sections, we have effectively assumed a so

called black-box model for the function evaluations: given
any set S, our algorithm Sieve-Streaming can evaluate
f(S) independently of the ground set V . I.e., the black-box
implementing f only needs access to the selected elements S,
but not the full data stream V . In several practical settings,
however, this assumption is violated, meaning that the util-
ity function f depends on the entire dataset. For instance,
in order to evaluate (5) we need to know the loss function
over the entire data set. Fortunately, many such functions
(including (5)) share an important characteristic; they are
additively decomposable [25] over the ground set V . That
means, they can be written as

f(S) =
1

|V |
∑
e∈V

fe(S), (7)

where fe(S) is a non-negative submodular function. Decom-
posability requires that there is a separate monotone sub-
modular function associated with every data point e ∈ V



and the value of f(S) is nothing but the average of fe(S).
For the remaining of this section, we assume that the func-
tions fe(·) can all be evaluated without accessing the full
ground set. We define the evaluation of the utility function
f restricted to a subset W ⊆ V as follows:

fW (S) =
1

|W |
∑
e∈W

fe(S).

Hence fW (S) is the empirical average of f w.r.t. to set W .
Note that as long as W is large enough and its elements are
randomly chosen, the value of the empirical mean fW (S)
will be a very good approximation of the true mean f(S).

Proposition 6.1. Assume that all of fe(S) are bounded
and w.l.o.g. |fe(S)| ≤ 1. Moreover, let W be uniformly
sampled from V . Then by Hoeffding’s inequality we have

Pr(|fW (S)− f(S)| > ξ) ≤ 2 exp

(
−|W |ξ2

2

)
.

There are at most |V |k sets of size at most k. Hence, in
order to have the RHS ≤ δ for any set S of size at most k
we simply (using the union bound) need to ensure

|W | ≥ 2 log(2/δ) + 2k log(|V |)
ξ2

. (8)

As long as we know how to sample uniformly at random
from a data stream, we can ensure that for decomposable
functions defined earlier, our estimate is close (within the
error margin of ξ) to the correct value. To sample randomly,
we can use a reservoir sampling technique [35]. It creates a
reservoir array of size |W | and populates it with the first |W |
items of V . It then iterates through the remaining elements
of the ground set until it is exhausted. At the i-th element
where i > |W |, the algorithm generates a random number j
between 1 and i. If j is at most |W |, the j-th element of the
reservoir array is replaced with the ith element of V . It can
be shown that upon finishing the data stream, each item in
V has equal probability of being chosen for the reservoir.

Now we can devise a two round streaming algorithm, which
in the first round applies reservoir sampling to sample an
evaluation set W uniformly at random. In the second round,
it simply runs Sieve-Streaming and evaluates the utility
function f only with respect to the reservoir W .

Algorithm 4 Sieve-Streaming + Reservoir Sampling

1: Go through the data and find a reservoir W of size (8)
2: Run Sieve-Streaming by only evaluating fW (·)

Theorem 6.2. Suppose Sieve-Streaming uses a valida-

tion set W of size |W | ≥ 2 log(2/δ)k2+2k3 log(|V |)
ε2

. Then with
probability 1 − δ, the output of Alg 4 will be a set S of size
at most k such that

f(S) ≥ (
1

2
− ε)(OPT− ε).

This result shows how Sieve-Streaming can be applied to
decomposable submodular functions if we can afford enough
memory to store a sufficiently large evaluation set. Note
that the above approach naturally suggests a heuristic one-
pass algorithm for decomposable functions: Take the first
2 log(2/δ)k2+2k3 log(|V |)

ε2
samples as validation set and run the

greedy algorithm on it to produce a candidate solution. Then
process the remaining stream, updating the validation set
via reservoir sampling, and applying Sieve-Streaming, us-
ing the current validation set in order to approximately eval-
uate f . We report our experimental results for the exemplar-
based clustering application using an evaluation set W .

7. EXPERIMENTS
In this section, we address the following questions:

• How good is the solution provided by Sieve-Streaming
compared to the existing streaming algorithms?

• What computational benefits do we gain when using
Sieve-Streaming on large datasets?

• How good is the performance of Sieve-Streaming on
decomposable utility functions?

To this end, we run Sieve-Streaming on the two data min-
ing applications we described in Section 4: exemplar-based
clustering and active set selection for nonparametric learn-
ing. For both applications we report experiments on large
datasets with millions of data points. Throughout this sec-
tion we consider the following benchmarks:

• random selection: the output is k randomly selected
data points from V .

• standard greedy: the output is the k data points se-
lected by algorithm (4). This algorithm is not appli-
cable in the streaming setting.

• lazy greedy: the output produced by the accelerated
greedy method [24]. This algorithm is not applicable
in the streaming setting.

• Stream-Greedy: The output is the k data points
provided by Stream-Greedy as described in Section 3

In all of our experiments, we stop the streaming algorithms
if the utility function does not improve significantly (rela-
tive improvement of at least γ for some small value γ > 0).
In all of our experiment, we chose γ = 10−5. This way,
we can compare the performance of different algorithms in
terms of computational efforts in a fair way. Throughout
this section, we measure the computational cost in terms
of the number of function evaluations used (more precisely,
number of oracle queries). The advantage of this measure is
that it is independent of the concrete implementation and
platform. However, to demonstrate that the results remain
almost identical, we also report the actual wall clock time
for the exemplar-based clustering application. The random
selection policy has the lowest computational cost among
the streaming algorithms we consider in this paper. In fact,
in terms of function evaluations its cost is one; at the end
of the sampling process the selected set is evaluated once.
To implement the random selection policy we can employ
the reservoir sampling technique discussed earlier. On the
other end of the spectrum, we have the standard greedy al-
gorithm which makes k passes over the ground set, providing
typically the best solution in terms of utility. Since it is com-
putationally prohibitive we cannot run it for the large-scale
datasets. However, we also report results on a smaller data
set, where we compare against this algorithm.

7.1 Active Set Selection
For the active set selection objective described in Sec-

tion 4.2, we chose a Gaussian kernel with h = 0.75 and
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Figure 2: Performance comparison. a), b) and c) show the utility obtained, along with the computational cost, by the
algorithms on 3 different datasets. Sieve-Streaming achieves the major fraction of the utility with orders of magnitude less
computation time. d), e) f) demonstrate the performance of all the algorithms for different values of k on the same datasets.
In all of them Sieve-Streaming performs close to the (much more computationally expensive) Stream-Greedy benchmark.

σ = 1. For the small-scale experiments, we used the Parkin-
sons Telemonitoring dataset [34] consisting of 5,875 bio-
medical voice measurements with 22 attributes from peo-
ple with early-stage Parkinson’s disease. We normalized the
vectors to zero mean and unit variance. Fig. 2a compares
the performance of Sieve-Streaming to the benchmarks
for a fixed active set size k = 20. The computational costs
of all algorithms, as well as their acquired utilities, are nor-
malized to those of the standard greedy. As we can see,
Sieve-Streaming provides a solution close to that of the
standard greedy algorithm with a much reduced computa-
tional cost. For different values of k, Fig. 2d shows the per-
formance of all the benchmarks. Again, Sieve-Streaming
operates close to Stream-Greedy and (lazy) greedy.

For our large-scale scale experiment, we used the Yahoo!
Webscope data set consisting of 45,811,883 user visits from
the Featured Tab of the Today Module on the Yahoo! Front
Page [2]. For each visit, the user is associated with a feature
vector of dimension six. Fig. 2c compares the performance
of Sieve-Streaming to the benchmarks for a fixed active
set size k = 100. Since the size of the data set is large, we
cannot run the standard (or lazy) greedy algorithm. As a
consequence, computational costs and utilities are normal-
ized to those of the Stream-Greedy benchmark. For such a
large dataset, the benefit of using Sieve-Streaming is much
more pronounced. As we see, Sieve-Streaming provides
a solution close to that of Stream-Greedy while having
several orders of magnitude lower computational cost. The
performance of all algorithms (expect the standard and lazy
greedy) for different values of k is shown in Fig. 2f.

7.2 Exemplar-Based Clustering
Our exemplar-based clustering experiment involves Sieve-

Streaming applied to the clustering utility function (de-
scribed in Section 4.1) with the squared Euclidean distance,
namely, d(x, x′) = ‖x − x′‖2. We run the streaming algo-
rithms on the Census1990 dataset [1]. It consists of 2,458,285
data points with 68 attributes. We compare the performance
of Sieve-Streaming to the benchmarks as well as the clas-
sical online k-means algorithm (where we snap each mean
to the nearest exemplar in a second pass to obtain a subset
S ⊆ V ). Again, the size of the dataset is too large to run the
standard greedy algorithm. As discussed in Section 6, the
clustering utility function depends on the whole data set.
However, it is decomposable, thus an evaluation set W can
be employed to estimate the utility of any set S based on
the data seen so far. For our experiments, we used reservoir
sampling with |W | = 1/10|V |.

Fig 2b shows the performance of Sieve-Streaming com-
pared to the benchmarks for a fixed active set size k =
5. The computational costs of all algorithms, as well as
their acquired utilities, are normalized to those of Stream-
Greedy. We did not add the performance of online k-means
to this figure as online k-means is not based on submodular
function maximization. Hence, it does not query the cluster-
ing utility function. As we observe again, Sieve-Streaming
provides a solution close to that of Stream-Greedy with
substantially lower computational cost. For different values
of k, Fig. 2e shows the performance of all the benchmarks.
To compare the computational cost of online k-means with
the benchmarks that utilize the clustering utility function,
we measure the wall clock times of all the methods. This is



reported in Table 2. We see again that the utility of Sieve-
Streaming is comparable to Stream-Greedy and online
k-means with much lower wall clock time.

8. CONCLUSIONS
We have developed the first efficient streaming algorithm–

Sieve-Streaming–for cardinality-constrained submodular
maximization. Sieve-Streaming provides a constant fac-
tor 1/2 − ε approximation guarantee to the optimum solu-
tion and requires only a single pass through the data and
memory independent of the data size. In contrast to pre-
vious work, which makes strong assumptions on the data
stream V or on the utility function (e.g., bounded spread of
marginal gains, or Lipschitz continuity), we assumed nothing
but monotonicity and submodularity. We have also demon-
strated the effectiveness of our approach through extensive
large scale experiments. As shown in Section 7, Sieve-
Streaming reaches the major fraction of the utility function
with much (often several orders of magnitude) less computa-
tional cost. This property of Sieve-Streaming makes it an
appealing and sometimes the only viable method for solv-
ing very large scale or streaming applications. Given the
importance of submodular optimization to numerous data
mining and machine learning applications, we believe our
results provide an important step towards addressing such
problems at scale.

Acknowledgments. This research was supported in part
by NSF AF-0910940, SNF 200021-137971, DARPA MSEE
FA8650-11-1-7156, ERC StG 307036, a Microsoft Faculty
Fellowship and an ETH Fellowship.

9. REFERENCES
[1] Census1990, UCI machine learning repository, 2010.

[2] Yahoo! academic relations. r6a, yahoo! front page
today module user click log dataset, version 1.0, 2012.

[3] A. Badanidiyuru and J. Vondrák. Fast algorithms for
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APPENDIX

Proof of Proposition 5.1. We will first prove by in-
duction that after adding |S| elements to S the solution will
satisfy the following inequality

f(S) ≥ v|S|
2k

(9)

The proof is by induction. The base case f(∅) ≥ 0 is easy
to see. Assume by induction that equation 9 holds for set S
and we add element e. Then we know by the condition of the

algorithm that f(S ∪ {e}) − f(S) ≥ v/2−f(S)
k−|S| . Simplifying

we get f(S∪{e}) ≥ f(S)(1− 1
k−|S| )+ v

2(k−|S|) . Substituting

equation 9 into this equation and simplifying we get the

desired result f(S ∪ {e}) ≥ v(|S|+1)
2k

.
The rest of the proof is quite simple. There are two cases.

• Case 1: At the end of the algorithm S has k elements.
Then from equation 9 we get f(S) ≥ v

2k
· k = v

2
≥

α
2
OPT.

• Case 2: At the end of the algorithm |S| < k. Then let
A∗ be the optimal solution withA∗−S = {a1, a2, . . . , al}
and A∗ ∩ S = {al+1, al+2, . . . , ak}. Let for each ele-
ment aj ∈ A∗ − S, it be rejected from including into S
when the current solution was Sj ⊆ S. Then we have

the two inequalities that fSj (aj) ≤ v/2−f(Sj)

k−|Sj |
and that

f(Sj) ≥ v|Sj |
2k

. Combining the two we get fSj (aj) ≤
v
2k

which implies that fS(aj) ≤ v
2k

. Let Aj denote
{a1, a2, . . . , aj}.

f(S ∪A∗)− f(S) =

l∑
j=1

f(S ∪Aj)− f(S ∪Aj−1)

≤
l∑

j=1

f(Sj ∪ {aj})− f(Sj)

≤
l∑

j=1

v

2k
≤ v

2
≤ OPT

2

⇒ OPT− f(S) ≤ OPT

2
⇒ f(S) ≥ 1

2
OPT

Here the first inequality is due to submodularity, second
is by definition of A∗ − S.

Proof of Proposition 5.2. The proof directly follows
from Theorem 5.1 and the fact that there exists a v ∈ O
such that (1− ε)OPT ≤ v ≤ OPT.

Proof of Theorem 5.3. First observe that when a thresh-
old v is instantiated any element with marginal value at least
v/(2k) to Sv appears on or after v is instantiated. This is
because if such an element ei appeared before v was instanti-
ated then v ∈ Oi and would have been instantiated when ei
appeared. Then the proof directly follows from Theorem 5.2
and the fact that Algorithm 3 is the same as Algorithm 2
with a lazy implementation.

Proof of Theorem 6.2. The proof closely follows the
proof of the algorithm when we evaluate the submodular
function exactly from Proposition 5.1, 5.2 and Theorem 5.3.
From Proposition 6.1 we get that for any set S, |fW (S) −
f(S)| ≤ ε

k
. Hence, as we are taking k elements, the error for

the solution after taking each element adds up and we get
f(S) ≥ (1/2− ε)OPT− ε

k
· k which is the desired result.

Bad example for Stream-Greedy

We show that there exists a family of problem instances
of streaming submodular maximization under a k cardinal-
ity constraint, where it holds for the solution S produced
by Stream-Greedy after one pass through the data, that
f(S)/OPT ≤ 1/k. For this claim, take the weighted coverage
of a collection of sets: Fix a set X and a collection V of sub-
sets of X. Then for a subcollection S ⊆ V , the monotone
submodular function f is defined as

fcov(S) =
∑

x∈∪v∈Sv

w(x).

Here, w(·) is the weight function that assigns positive weights
to any element from X. Now, let us assume that X is the
set of natural numbers and elements arrive as follows:

{1}, {2}, . . . , {k}, {1, 2, . . . , k}
{k + 1}, {k + 2}, . . . , {2k}, {k + 1, k + 2, . . . , 2k} . . .
{k2+1}, {k2+2}, . . . , {k2+k}, {k2+1, k2+2, . . . , k2+ k}

Let ε << 1. We define the weights as

w(1) = w(2) = · · · = w(k) = 1

w(k + 1) = w(k + 2) = · · · = w(2k) = 1 + ε

...

w(k2 + 1) = w(k2 + 2) = · · · =w(k2 + k) = 1 + kε

Then it is clear that Stream-Greedy skips the non-singleton
sets as they do not provide any benefit. In contrast, the opti-
mum solution only consists of those sets. Now, after observ-
ing O(k2) elements from the above data stream, the ratio
between the solution provided by Stream-Greedy and the
optimum algorithm decays as O(1/k).
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