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Abstract

We propose a new reinforcement learning al-
gorithm derived from a regularized linear-
programming formulation of optimal control
in MDPs. The method is closely related to
the classic Relative Entropy Policy Search
(REPS) algorithm of Peters et al. (2010), with
the key difference that our method intro-
duces a Q-function that enables efficient ex-
act model-free implementation. The main
feature of our algorithm (called Q-REPS) is
a convex loss function for policy evaluation
that serves as a theoretically sound alterna-
tive to the widely used squared Bellman er-
ror. We provide a practical saddle-point op-
timization method for minimizing this loss
function and provide an error-propagation
analysis that relates the quality of the indi-
vidual updates to the performance of the out-
put policy. Finally, we demonstrate the effec-
tiveness of our method on a range of bench-
mark problems.

1 INTRODUCTION

While the squared Bellman error is a broadly used
loss function for approximate dynamic programming
and reinforcement learning (RL), it has a number of
undesirable properties: it is not directly motivated by
standard Markov Decission Processes (MDP) theory,
not convex in the action-value function parameters,
and RL algorithms based on its recursive optimization
are known to be unstable (Geist et al., 2017; Mehta
and Meyn, 2020). In this paper, we offer a remedy
to these issues by proposing a new RL algorithm uti-
lizing an objective-function free from these problems.
Our approach is based on the seminal Relative En-
tropy Policy Search (REPS) algorithm of Peters et al.
(2010), with a number of newly introduced elements

© 2020 Bas-Serrano, Curi, Krause & Neu

that make the algorithm significantly more practical.

While REPS is elegantly derived from a principled
linear-programing (LP) formulation of optimal control
in MDPs, it has the serious shortcoming that its faith-
ful implementation requires access to the true MDP
for both the policy evaluation and improvement steps,
even at deployment time. The usual way to address
this limitation is to use an empirical approximation to
the policy evaluation step and to project the policy
from the improvement step into a parametric space
(Deisenroth et al., 2013), losing all the theoretical
guarantees of REPS in the process.

In this work, we propose a new algorithm called
Q-REPS that eliminates this limitation of REPS by in-
troducing a simple softmax policy improvement step
expressed in terms of an action-value function that
naturally arises from a regularized LP formulation.
The action-value functions are obtained by minimizing
a convex loss function that we call the logistic Bellman
error (LBE) due to its analogy with the classic notion
of Bellman error and the logistic loss for logistic re-
gression. The LBE has numerous advantages over the
most commonly used notions of Bellman error: unlike
the squared Bellman error, the logistic Bellman er-
ror is convex in the action-value function parameters,
smooth, and has bounded gradients (see Figure 1).
This latter property obviates the need for the heuris-
tic technique of gradient clipping (or using the Huber
loss in place of the square loss), a commonly used opti-
mization trick to improve stability of training of deep
RL algorithms (Mnih et al., 2015).

Besides the above favorable properties, Q-REPS comes
with rigorous theoretical guarantees that establish its
convergence to the optimal policy under appropriate
conditions. Our main theoretical contribution is an
error-propagation analysis that relates the quality of
the optimization subroutine to the quality of the policy
output by the algorithm, showing that convergence to
the optimal policy can be guaranteed if the optimiza-
tion errors are kept sufficiently small. Together with
another result that establishes a bound on the bias of
the empirical LBE in terms of the regularization pa-
rameters used in Q-REPS, this justifies the approach
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Figure 1: Squared Bellman error considered harmful:
Loss functions plotted as a function of the Q-value at a
fixed state-action pair while keeping other values fixed.

of minimizing the empirical objective under general
conditions. For the concrete setting of factored linear
MDPs, we provide a bound on the rate of convergence.

Our main algorithmic contribution is a saddle-point
optimization framework for optimizing the empirical
version of the LBE that formulates the minimization
problem as a two-player game between a learner and a
sampler. The learner plays stochastic gradient descent
(SGD) on the samples proposed by the sampler, and
the sampler updates its distribution over the sample
transitions in response to the observed Bellman errors.
We evaluate the resulting algorithm experimentally on
a range of standard benchmarks, showing excellent em-
pirical performance of Q-REPS.

Related Work. Despite the enormous empirical
successes of deep reinforcement learning, we under-
stand little about the convergence of the algorithms
that are commonly used. The use of the squared Bell-
man error for deep reinforcement learning has been
popularized in the breakthrough paper of Mnih et al.
(2015), and has been exclusively used for policy evalu-
ation ever since. Indeed, while several algorithmic im-
provements have been proposed for improving policy
updates over the past few years, the squared Bellman
error remained a staple: among others, it is used for
policy evaluation in TRPO (Schulman et al., 2015),
SAC (Haarnoja et al., 2018), A3C (Mnih et al., 2016),
TD3 (Fujimoto et al., 2018), MPO (Abdolmaleki et al.,
2018) and POLITEX (Abbasi-Yadkori et al., 2019).
Despite its extremely broad use, the squared Bellman
error suffers from a range of well-known issues pointed
out by several authors including Sutton and Barto
(2018, Chapter 11.5), Geist et al. (2017), and Mehta
and Meyn (2020). While some of these have been re-
cently addressed by Dai et al. (2018) and Feng et al.
(2019), several concerns remain.

On the other hand, the RL community has been very
productive in developing novel policy-improvement
rules: since the seminal work of Kakade and Lang-

ford (2002) established the importance of soft policy
updates for dealing with policy-evaluation errors, sev-
eral practical update rules have been proposed and ap-
plied successfully in the context of deep RL—see the
list we provided in the previous paragraph. Many of
these soft policy updates are based on the idea of en-
tropy regularization, first explored by Kakade (2001)
and Ziebart et al. (2008) and inspiring an impressive
number of followup works eventually unified by Neu
et al. (2017) and Geist et al. (2019). A particularly at-
tractive feature of entropy-regularized methods is that
they often come with a closed-form “softmax” policy
update rule that is easily expressed in terms of an
action-value function. A limitation of these methods
is that they typically don’t come with a theoretically
well-motivated loss function for estimating the value
functions and end up relying on the squared Bellman
error. One notable exception is the REPS algorithm
of Peters et al. (2010) that comes with a natural loss
function for policy evaluation, but no tractable policy-
update rule.

The main contribution of our work is proposing
Q-REPS, a mirror-descent algorithm that comes with
both a natural loss function and an explicit and
tractable policy update rule, both derived from an
entropy-regularization perspective. These properties
make it possible to implement Q-REPS entirely faith-
fully to its theoretical specification in a deep reinforce-
ment learning context, modulo the step of using a neu-
ral network for parametrizing the Q function. This
implementation is justified by our main theoretical re-
sult, an error propagation analysis accounting for the
optimization and representation errors.

Our error propagation analysis is close in spirit to that
of Scherrer et al. (2015), recently extended to entropy-
regularized approximate dynamic programming algo-
rithms by Geist et al. (2019), Vieillard et al. (2020a),
and Vieillard et al. (2020b). One major difference
between our approaches is that their guarantees de-
pend on the `p norms of the policy evaluation errors,
but still optimize squared-Bellman-error-like quanti-
ties that only serve as proxy for these errors. In con-
trast, our analysis studies the propagation of the op-
timization errors on the objective function that is ac-
tually optimized by the algorithm.

Notation. We use 〈·, ·〉 to denote inner products in
Euclidean space and R+ to denote the set of non-
negative real numbers. We will often write indefi-
nite sums

∑
x,a to denote sums over the entire state-

action space X × A, and write p(x) ∝ q(x) to signify
that p(x, a) = q(x, a)/

∑
x′,a′ q(x

′, a′) for a nonnega-
tive function q over X ×A.
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2 BACKGROUND

Consider a Markov decision process (MDP, Puterman,
1994) defined by the tuple M = (X ,A, P, r), where
X is the state space, A is the action space, P is the
transition function with P (x′|x, a) denoting the prob-
ability of moving to state x′ ∈ X from state x ∈ X
when taking action a ∈ A and r is the reward func-
tion mapping state-action pairs to rewards with r(x, a)
denoting the reward of being in state x and taking ac-
tion a. For simplicity of presentation, we assume that
the rewards are deterministic and bounded in [0, 1],
and that the state action spaces are finite (but po-
tentially very large). An MDP models a sequential
interaction process between a agent and its environ-
ment where in each round t, the agent observes state
xt ∈ X , selects action at ∈ A, moves to the next state
xt+1 ∼ P (·|xt, at), and obtains reward r(xt, at). The
goal of the agent is to select actions so as to maximize
some notion of cumulative reward.

In this paper we are interested in designing RL al-
gorithms that aim to maximize the normalized dis-
counted return R = (1−γ)E [

∑∞
t=0 γ

tr(xt, at)], where,
γ ∈ (0, 1) is the discount factor and the state x0

is drawn randomly from a fixed initial-state distri-
bution ν0. We heavily rely on a linear program-
ming (LP) characterization of optimal policies (origi-
nally due to Manne, 1960) that aims to directly find
a normalized discounted state-action occupancy mea-
sure (in short, occupancy measure) p(x, a) = (1 −
γ)E

[∑∞
t=0 γ

tI{(xt,at)=(x,a)}
]

with x0 ∼ ν0 that max-
imizes the discounted return that can simply be writ-
ten as R =

∑
x,a p(x, a)r(x, a). From every valid occu-

pancy measure p, one can derive a stationary stochas-
tic policy (in short, policy) πp defined as the condi-
tional distribution πp(a|x) = p(x, a)/

∑
a′ p(x, a

′) over
actions a for each state x. Following the policy πp by
drawing each action at ∼ π(·|xt) can be shown to yield
p as the occupancy measure.

For a compact notation, we will represent the decision
variables p as elements of RX×A and introduce the
linear operator P T : RX×A → RX defined for each
p through (P Tp)(x′) =

∑
x,a P (x′|x, a)p(x, a) for all

x′. Similarly, we define the operator ET acting on p
through the assignment (ETp)(x) =

∑
a p(x) for all

x. With this notation, the task of finding an optimal
occupancy measure can be written as the solution of
the following linear program:

maximizep∈RX×A+
〈p, r〉

s.t. ETp = γP Tp+ (1− γ)ν0.
(1)

The above set of constraints is known to uniquely char-
acterize the set of all valid occupancy measures, which
set will be denoted as M∗ from here on. Due to this

property, any solution p∗ of the LP maximizes the
total discounted return and the corresponding policy
π∗ = πp∗ is optimal.

The dual of the linear program (1) is

minimizeV ∈RX (1− γ) 〈ν0, V 〉
s.t. EV ≥ r + γPV,

(2)

which can be easily seen to be equivalent to the famous
Bellman optimality equations that are commonly used
to characterize optimal policies in MDPs. In particu-
lar, the so-called optimal value function V ∗ is an op-
timal solution of this LP, and is the unique optimal
solution if ν0 has full support over the state space.

Relative Entropy Policy Search. Our approach
is crucially based on the seminal relative entropy pol-
icy search (REPS) algorithm proposed by Peters et al.
(2010). REPS is based on the idea of adding a strongly
convex regularization function to the objective of the
LP (1) as well as relaxing the primal constraints
through the use of a feature map ψ : X → Rm.
Introducing the operator ΨT acting on q ∈ RX as
ΨTq =

∑
x q(x)ψ(x), and letting µ0 be an arbitrary

state-action distribution, the core idea of REPS can be
expressed as an iterative optimization scheme that pro-
duces a sequence of occupancy measures as follows:

pk+1 = max
p∈RX×A+

〈p, r〉 − 1

η
D (p‖pk)

s.t. ΨTETp = ΨT (γP Tp+ (1− γ)ν0) .

(3)

Here, D (p‖p′) is the unnormalized relative en-
tropy (or Kullback–Leibler divergence) between the
distributions p and p′ defined as D (p‖p′) =∑
x,a

(
p(x, a) log p(x,a)

p′(x,a) − p(x, a) + p′(x, a)
)

. Intro-

ducing the notation Vθ = Ψθ and δθ = r+γPVθ−EVθ,
the unique optimal solution to this optimization prob-
lem can be written as

pk+1(x, a) = pk(x, a)eη(δθk (x,a)−ρk), (4)

where ρk is a normalization constant and θk is given
as the minimizer of the dual function given as

Gk(θ) =
∑
x,a

pk(x, a)eηδθ(x,a) + (1− γ) 〈ν0, Vθ〉 . (5)

As highlighted by Zimin and Neu (2013) and Neu et al.
(2017), REPS can be seen as an instance of mirror de-
scent algorithms (Martinet, 1970; Rockafellar, 1976;
Beck and Teboulle, 2003), and thus its iterates pk
and the corresponding stochastic policies πk = πpk
are guaranteed to converge to the optimal occupancy
measure and optimal policy, respectively.
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Despite its exceptional elegance, the formulation above
has a number of features that limit its practical appli-
cability. One very serious limitation of REPS is that
its output policy πK involves an expectation with re-
spect to the transition function, thus requiring knowl-
edge of P to run the policy. Another issue is that opti-
mizing an empirical version of the loss (5) as originally
proposed by Peters et al. (2010) may be problematic
due to the empirical loss being a biased estimator of
the true objective (5) caused by the conditional expec-
tation appearing in the exponent.

Deep Q-learning. Let us contrast REPS with the
emblematic deep RL approach of Deep Q Networks
(DQN) as proposed by Mnih et al. (2015). This tech-
nique aims to approximate the optimal action-value
function Q∗(x, a) which is known to characterize op-
timal behaviors: any policy that puts all probability
mass on arg maxaQ

∗(x, a) is optimal. Using the nota-

tion ‖f‖2p =
∑
x,a p(x, a)f2(x, a), the core idea of DQN

is to sequentially compute approximations of the op-
timal Q-function by minimizing the squared Bellman
error :

Qk+1 = arg min
Q∈Q

‖r + γPVQ −Q‖2pk , (6)

where Q is some class of action-value functions
(e.g., a class of neural-network weights), VQ(x) =
maxaQ(x, a), and pk is the state distribution gener-
ated by the policy πk. A major advantage of this for-
mulation is that, having access to Q-functions, it is
trivial to compute policy updates, typically by choos-
ing near-greedy policies with respect to Qk. However,
it is well known that the squared Bellman error ob-
jective above suffers from a number of serious prob-
lems: its lack of convexity in Q prevents efficient op-
timization even under the simplest parametrizations,
and the conditional expectation appearing within the
square makes its sample-based optimization prone to
divergence.

Mnih et al. (2015) addressed these issues by using a
number of ideas from the approximate dynamic pro-
gramming literature (see, e.g., Riedmiller, 2005), even-
tually resulting in spectacular empirical performance
on a range of highly challenging problems. Despite
these successes, the heuristics introduced to stabilize
DQN training are only surface-level patches: the con-
vergence of the resulting scheme can only be guaran-
teed under extremely strong conditions on the function
classQ and the data-generating distribution (Melo and
Ribeiro, 2007; Antos et al., 2006; Geist et al., 2017;
Fan et al., 2020; Mehta and Meyn, 2020). Altogether,
these observations suggest that the squared Bellman
error has fundamental limitations that have to be ad-
dressed from first principles.

Our contribution. In this paper, we address the
above issues by proposing a new algorithmic frame-
work that unifies the advantages of REPS and DQNs,
while removing their key limitations. Our approach
(called Q-REPS) endows REPS with a Q-function fully
specifying the policy updates, thus enabling efficient
model-free implementation akin to DQNs. As for
REPS, the Q-functions of Q-REPS are obtained by
solving a convex objective function (that we call logis-
tic Bellman error) naturally derived from a regularized
LP formulation. We provide a practical algorithmic
framework to optimize this objective and provide an
error-propagation analysis of the resulting algorithm.

3 Q-REPS

This section presents our main contributon: the
derivation of the Q-REPS algorithm in its abstract form,
and an efficient batch reinforcement learning algorithm
that implements the Q-REPS policy updates.

The key technical idea underlying our algorithm de-
sign is a Lagrangian decomposition of the linear pro-
gram (1). Specifically, we introduce an additional set
of primal variables d ∈ RX×A and split the constraints
of the LP as follows:

maximizep,d 〈p, r〉
s.t. ETd = γP Tp+ (1− γ)ν0

d = p, p ∈ RX×A, d ∈ RX×A+ .

(7)

As our notation suggests, d can be thought of as a
“mirror image” of p. By straightforward calculations,
the dual of this LP can be shown to be

minimizeV ∈RX ,Q∈RX×A (1− γ) 〈ν0, V 〉
s.t. Q = r + γPV, EV ≥ Q.

(8)

The optimal value functions V ∗ and Q∗ can be eas-
ily seen to be optimal solutions of this decomposed
LP. A clear advantage of this formulation that we will
take advantage of is that it naturally introduces Q-
functions. To our best knowledge, this LP has been
first proposed by Mehta and Meyn (2009) and has
been recently rediscovered by Lee and He (2019) and
Neu and Pike-Burke (2020) and revisited by Mehta
and Meyn (2020).

Inspired by Peters et al. (2010), we make two key mod-
ifications to this LP to derive our algorithm: introduce
a convex regularization term in the objective and re-
lax some of the constraints. For this latter step, we
introduce a state-action feature map ϕ : RX×A → Rm
and the corresponding linear operator ΦT acting on
p as ΦTp =

∑
x,a p(x, a)ϕ(x, a). Further, we propose

to augment the relative-entropy regularization used
in REPS by a conditional relative entropy term de-
fined between two state-action distributions d and d′ as



Joan Bas-Serrano, Sebastian Curi, Andreas Krause, Gergely Neu

H(d‖d′) =
∑
x,a d(x, a) log πd(a|x)

πd′ (a|x) . One minor change

is that we will restrict d and p to belong to the set of
probability distributions over X ×A, denoted as U .

Letting p0 and d0 be two arbitrary reference dis-
tributions and denoting the corresponding policy as
π0 = πd0 , and letting α and η be two positive pa-
rameters, we define the primal Q-REPS optimization
problem as follows:

maximizep,d∈U 〈p, r〉 − 1

η
D(p‖p0)− 1

α
H(d‖d0)

s.t. ETd = γP Tp+ (1− γ)ν0

ΦTd = ΦTp.

(9)

The following proposition characterizes the optimal so-
lution of this problem.

Proposition 1. Define the Q-function Qθ = Φθ tak-
ing values Qθ(x, a) = 〈θ, ϕ(x, a)〉, the value function

Vθ(x) =
1

α
log

(∑
a

π0(x, a)eαQθ(x,a)

)
(10)

and the Bellman error function ∆θ = r + γPVθ −Qθ.
Then, the optimal solution of the optimization prob-
lem (9) is given as

p∗(x, a) ∝ p0(x, a)eη∆θ∗ (x,a)

πd∗(a|x) = π0(a|x)eα
(
Qθ∗ (x,a)−Vθ∗ (x)

)
,

where θ∗ is the minimizer of the convex function

G(θ) =
1

η
log

(∑
x,a

p0(x, a)eη∆θ(x,a)

)
+ (1− γ) 〈ν0, Vθ〉 .

The proof is based on Lagrangian duality and is pre-
sented in Appendix A.1. This proposition has sev-
eral important implications. First, it shows that the
optimization problem (9) can be reduced to minimiz-
ing the convex loss function G. By analogy with the
classic logistic loss, we will call this loss function the
logistic Bellman error, its solutions Qθ and Vθ the lo-
gistic value functions. Unlike the squared Bellman er-
ror, the logistic Bellman error is convex in the action-
value function Q and retains its convexity under linear
function approximation. Another major implication
of Proposition 1 is that it provides a simple explicit
expression for the policy associated with d∗ as a func-
tion of the logistic action-value function Qθ∗ . This is
remarkable since no such policy parametrization is di-
rectly imposed in the primal optimization problem (9)
as a constraint, but it rather emerges naturally from
the overall structure we propose.

Besides convexity, the LBE has other favorable prop-
erties: when regarded as a function of Q, its gradient

satisfies ‖∇QG(Q)‖1 ≤ 2 and is thus 2-Lipschitz with
respect to the `∞ norm, and it is smooth with param-
eter α+η (due to being a composition of an α-smooth
and an η-smooth function). It is interesting to con-
trast these properties with those of the commonly used
squared Bellman error. First, the convexity of G is a
natural advantage that enables efficient optimization
and, as we will see, convergence to the optimal policy
under appropriate assumptions. Second, Lipschitzness
implies that optimizing the loss via stochastic gradient
descent does not require any gradient clipping tricks
since the derivatives are bounded by default. In this
sense, the logistic Bellman error can be seen as a the-
oretically well-motivated alternative to the Huber loss
commonly used instead of the square loss for policy
evaluation in deep reinforcement learning. Third, the
smoothness of the loss justifies the use of large step-
sizes and accelerated gradient-descent methods for op-
timizing these functions.

Approximate policy iteration with Q-REPS. We
now derive a more concrete algorithmic framework
based on the Q-REPS optimization problem. Specifi-
cally, denoting the set of (p, d) pairs that satisfy the
constraints of the problem (9) as M, we will consider
a mirror-descent algorithm that calculates a sequence
of distributions in M iteratively as

(pk+1, dk+1) = arg max
(p,d)∈M

〈p, r〉−1

η
D(p‖pk)− 1

α
H(d‖dk).

By the results established above, implementing these
updates requires finding the minimum θ∗k of the logistic
Bellman error function

Gk(θ) =
1

η
log

(∑
x,a

pk(x, a)eη∆θ(x,a)

)
+(1−γ) 〈ν0, Vθ〉 .

We will denote the logistic value functions correspond-
ing to θ∗k as Q∗k and V ∗k , and the induced policy as
π∗k(a|x). In practice, exact minimization can be often
infeasible due to the lack of knowledge of the transi-
tion function P and limited access to computation and
data. Thus, practical implementations of Q-REPS will
inevitably have to work with approximate minimizers
θk of the logistic Bellman error Gk. We will denote the
corresponding logistic value functions as Qk and Vk
and the policy as πk. We show pseudocode for the re-
sulting method that uses the subroutine Q-REPS-Eval

for the policy evaluation step as Algorithm 1.

Policy evaluation via saddle-point optimiza-
tion. In order to use Q-REPS in a reinforcement-
learning setting, we need to design a policy-evaluation
subroutine that is able to directly work with sam-
ple transitions obtained through interaction with the
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Algorithm 1: Q-REPS

Initialize π0 arbitrarily;
for k = 1, 2, . . . ,K do

Policy evaluation: θk = Q-REPS-Eval(πk);

Policy update: πk+1(a|x) ∝ πk(a|x)eαQk(x,a);

end
Result: πK

environment. We will specifically consider a scheme
where in each epoch k, we execute policy πk and ob-
tain a batch of N sample transitions {ξk,n}Nn=1 , with
ξk,n = (Xk,n, Ak,n, X

′
k,n), drawn from the occupancy

measure pk induced by πk. Furthermore, defining the
empirical Bellman error for any (x, a, x′) as

∆̂θ(x, a, x
′) = r(x, a) + γVθ(x

′)−Qθ(x, a),

we define the empirical logistic Bellman error (ELBE):

Ĝk(θ) =
1

η
log

(
1

N

N∑
n=1

eη∆̂θ(ξk,n)

)
+ (1− γ) 〈ν0, Vθ〉 .

(11)

As in the case of the REPS objective function (5) and
the squared Bellman error (6), the empirical coun-
terpart of the LBE is a biased estimator of the true
loss due to the conditional expectation taken over X ′

within the exponent. As we will show in Section 4,
this bias can be directly controlled by the magnitude
of the regularization parameter η, and convergence to
the optimal policy can be guaranteed for small enough
choices of η corresponding to strong regularization.

We now provide a practical algorithmic framework for
optimizing the ELBE (11) based on the following repa-
rameterization of the loss function:

Proposition 2. Let DN be the set of all probability
distributions over [N ] and define

Sk(θ, z) =
∑
n

z(n)

(
∆̂θ(ξk,n)− 1

η
log(Nz(n))

)
+ (1− γ) 〈ν0, Vθ〉

for each z ∈ DN . Then, the problem of mini-
mizing the ELBE can be rewritten as minθ Ĝk(θ) =
minθ maxz∈DN Sk(θ, z).

The proof is a straightforward consequence of the
Donsker–Varadhan variational formula (see, e.g.,
Boucheron et al., 2013, Corollary 4.15). Motivated
by the characterization above, we propose to formu-
late the optimization of the ELBE as a two-player
game between a sampler and a learner : in each round
τ = 1, 2, . . . , T , the sampler proposes a distribution

zk,τ ∈ DN over sample transtions and the learner
updates the parameters θk,τ , together attempting to
approximate the saddle point of Sk. In particular,
the learner will update the parameters θ through on-
line stochastic gradient descent on the sequence of
loss functions `τ = Sk(·, zk,τ ). In order to esti-
mate the gradients, we define the policy πk,θ(a|x) =
πk(a|x)eα(Qθ(x,a)−Vθ(x)) and propose the following pro-
cedure: sample an index I from the distribution zk,τ
and let (X,A,X ′) = (Xk,I , Ak,I , X

′
k,I) and sample a

state X ∼ ν0 and two actions A′ ∼ πθ(·|X ′) and
A ∼ πθ(·|X), then let

ĝk,t(θ) = γϕ(X ′, A′)−ϕ(X,A)+(1−γ)ϕ(X,A). (12)

This choice is justified by the following proposition:

Proposition 3. The vector ĝk,t(θ) is an unbiased es-
timate of the gradient ∇θSk(θk,τ , zk,τ ).

The proof is provided in Appendix A.2. Using this
gradient estimator, the learner updates θk,τ as

θk,τ+1 = θk,τ − βĝk,t(θk,τ ),

where β > 0 is a stepsize parameter. As for
the sampler, one can consider several different algo-
rithms for updating the distributions zk,τ . A straight-
forward choice is to calculate the gradient hk,τ =
∇zSk(θk,τ , zk,τ ) with components

hk,τ (n) = ∆̂θ(ξk,n)− 1

η
log (Nzk,τ (n)) ,

and update zk,τ through an exponentiated gradient
step with a stepsize β′:

zk,τ+1(n) ∝ zk,τ (n)eβ
′hk,τ (n).

We refer to the implementation of Q-REPS using the
above procedure as MinMax-Q-REPS and provide pseu-
docode as Algorithm 2.

Interestingly, this saddle-point optimization scheme
can be seen as a principled form of prioritized experi-
ence replay where the samples used for value-function
updates are drawn according to some priority criteria
(Schaul et al., 2015). Indeed, our method maintains
a probability distribution over sample transitions that
governs the value updates, with the distribution being
adjusted after each update according to a rule that is
determined by the TD error. Different rules for the pri-
ority updates result in different learning dynamics with
the best choice potentially depending on the problem
instance. In our own experiments, we have observed
that best-response updates tend to be overly aggres-
sive, and the incremental exponentiated gradient up-
dates we describe above lead to more stable behavior.
We leave a formal study of these questions as an ex-
citing direction for future work.
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Algorithm 2: MinMax-Q-REPS

Initialize π0 arbitrarily;
for k = 0, 1, 2, . . . ,K − 1 do

Run πk and collect sample transitions
{ξk,n}Nn=1;

Saddle-point optimization for Q-REPS-Eval:
for τ = 1, 2, . . . , T do

θk,τ ← θk,τ−1 − βĝk,τ−1(θ);

zk,τ (n)← zk,τ−1(n) exp(β′hk,τ−1(n))∑
m zk,τ−1(m) exp(β′hk,τ−1(m)) ;

end

θk = 1
T

∑T
τ=0 θk,τ ;

Policy update:

πk+1(a|x) ∝ π0(a|x)eα
∑k
i=0Qθi (x,a);

end
Result: πI with I ∼ Unif(K)

4 ANALYSIS

This section presents a collection of formal guarantees
regarding the performance of Q-REPS and the opti-
mization subroutine MinMax-Q-REPS. For most of the
analysis, we will make the following assumptions:

Assumption 1 (Concentrability1). The likelihood ra-
tio for any two valid occupancy measures p and p′ is
upper-bounded by some Cγ called the concentrability

coefficient: supx
p(x)
p′(x) ≤ Cγ .

Assumption 2 (Factored linear MDP). There exists
a function µ : X → Rm and a vector ϑ ∈ Rm such that
for any x, a, x′, the transition function factorizes as
P (x′|x, a) = 〈µ(x′), ϕ(x, a)〉 and the reward function
can be expressed as r(x, a) = 〈θ, ϕ(x, a)〉.

The first of these ensures that every policy will ex-
plore the state space sufficiently well. Although this is
a rather strong condition that is rarely verified in prob-
lems of practical interest, it is commonly assumed to
ease theoretical analysis of batch RL algorithms. For
instance, similar conditions are required in the clas-
sic works of Kakade and Langford (2002), Antos et al.
(2006), and more recently by Geist et al. (2017), Agar-
wal et al. (2020b) and Xie and Jiang (2020). The sec-
ond assumption ensures that the feature space is ex-
pressive enough to allow the representation of the op-
timal action-value function and thus the optimal pol-
icy (a property sometimes called realizability). This
condition has been first proposed by Yang and Wang
(2019) and has quickly become a standard model for
studying reinforcement learning algorithms under lin-
ear function approximation (Jin et al., 2020; Cai et al.,
2020; Wang et al., 2020; Neu and Pike-Burke, 2020;
Agarwal et al., 2020a).

1Sometimes also called “concentratability”.

Error-propagation analysis of Q-REPS. We now
provide guarantees regarding the propagation of opti-
mization errors in the general Q-REPS algorithm tem-
plate. Specifically, we will study how the suboptimal-
ity of each policy evaluation step impacts the con-
vergence rate of the sequence of policies to the op-
timal policy in terms of the corresponding expected
rewards. To this end, we let θ∗k = arg minθ Gk(θ),
and define the suboptimality gap associated with the
parameter vector θk computed by Q-REPS-Eval as
εk = Gk(θk) − Gk(θ∗k). Denoting the normalized dis-
counted return associated with policy πk as Rk and
the optimal return as R∗, our main result is stated as
follows:

Theorem 1. Suppose that Assumptions 1 and 2 hold.
Then, the policy sequence output by Q-REPS satisfies

K∑
k=1

(Rk −R∗) ≤
D(p∗‖p0)

η
+
H(d∗‖d0)

α
+

K∑
k=1

εk

+

(
Cγ + 1

1− γ
√
α+ Cγ

√
η

) K∑
k=1

√
2εk.

The proof can be found in Appendix A.3. The theo-
rem implies that whenever the bound increases sub-
linearly, the average quality of the policies output
by Q-REPS approaches that of the optimal policy:

limK→∞

∑K
k=1 Rk
K = R∗. An immediate observation is

that when one can guarantee perfect policy evaluation
steps (εk = 0 for all k), then the expected return con-
verges to the optimum at a rate of 1/K, as expected
for mirror-descent algorithms optimizing a fixed linear
loss, and also matching the best known rates for nat-
ural policy gradient methods (Agarwal et al., 2020b).
In the more interesting case where the evaluation steps
are not perfect, the correct choice of the regularization
parameters depends on the magnitude of the evalua-
tion errors. Theorem 2 below provides bounds on these
errors when using the minimizer of the empirical LBE
for policy evaluation.

One important feature of the bound of Theorem 1 is
that it shows no direct dependence on the size of the
MDP or the dimensionality of the feature map, so it
justifies large-scale nonparametric implementations of
Q-REPS. To see this, observe that every MDP can be
seen to satisfy Assumption 2 when choosing Φ as the
identity map, and that the logistic Bellman error can
be directly written as a function of the Q-functions.
Theorem 1 shows that whenever one is able to keep
the policy evaluation errors small, convergence to the
optimal policy can be guaranteed irrespective of the
size of the state space. This justifies using the logistic
Bellman error as an objective function in large-scale
deep reinforcement learning settings.
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Figure 2: Empirical performance Q-REPS on different benchmarks. The returns are scaled to [0, 1] by dividing
by the maximum achievable return, with the mean plotted in solid lines and and the shaded area representing
one standard deviation.

Concentration of the empirical LBE. We start
by establishing some important properties of the em-
pirical logistic Bellman error (11). For simplicity, we
will assume that the sample transitions are generated
in an i.i.d. fashion: each (Xk,n, Ak,n) is drawn inde-
pendently from pk and X ′k,n is drawn independently
from P (·|Xk,n, Ak,n). Under this condition, the fol-
lowing theorem establishes the connection between the
ELBE and the true LBE:

Theorem 2. Let Q = {Qθ : ‖Qθ‖∞ ≤ B′} for some
B′ > 0 and Θ be the corresponding set of parameter
vectors. Furthermore, define B = 1 + (1 + γ)B′, and
assume that ηB ≤ 1 holds. Then, with probability at
least 1− δ, the following holds:

sup
θ∈Θ

∣∣∣Ĝk(θ)− Gk(θ)
∣∣∣ ≤ 8ηB2+56

√
m log

(
(1 + 4BN)/δ

)
N

.

In Appendix A.4, we provide a more detailed state-
ment of the theorem that holds for general Q-function
classes, as well as the proof. The main feature of this
theorem is quantifying the bias of the empirical LBE,
showing that it is proportional to the regularization
parameter η, making it possible to tune the parame-
ters of Q-REPS in a way that ensures convergence to
the optimal policy.

Q-REPS performance guarantee. Putting the re-
sults from the previous sections together, we obtain
the following performance guarantee for Q-REPS:

Corollary 1. Suppose that Assumptions 1 and 2 hold
and that each update Q-REPS is implemented by min-
imizing the empirical LBE (11) evaluated on N in-
dependent sample transitions. Furthermore, suppose
that ‖Q∗k‖∞ ≤ B for all k. Then, setting N = K and
tuning η and α appropriately, Q-REPS is guaranteed to
output an ε-optimal policy with

ε = Õ

((
1

1−γ
+B

)√
mCγ (D(p∗‖p0)+H(d∗‖d0))

K

)
.

5 EXPERIMENTS

In this section we evaluate Q-REPS empirically. As
the algorithm is essentially on-policy, we compare it
with: DQN using Polyak averaging and getting new
samples at every episode (Mnih et al., 2015); PPO as
a surrogate of TRPO (Schulman et al., 2017); VMPO
as the on-policy version of MPO (Song et al., 2019);
and REPS with parametric policies (Deisenroth et al.,
2013).

We evaluate these algorithms in different standard en-
vironments which we describe in Appendix B. In all en-
vironments we use indicator features, except for Cart-
Pole that we use the initialization of a 2-layer ReLU
Neural Network as features and optimize the last layer.
For all environments but CartPole we run episodes of
length 200 and update the policy at the end of each
episode. Due to the early-termination of CartPole, we
run episodes until termination or length 200 and up-
date the policy after 4 episodes.

In Fig. 2 we plot the sample mean and one standard de-
viation of 50 independent runs of the algorithms (ran-
dom seeds 0 to 49). In all cases, Q-REPS outperforms
or is comparable to the competing algorithms.

6 CONCLUSION

Due to its many favorable properties, we believe that
Q-REPS has significant potential to become a state of
the art method for reinforcement learning. That said,
there is still a lot of work left to be done, the most
notable outstanding issues being relaxing the concen-
trability assumption and the need to store all past Q-
functions for the policy updates. Given the positive
results presented in this paper, we are optimistic that
these limitations can be eventually removed and the
logistic Bellman error will become an essential part of
the RL toolkit.
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A Omitted proofs

A.1 The proof of Proposition 1

The proof is based on Lagrangian duality: we introduce a set of multipliers V ∈ RX and θ ∈ Rm for the two
sets of constraints and ρ for the normalization constraint of p, and write the Lagrangian of the constrained
optimization problem (9) as

L(p, d;V, θ, ρ) = 〈p, r〉+ 〈V, γP Tp+ (1− γ)ν0 − ETd〉+ 〈θ,ΦTd− ΦTp〉+ ρ (1− 〈p,1〉)− 1

η
D(p‖p0)− 1

α
H(d‖d0)

= 〈p, r + γPV − Φθ − ρ1〉+ 〈d,Φθ − EV 〉+ (1− γ) 〈ν0, V 〉+ ρ− 1

η
D(p‖p0)− 1

α
H(d‖d0)

= 〈p,∆θ,V − ρ1〉+ 〈d,Qθ − EV 〉+ (1− γ) 〈ν0, V 〉+ ρ− 1

η
D(p‖p0)− 1

α
H(d‖d0), (13)

where we used the notation Qθ = Φθ and ∆θ,V = r + γPV − Qθ in the last line. Notice that the above is
a concave function of d and p, so its maximum can be found by setting the derivatives with respect to these
parameters to zero. In order to do this, we note that

∂D(p‖p0)

∂p(x, a)
= log p(x, a)− log p0(x, a) and

∂H(d‖d0)

∂d(x, a)
= log πd(a|x)− log πd0(a|x),

where πd(a|x) = d(x, a)/
∑
a′ d(x, a′) and the last expression can be derived by straightforward calculations (see,

e.g., Appendix A.4 in Neu et al., 2017). This gives the following expressions for the optimal choices of p and d:

p∗(x, a) = p0(x, a)eη(∆θ,V (x,a)−ρ) and π∗d(x, a) = π0(x, a)eα(Qθ(x,a)−V (x)).

From the constraint
∑
x,a p

∗(x, a) = 1, we can express the optimal choice of ρ as

ρ∗ = log

(∑
x,a

p0(x, a)eη∆θ,V (x,a)

)
.

Similarly, from the constraint
∑
a π
∗
d(a|x) = 1, we can express V as a function of θ for all x:

Vθ(x) =
1

α
log

(∑
a

π0(x, a)eαQθ(x,a)

)

This implies that d∗ has the form d∗(x, a) = ω(x)π∗d(a|x), where ω is some nonnegative function on the state
space. Recalling the definition of ∆θ = r + γPVθ −Qθ and plugging the above parameters (p∗, d∗, ρ∗, Vθ) back
into the Lagrangian (13) gives

G(θ) =L(p∗, d∗;Vθ, θ, ρ
∗)

=
∑
x,a

(
p0(x, a)eη(∆θ(x,a)−ρ∗)(∆θ(x, a)− ρ∗) + ω(x)π0(x, a)eα(Qθ(x,a)−Vθ(x)) (Qθ(x, a)− Vθ(x))

)
−
∑
x,a

1

η

(
p0(x, a)eη(∆θ(x,a)−ρ∗) log

p0(x, a)eη(∆θ(x,a)−ρ∗)

p0(x, a)
+ p0(x, a)− p0(x, a)eη(∆θ(x,a)−ρ∗)

)

−
∑
x,a

1

α
ω(x)π0(x, a)eα(Qθ(x,a)−Vθ(x)) log

πp0(x, a)eα(Qθ(x,a)−Vθ(x))

πp0(x, a)
+ (1− γ) 〈ν0, V 〉+ ρ∗

=
∑
x,a

(
p0(x, a)eη(∆θ(x,a)−ρ∗)(∆θ(x, a)− ρ∗) + ω(x)π0(x, a)eα(Qθ(x,a)−Vθ(x)) (Qθ(x, a)− Vθ(x))

)
−
∑
x,a

p0(x, a)eη(∆θ(x,a)−ρ∗)(∆θ(x, a)− ρ∗)

−
∑
x,a

ω(x)π0(x, a)eα(Qθ(x,a)−Vθ(x)) (Qθ(x, a)− Vθ(x)) + (1− γ) 〈ν0, V 〉+ ρ∗
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=(1− γ) 〈ν0, V 〉+ ρ∗

=(1− γ) 〈ν0, V 〉+
1

η
log

(∑
x,a

p0(x, a)eη∆θ(x,a)

)
.

Furthermore, observe that since the parameters were chosen so that all constraints are satisfied, we also have

G(θ) = L(p∗, d∗;Vθ, θ, ρ
∗) = 〈p∗, r〉 − 1

η
D(p?‖p0)− 1

α
H(d∗‖d0). (14)

Thus, the solution of the optimization problem (9) can be indeed written as

max
p,d≥0

min
θ,V,ρ
L(p, d;V, θ, ρ) = min

θ,V,ρ
max
p,d≥0

L(p, d;V, θ, ρ) = min
θ
L(p∗, d∗;Vθ, θ, ρ

∗) = min
θ
G(θ),

thus concluding the proof.

A.2 The proof of Proposition 3

For each i, the partial derivatives of S(θ, z) with respect to θi can written as

∂S(θ, z)

∂θi

∑
n

z(n)
∂∆̂(Xk,n, Ak,n, X

′
k,n)

∂θi
+
∑
x,y,a

(1− γ)ν0(x)
∂Vθ(x)

∂Qθ(y, a)

∂Qθ(y, a)

∂θi
. (15)

Computing the derivatives

∂Vθ(x)

∂Qθ(y, a)
= I{x=y}

πk(a|x)eαQθ(x,a)∑
a′ πk(a′|x)eαQθ(x,a′)

= I{x=y}πk,θ(a|x)

and

∂∆̂(Xk,n, Ak,n, X
′
k,n)

∂θi
=γ
∑
x,a

∂Vθ(X
′
k,n)

∂Qθ(x, a)

∂Qθ(x, a)

∂θi
− ∂Qθ(Xk,n, Ak,n)

∂θi

=γ
∑
a

πk,θ(X
′
k,n, a)ϕi(X

′
k,n, a)− ϕi(Xk,n, Ak,n)

and plugging them back in Equation (15), we get

∇θS(θ, z) =

N∑
n=1

z(n)

(
γ
∑
a

πk,θ(a|Xk,n)ϕ(X ′k,n, a)− ϕ(Xk,n, Ak,n)

)
+
∑
x,a

(1− γ)ν0(x)πk,θ(a|x)ϕ(x, a).

The statement of the proposition can now be directly verified using the definitions of X,A,X ′ and X,A.

A.3 The proof of Theorem 1

The proof of this result is somewhat lengthy and is broken down into a sequence of lemmas and propositions.

Before analyizing the algorithm, we first establish an important realizability property of factored linear MDPs:
Indeed, in order to make convergence to the optimal policy possible at all, we need to make sure that the
relaxed constraint set M matches the set of valid discounted occupancy measures. We will show that under
Assumption 2, this condition (that we call primal realizability) indeed holds:

Proposition 4. Let M′ = {d : (p, d) ∈M}. Then, under Assumption 2, M∗ =M′ holds. Furthermore, letting
(p∗, d∗) = arg max(p,d)∈M 〈p, r〉, we have 〈d∗, r〉 = maxp∈M∗ 〈p, r〉.

Proof. It is easy to see thatM∗ ⊆M: for any p ∈ S∗, we can choose d = p and directly verify that all constraints
of (9) are satisfied. For proving the other direction, it is helpful to define the operator M through its action
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Mv =
∑
x µ(x)v(x) for any v ∈ RX , so that the condition of Assumption 2 can be expressed as P = ΦM and

r = Φϑ. Then, for any p and d satisfying the constraints, we write

ETd = γP Tp+ (1− γ)ν0 = γMTΦTp+ (1− γ)ν0

= γMTΦTd+ (1− γ)ν0 = γP Td+ (1− γ)ν0.

Combined with the fact that d is non-negative, this implies that d ∈ M∗. Furthermore, using the assumption
on r, we have 〈p, r〉 = 〈ΦTp,Φr〉 = 〈ΦTd,Φr〉 = 〈d, r〉 for any feasible (p, d), so it also holds for the maximizing
d∗. Combined with the previous result, this implies 〈d∗, r〉 = maxd∈M′ 〈d, r〉 = maxp∈M∗ 〈p, r〉, which concludes
the proof.

We can now turn to the analysis of Q-REPS. We first introduce some useful notation and outline the main
challenges faced in the proof. We start by defining the action-value functions Qk = Φθk and Q∗k = Φθ∗k, the
state-action distributions

p̃k(x, a) = pk−1(x, a)eη(∆θk
(x,a)−ρk) and p∗k(x, a) = pk−1(x, a)e

η
(

∆θ∗
k

(x,a)−ρ∗k
)
,

for appropriately defined normalization constants ρk and ρ∗k, the policies

πk(a|x) = πk−1(a|x)eα(Qθk (x,a)−Vθk (x)) and π∗k(a|x) = πk−1(a|x)e
α
(
Qθ∗

k
(x,a)−Vθ∗

k
(x)
)
,

and the corresponding state-action occupancies

dk(x, a) = νk(x)πk(a|x) and d∗k(x, a) = ν∗k(x)π∗k(a|x),

where νk and ν∗k are positive functions defined over the state space. A crucial challenge we have to address in
the analysis is that, since θk is not the exact minimizer of Gk, the state-action distribution p̃k is not a valid
occupancy measure. In order to prove meaningful guarantees about the performance of the algorithm, we need
to consider the actual occupancy measure induced by policy πk. We denote this occupancy measure as pk and
define it for all x, a as

pk(x, a) = (1− γ)Eπk

[ ∞∑
t=0

γtI{(xt,at)=(x,a)}

]
,

where the notation emphasizes that the actions are generated by policy πk. A major part of the proof is dedicated
to accounting for the discrepancy between pk and the ideal updates p∗k. During the proof, we will often factorize
occupancy measures as p(x, a) = ν(x)π(a|x), where ν is the discounted state-occupancy measure induced by π.

Our first lemma presents an important technical result that relates the suboptimality gap εk to the divergence
between the ideal and realized updates.

Lemma 1. εk =
D(p∗k‖p̃k)

η +
H(d∗k‖dk)

α .

Notably, this result does not require any of Assumptions 1 or 2, as its proof only uses the properties of the
optimization problem (9).

Proof. The proof uses the feasibility of (p∗k, d
∗
k) that is guaranteed by their definition. We start by observing that

D(p∗k‖p̃k) =
∑
x,a

p∗k(x, a) log
p∗k(x, a)

p̃k(x, a)

= η
〈
p∗k, r + γPV ∗k −Q∗k − ρ∗k1− r − γPVk +Qk + ρk1

〉
= η

〈
d∗k, EV

∗
k − EVk

〉
+ η 〈ΦTp∗k, θk − θ∗k〉+ η(ρk + (1− γ) 〈ν0, Vk〉 − ρ∗k − (1− γ) 〈ν0, V

∗
k 〉)

(using d∗k = γP Tp∗k + (1− γ)ν0 and Qk −Q∗k = Φ(θk − θ∗k))

= η
〈
d∗k, EV

∗
k − EVk

〉
+ η 〈ΦTd∗k, θk − θ∗k〉+ η(Gk(θk)− Gk(θ∗k))

(using ΦTd∗k = ΦTp∗k and the form of Gk)

= η
〈
d∗k, EV

∗
k −Q∗k − EVk +Qk

〉
+ η(Gk(θk)− Gk(θ∗k)).
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On the other hand, we have

H(d∗k‖dk) =
∑
x,a

d∗k(x, a) log
π∗k(a|x)

πk(a|x)
= α 〈d∗k, Q∗k − EV ∗k −Qk + EVk〉 .

Putting the two equalities together, we get

D(p∗k‖p̃k)

η
+
H(d∗k‖dk)

α
= Gk(Vk)− Gk(V ∗k )

as required.

The next result shows that, as a consequence of the above property, the realized occupancy measure will be close
to the ideal one. Notably, the proof only uses Assumption 2 to make sure that d∗k is a valid occupancy measure.

Lemma 2. Suppose that Assumption 2 holds. Then,

‖pk − d∗k‖1 ≤
1

1− γ
·
√
αεt
2
.

Proof. We start by noting that d∗k is a valid occupancy measure due to Proposition 4, so that it can be factorized
as d∗k(x, a) = ν∗k(x)π∗k(a|x) and we can write

‖d∗k − pk‖1 =
∑
x,a

|ν∗k(x)π∗k(a|x)− νk(x)πk(a|x)| =
∑
x

|ν∗k(x)(π∗k(a|x)− πk(a|x)) + (νk(x)− ν∗k(x))πk(a|x)|

≤
∑
x,a

ν∗k(x) |π∗k(a|x)− πk(a|x)|+
∑
x

|νk(x)− ν∗k(x)| ,

where the last step follows from the triangle inequality. Furthermore, defining the transition operators P ∗k and
Pk as P ∗k (x′|x) =

∑
a π
∗
k(a|x)P (x′|x, a) and Pk(x′|x) =

∑
a πk(a|x)P (x′|x, a), the discounted state occupancies

ν∗k and νk respectively satisfy ν∗k = γ (P ∗k )
T
ν∗k + (1− γ)ν0 and νk = P T

kνk + (1− γ)ν0, so that we can write

‖νk − ν∗k‖1 =
∥∥γP T

kνk − γ (P ∗k )
T
ν∗k
∥∥

1

=
∥∥γP T

k (νk − ν∗k) + γ (P ∗k − Pk)
T
ν∗k
∥∥

1

≤ γ ‖νk − ν∗k‖1 + γ
∑
x,x′

ν∗k(x)

∣∣∣∣∣∑
a

(π∗k(a|x)− πk(a|x))

∣∣∣∣∣P (x′|x, a)

≤ γ ‖νk − ν∗k‖1 + γ
∑
x

ν∗k(x)
∑
a

|π∗k(a|x)− πk(a|x)|

where we used the the non-expansion property of P T

k and the triangle inequality. After reordering, we obtain

‖νk − ν∗k‖1 ≤
γ

1− γ
∑
x

ν∗k(x)
∑
a

|π∗k(a|x)− πk(a|x)| ,

so altogether we have

‖d∗k − pk‖1 ≤
1

1− γ
∑
x

ν∗k(x)
∑
a

|π∗k(a|x)− πk(a|x)| .

In order to bound the term on the right-hand side, we note that∑
x

ν∗k(x)
∑
a

|π∗k(a|x)− πk(a|x)| ≤
∑
x

ν∗k(x)

√
1

2
D(π∗k(·|x)‖πk(·|x))

≤
√

1

2

∑
x

ν∗k(x)D(π∗k(·|x)‖πk(·|x)) =

√
H(d∗k‖dk)

2
,

where the first inequality is Pinsker’s, the second one is Jensen’s and the last equality follows from the definition
of H(d∗k‖dk). Finally, we appeal to Lemma 1 that implies H(d∗k‖d̃k) ≤ αεk, concluding the proof.
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Armed with the above two lemmas, we are now ready to present the proof of Theorem 1.

Proof of Theorem 1. The proof is based on direct calculations inspired by the classical mirror descent analysis.
We first express the divergence between the comparator p∗ and the unprojected iterate p̃k:

D(p∗‖p̃k) =
∑
x,a

p∗(x, a) log
p∗(x, a)

p̃k(x, a)
=
∑
x,a

p∗(x, a) log
p(x, a)

pk−1(x, a)
−
∑
x,a

p∗(x, a) log
p̃k(x, a)

pk−1(x, a)

= D(p∗‖pk−1)− η 〈p∗, r + γPVk −Qk〉+ ηρk

= D(p∗‖pk−1)− η 〈p∗, r − Φθk〉+ η 〈d∗, EVk〉+ η
(
ρk + (1− γ) 〈ν0, Vk〉

)
(using d∗ = γP Tp∗ + (1− γ)ν0 and Qk = Φθk)

= D(p∗‖pk−1)− η 〈p∗, r〉+ η 〈d∗, EVk − Φθk〉+ ηGk(θk)

(using ΦTd∗ = ΦTp∗ and the form of Gk)

≤ D(p∗‖pk−1)− η 〈p∗, r〉+ η 〈d∗, EVk − Φθk〉+ ηGk(θ∗k) + ηεk

(using the suboptimality guarantee of θk)

≤ D(p∗‖pk−1)− η 〈p∗, r〉+ η 〈d∗, EVk − Φθk〉+ η 〈p∗k, r〉 −D(p∗k‖pk−1)− ηH(d∗k‖dk−1)

α
+ ηεk

(using the dual form (14) of Gk(θk))

≤ D(p∗‖pk−1)− η 〈p∗, r〉+ η 〈d∗, EVk − Φθk〉+ η 〈pk, r〉+ 〈d∗k − pk, r〉+ ηεk

(using that 〈d∗k, r〉 = 〈p∗k, r〉 by Proposition 4)

≤ D(p∗‖pk−1)− η 〈p∗, r〉+ η 〈d∗, EVk − Φθk〉+ η 〈pk, r〉+ η ‖d∗k − pk‖1 + ηεk,

where we used ‖r‖∞ ≤ 1 in the last step. After reordering, we obtain

〈p∗ − pk, r〉 ≤
D(p∗‖pk−1)−D(p∗‖p̃k)

η
+ 〈d∗, EVk −Qk〉+ ‖d∗k − pk‖1 + εk.

Furthermore, we have

H(d∗‖dk) =
∑
x,a

d∗(x, a) log
π∗(a|x)

πk(a|x)
=
∑
x,a

d∗(x, a) log
π∗(a|x)

πk−1(a|x)
−
∑
x,a

p(x, a) log
πk(a|x)

πk−1(a|x)

= H(d∗‖dk−1)− α 〈d∗, Qk − EVk〉 .

Plugging this equality back into the previous bound, we finally obtain

〈p∗ − pk, r〉 ≤
D(p∗‖pk−1)−D(p∗‖p̃k)

η
+
H(d∗‖dk−1)−H(d∗‖dk)

α
+ ‖d∗k − pk‖1 + εk

=
D(p∗‖pk)−D(p∗‖p̃k)

η
+
D(p∗‖pk−1)−D(p∗‖pk)

η
+
H(d∗‖dk−1)−H(d∗‖dk)

α
+ ‖d∗k − pk‖1 + εk.

Summing up for all k and omitting some nonpositive terms, we obtain

K∑
k=1

〈p∗ − pk, r〉 ≤
D(p∗‖p0)

η
+
H(d∗‖d0)

α
+

K∑
k=1

(
D(p∗‖pk)−D(p∗‖p̃k)

η
+ ‖d∗k − pk‖1 + εk

)
(16)

By Lemma 2, we can bound ‖d∗k − pk‖1 ≤
1

1−γ
√

αεk
2 , so the remaining challenge is to bound the terms D(p∗‖pk)−

D(p∗‖p̃k). In order to do this, let us introduce the Bregman projection of ν̃k to the space of occupancy measures,
ν̃∗k = arg minν∈∆γ(X )D(ν‖ν̃k). Then, we can write

D(p∗‖pk)−D(p∗‖p̃k) =D(ν∗‖νk)−D(ν∗‖ν̃k)

=D(ν∗‖νk)−D(ν∗‖ν̃∗k) +D(ν∗‖ν̃∗k)−D(ν∗‖ν̃k)

≤D(ν∗‖νk)−D(ν∗‖ν̃∗k)−D(ν̃∗k‖ν̃k) ≤ D(ν∗‖νk)−D(ν∗‖ν̃∗k),
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where the first inequality is the generalized Pythagorean inequality that uses the fact that ν̃∗k is the Bregman
projection of ν̃k (cf. Lemma 11.3 in Cesa-Bianchi and Lugosi, 2006). By using the chain rule of the relative
entropy and appealing to Lemma 2, we have

D(ν∗k‖ν̃k) = D(p∗k‖p̃k)−H(p∗k‖p̃k) ≤ D(p∗k‖p̃k) ≤ ηεk,

which implies D(ν̃∗k‖ν̃k) ≤ D(ν∗k‖ν̃k) ≤ ηεk due to the properties of the projected point ν̃∗k . To proceed, we use
the inequality log(u) ≤ u− 1 that holds for all u > −1 to write

D(ν∗‖νk)−D(ν∗‖ν̃∗k) =
∑
x

ν∗(x) log
νk(x)

ν̃∗k(x)
≤
∑
x

ν∗(x)

(
νk(x)

ν̃∗k(x)
− 1

)
=
∑
x

ν∗(x)

ν̃∗k(x)
(νk(x)− ν̃∗k(x))

≤
∑
x

ν∗(x)

ν̃∗k(x)
|νk(x)− ν̃∗k(x)| ≤ max

x′

ν∗(x′)

ν̃∗k(x′)

∑
x

|νk(x)− ν̃∗k(x)|

≤ Cγ ‖νk − ν̃∗k‖1 ≤ Cγ (‖νk − ν∗k‖1 + ‖ν∗k − ν̃k‖1 + ‖ν̃k − ν̃∗k‖1)

(by Assumption 1 and the triangle inequality)

≤ Cγ√
2

(
1

1− γ

√
H(d∗k‖dk) +

√
D(ν∗k‖ν̃k) +

√
D(ν̃∗k‖ν̃k)

)
(by applying Pinsker’s inequality twice and invoking Lemma 2)

≤ Cγ
1− γ

√
αεk
2

+ Cγ
√

2ηεk.

Plugging all bounds back into the bound of Equation (16), we obtain

K∑
k=1

〈p∗ − pk, r〉 ≤
D(p∗‖p0)

η
+
H(d∗‖d0)

α
+

(
Cγ + 1

1− γ

√
α

2
+ Cγ

√
2η

) K∑
k=1

√
εk +

K∑
k=1

εk,

thus concluding the proof of the theorem.

A.4 The proof of Theorem 2

We will prove the following, more general version of the theorem below:

Theorem 2. (General statement) Let Q = {Qθ : ‖Qθ‖∞ ≤ B′} for some B′ > 0 and Θ be the corresponding
set of parameter vectors, and let NQ,ε be the ε-covering number of Q with respect to the `∞ norm. Furthermore,
define B = 1 + (1 + γ)B′, and assume that ηB ≤ 1 holds. Then, with probability at least 1 − δ, the following
holds:

sup
θ∈Θ

∣∣∣Ĝk(θ)− Gk(θ)
∣∣∣ ≤ 8ηB2 + 56

√
log(2NQ,1/√N/δ)

N
.

The proof of the version stated in the main body of the paper follows from bounding the covering number of our
linear Q-function class as NQ,ε ≤ (1 + 4B/ε)m.

Proof. We first prove a concentration bound for a fixed θ and then provide a uniform guarantee through a
covering argument.

For the first part, let us fix a confidence level δ′ > 0 and an arbitrary θ, and define the shorthand notation
Ŝn = ∆̂θ(Xk,n, Ak,n, X

′
k,n) and Sn = ∆θ(Xk,n, Ak,n). Note that, by definition, these random variables are

bounded in the interval [−(γ + 1)B′, 1 + (γ + 1)B′] ⊂ [−B,B]. Furthermore, let us define the notation EX′ [·] =

E
[
·
∣∣∣{Xk,n, Ak,n}Nn=1

]
and let

W =
1

N

N∑
n=1

eηŜn and W =
1

N

N∑
n=1

eηSn .
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We start by observing that, by Jensen’s inequality, we obviously have EX′ [W ] ≤W . Furthermore, by using the
inequality eu ≤ 1 + u+ u2 that holds for all u ≤ 1, we can further write

W ≤ 1

N

N∑
n=1

(
1 + ηSn + η2S2

n

)
≤ EX′

[
1

N

N∑
n=1

(
1 + ηŜn

)]
+ η2S2

n

≤ EX′
[

1

N

N∑
n=1

eηŜn

]
+ η2S2

n = EX′ [W ] + η2B2,

where in the last line we used the inequality 1 + u ≤ eu that holds for all u and our upper bound on Ŝn. Thus,
taking expectations with respect to X ′, we get

E [W ] ≤ E
[
W
]
≤ E [W ] + η2B2. (17)

To proceed, we define the function

f(s1, s2, . . . , sN ) =
1

N

N∑
n=1

eηsn

and notice that it satisfies the bounded-differences property

f(s1, s2, . . . , sn, . . . , sN )− f(s1, s2, . . . , s
′
n, . . . , sN ) =

1

N

(
eηsn − eηs

′
n

)
≤ ηe2ηB

N
.

Here, the last step follows from Taylor’s theorem that implies that there exists a χ ∈ (0, 1) such that

eηs
′
n = eηsn + ηeηχ(s′n−sn)

holds, so that eηs
′
n − eηsn = ηeηχ(s′n−sn) ≤ ηe2ηB , where we used the assumption that |sn − s′n| ≤ 2B in

the last step. Notice that our assumption ηB ≤ 1 further implies that e2ηB ≤ e2. Thus, also noticing that
W = f(S1, . . . , SN ), we can apply McDiarmid’s inequality that to show that the following holds with probability
at least 1− δ′:

|W − E [W ] | ≤ ηe2

√
log(2/δ′)

N
. (18)

Now, let us observe that the difference between the LBE and its empirical counterpart can be written as

Ĝk(θ)− Gk(θ) =
1

η
log (W )− 1

η
log
(
E
[
W
])

=
1

η
log

(
W

E
[
W
]) .

Thus, by combining Equations (17) and (18), we obtain that

Ĝk(θ)− Gk(θ) =
1

η
log

(
1 +

W − E
[
W
]

E
[
W
] )

≤ 1

η
log

(
1 +

W − E [W ]

E
[
W
] )

≤ W − E [W ]

ηE
[
W
] ≤ e4

√
log(2/δ′)

N
,

where we used the inequality log(1 + u) ≤ u that holds for u > −1 and our assumption on η that implies
W ≥ e−2. Similarly, we can show

Gk(θ)− Ĝk(θ) =
1

η
log

(
1 +

E
[
W
]
−W

W

)
≤ 1

η
log

(
1 +

E [W ]−W + η2B2

W

)

≤ E [W ]−W + η2B2

ηW
≤ e4

√
log(2/δ′)

N
+ ηe2B2,

This concludes the proof of the concentration result for a fixed θ.
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In order to prove a bound that holds uniformly for all values of θ, we will consider a covering of the space of
Q functions Qθ bounded in terms of the supremum norm Q = {Qθ : θ ∈ Rm, ‖Qθ‖∞ ≤ B}. The corresponding
set of parameters will be denoted as Θ. To define the covering, we fix an ε > 0 and consider a set CQ,ε ⊂ Q of
minimum cardinality, such that for all Qθ ∈ Q, there exists a θ′ ∈ CQ,ε satisfying |Gk(θ)− Gk(θ′)| ≤ ε. Defining

the covering number NQ,ε = |CQ,ε| and ε = 1/
√
N , we can combine the above concentration result with a union

bound over the covering CQ,ε to get that

sup
θ∈Θ

∣∣∣Gk(θ)− Ĝk(θ)
∣∣∣ ≤ (e4 + 1

)√ log(2NQ,ε/δ)
N

+ ηe2B2

holds with probability at least 1 − δ. Upper-bounding the constants e2 < 8 and e4 + 1 < 56 concludes the
proof.
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B Experimental details and further experiments

Environment description. We use Double-chain and Single-Chain from Furmston and Barber (2010), River
Swim from Strehl and Littman (2008), WideTree from Ayoub et al. (2020), CartPole from Brockman et al.
(2016), Two-State Deterministic from Bagnell and Schneider (2003), windy-grid world from Sutton and Barto
(2018), and a new Two-State Stochastic that we present in Figure 3.

Code environment. We use the open-source implementation of these algorithms from Curi (2020) which is
based on PyTorch (Paszke et al., 2017).

Hyperparameters. In Table 1 we show the hyperparameters we use for each environment. We fix the regu-
larization parameters as η = α and set them so that 1/η matches the average optimal returns in each game. As
optimizers for the player controlling the θ parameters in MinMax-Q-REPS (the learner), we use SGD (Robbins and
Monro, 1951) and in CartPole we use Adam (Kingma and Ba, 2014). For the player controlling the distributions
z (the sampler), we use the exponentited gradient (EG) update explained in the main text as the default choice,
and use the best response (BR) for CartPole:

zk,τ+1(n) ∝ eη∆̂k,τ (ξk,n).

The learning rates β and β′ were picked as the largest values that resulted in stable optimization performance.

Features for CartPole We initialize a two-layer neural network with a hidden layer of 200 units and ReLU
activations, and use the default initialization from PyTorch. We freeze the first layer and use the outputs of
the activations as state features φ′ : X → R200. To account for early termination, we multiply each of the
features with an indicator feature δ(x) that takes the value 1 if the transition is valid and 0 if the next transition
terminates. The final state features are given by the product φ(x) = φ′(x)δ(x) ∈ R200

≥0 . Finally, we define

state-action features ϕ : X ×A → R200×2 by letting ϕi,b(x, a) = φi(x)I{a=b} for all i and both actions b ∈ A.

Table 1: Experiment hyperparameters. The “-” symbol indicates that the default values were used, whereas “x”
symbol indicates that the algorithm does not require such hyperparameter.

η α β β′ γ T Learner Sampler Features

Default 0.5 0.5 0.1 0.1 1.0 300 SGD EG Tabular
Cart Pole 0.01 0.01 0.08 x 0.99 - Adam BR Linear
Double Chain - - 0.01 - - - - - -
River Swim 2.5 2.5 0.01 - - - - - -
Single Chain 5.0 5.0 0.05 - - - - - -
Two State D - - 0.05 - - - - - -
Two State S - - - - - - - - -
Wide Tree - - - 0.05 - - - - -
Grid World - - - 0.03 - - - - -

B.1 The effect of η on the bias of the ELBE

We propose a simple environment to study the magnitude of the bias of the ELBE as an estimator of the LBE.
While Theorem 2 establishes that this bias is of order η, one may naturally wonder if larger values of η truly
results in larger bias, and if the bias impacts the learning procedure negatively. In this section, we show that
there indeed exist MDPs where this issue is real.

The MDP we consider has two states x0 and x1, with two actions available at x0: stay and go, with the
corresponding rewards being rstay and rgo, and the rest of the dynamics is as explained on Figure 3. To simplify
the reasoning, we set γ = 1 and consider the case rstay = 0 first. In this case, the two policies that systematically
pick stay and go respectively would both have zero average reward. Despite this, it can be shown that minimizing
the empirical LBE in Q-REPS converges to a policy that consistently picks the go action for any choice of η. This
is due to the “risk-seeking” effect of the bias in estimating the LBE that favors policies that promise higher
extreme values of the return. This risk-seeking effect continues to impact the behavior of Q-REPS even when
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x0 x1

rstay = 1
rgo = 6

rstochastic = −3

Figure 3: Two-state MDP for illustrating the effect of biased estimation of the logistic Bellman error through
the empirical LBE. From x0 there are two actions with deterministic effects: stay and go. The stay action stays
in x0 and results in a reward of rstay = 1, while the go action moves to x1 and results in a reward of rgo = 6.
From x1 there is one single stochastic action stochastic that goes to x0 or remains in x1 with equal probability
and has reward rstochastic = −3.

rstay = 1 and η is chosen to be large enough—see the learning curves corresponding to various choices of η in
Figure 4. This suggests that the bias of the LBE can indeed be a concern in practical implementations in Q-REPS,
and that the guidance provided by Theorem 2 is essential for tuning this hyperparameter.
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Figure 4: Effect of relative entropy regularization parameter η on the performance of Q-REPS. On this figure,
Q-REPS∗ (dashed line) refers to the ideal version of the algorithm that minimizes the exact LBE, whereas Q-REPS
(solid line) is the sample-based implementation minimizing the empirical LBE. For large η, Q-REPS suffers from
bias and only converges to the optimal policy for smaller values of η. This effect is independent of the sample
size N used for the updates. On the other hand, the ideal updates performed by Q-REPS∗ do not suffer from
such bias.

We also note that this bias issue can be alleviated if one has access to a simulator of the environment that allows
drawing states from the transition distribution P (·|x, a) for any state-action pair in the replay buffer2. Indeed,
in this case one can replace X ′ by an independently generated sample in the gradient estimator ĝk,t(θ) defined
in Equation (12), which allows convergence to the minimizer of the following semi-empirical version of the LBE:

G̃k(θ) =
1

η
log

(
1

N

N∑
n=1

eη∆θ(Xk,n,Ak,n)

)
+ (1− γ) 〈ν0, Vθ〉 . (19)

As this definition replaces the empirical Bellman error by the true Bellman error in the exponent, it serves as an
unbiased estimator of the LBE. Due to this property, one can set large values of the regularization parameter η
and converge faster toward the optimal policy. Thus, this implementation of Q-REPS is preferable when one has
sampling access to the transition function.

2Note that this condition is relatively mild since it doesn’t require sampling follow-up states for any state-action pair,
which may be difficult to provide in practical applications where the set of valid states may not be known a priori.



Joan Bas-Serrano, Sebastian Curi, Andreas Krause, Gergely Neu

10−1 100 101 102 103

U

10−3

10−2

10−1

100

101

&
(G

0,
sta

y)
−&
(G

0,
go
)

Effect of U on action gap

QREPS
QREPS∗

1/U

0 2 4 6 8
Episode

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

R
ew

ar
d

Effect of U on learning

U = 1000
U = 100
U = 10
U = 1
U = 0.1

Figure 5: Effect of conditional-entropy regularization parameter α on the performance of Q-REPS. On this figure,
Q-REPS∗ (dashed line) refers to the ideal version of the algorithm that minimizes the exact LBE, whereas Q-REPS
(solid line) is the sample-based implementation minimizing the empirical LBE. On the left plot, we see the effect
of α on the action gap. For Q-REPS∗, the action gap decreases at a rate slightly slower than 1/α. On the other
hand, for Q-REPS, the estimation noise dominates the action gap for smaller values of α. For larger values of α,
Q-REPS fails to identify the optimal action which results in a negative action gap. On the right plot, we show
the performance for different values of alpha. For Q-REPS∗, α plays the role of a learning rate: as α increases so
does the learning speed For Q-REPS, this effect is only preserved for moderate values of α, as the small action
gap in the ideal Q-values makes identifying the optimal action harder. For α = 100 (green solid line), the sign is
identified correctly and it performs almost as if no regularization was present. For α = 1000 (orange solid line),
the sign is misidentified and the wrong action is preferred, leading to poor performance.

B.2 The Effect of α on the Action Gap

One interesting feature of the Q-REPS optimization problem (9) is that it becomes essentially identical to the
REPS problem (3) when setting α = +∞. To see this, let Ψ and Φ be the identity maps so that the primal form
of Q-REPS becomes

maximizep,d∈U 〈p, r〉 − 1

η
D(p‖p0)

s.t. ETd = γP Tp+ (1− γ)ν0

d = p,

which is clearly seen to be a simple reparametrization of the convex program (3). Furthermore, when α = +∞,
the closed-form expression for V in Proposition 1 is replaced with the inequality constraint V (x) ≥ Q(x, a)
required to hold for all x, a and the dual function becomes

G′(Q,V ) =
1

η
log

(∑
x,a

p0(x, a)eη(r(x,a)+γ
∑
x′ P (x′|x,a)V (x′)−Q(x,a))

)
+ (1− γ) 〈ν0, V 〉 .

Since this function needs to be minimized in terms of Q and V and it is monotone decreasing in Q, its minimum
is achieved when the constraints are tight and thus when Q(x, a) = V (x) for all x, a. Thus, in this case Q loses
its intuitive interpretation as an action-value function, highlighting the importance of the conditional-entropy
regularization in making Q-REPS practical.

From a practical perspective, this suggests that the choice of α impacts the gap between the values of Q: as
α goes to infinity, the gap between the values vanish and they become harder to distinguish based on noisy
observations. Figure 5 shows that the action gap indeed decreases as α is increased, roughly at an asymptotic
rate of 1/α, and that learning indeed becomes harder as the gaps decrease.
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