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Abstract

How should we gather information to make effective
decisions? A classical answer to this fundamental problem
is given by the decision-theoretic value of information.
Unfortunately, optimizing this objective is intractable, and
myopic (greedy) approximations are known to perform
poorly. In this paper, we introduce DIRECT, an efficient yet
near-optimal algorithm for nonmyopically optimizing value
of information. Crucially, DIRECT uses a novel surrogate
objective that is: (1) aligned with the value of information
problem (2) efficient to evaluate and (3) adaptive submod-
ular. This latter property enables us to utilize an efficient
greedy optimization while providing strong approximation
guarantees. We demonstrate the utility of our approach on
four diverse case-studies: touch-based robotic localization,
comparison-based preference learning, wild-life conserva-
tion management, and preference elicitation in behavioral
economics. In the first application, we demonstrate DIRECT
in closed-loop on an actual robotic platform.

Introduction
In many real-world decision making tasks we must adap-
tively choose among informative but expensive tests.
As an illustrative example, consider medical diagnosis
(Kononenko 2001), where many medical tests are available,
and we aim to administer tests that will enable us to provide
effective treatment. In such systems, the reward of making
a decision depends on some unknown hidden state (e.g., the
patient’s condition). Generally, it is impossible to observe
this hidden state directly, but one can perform tests, and
observe the outcome of variables correlated with the hidden
state, at some cost. The task is then to find a policy for
selecting the most informative tests, so that we can gather
enough information to make effective decisions, while
minimizing the cost of testing. Similar problems arise in
numerous other domains, ranging from optimal experimen-
tal design (Chaloner and Verdinelli 1995) to recommender
systems (Javdani et al. 2014) to policy making (Runge,
Converse, and Lyons 2011).

Related work A classical approach to information gather-
ing for decision making is the decision-theoretic value of in-
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formation (Howard 1966). Here, we seek policies that max-
imize the increase in the maximum expected utility that the
decision maker could obtain when acting upon the acquired
information. Optimizing this criterion in general probabilis-
tic models is NPPP-complete (Krause and Guestrin 2009).
Recently, Same-Decision Probability (SDP) has been pro-
posed for the purpose of robust decision making (Choi, Xue,
and Darwiche 2012). However, it has been shown that SDP
is PPPP-complete in general, and even remains NP-hard in
Navie Bayes Nets (Chen, Choi, and Darwiche 2014). Con-
sequently, greedy heuristics that myopically select the next
test are employed. It is known (Golovin, Krause, and Ray
2010) that these heuristics can perform arbitrarily poorly;
unfortunately exact algorithms for non-myopic value of in-
formation have so far been restricted to simple probabilistic
models (Krause and Guestrin 2009).

One can model the non-myopic value of information
problem as a Partially Observable Markov Decision Pro-
cess (POMDP) (Smallwood and Sondik 1973; Kaelbling,
Littman, and Cassandra 1998), where state represents the
selected tests and observed outcome of each test. Unfortu-
nately, this gives us an exponentially large state space, mak-
ing the application of many black-box POMDP solvers (e.g.,
(Pineau, Gordon, and Thrun 2006)) infeasible.

The problem of selecting information gathering tests
for purely reducing uncertainty about some hidden
variable (ignoring utilities of decision making) is stud-
ied in the context of active learning (Dasgupta 2004;
Balcan, Beygelzimer, and Langford 2006; Hanneke 2007;
Settles 2012) and (Bayesian) experimental design (Chaloner
and Verdinelli 1995). Deriving optimal policies is gen-
erally NP-hard (Chakaravarthy et al. 2007), but some
approximation results are known. In particular, if tests are
noise-free (i.e., deterministic functions of the hidden state),
the problem is known as the Optimal Decision Tree (ODT)
problem, and a simple greedy algorithm, called generalized
binary search (GBS), is guaranteed to produce a bounded
approximation to the optimal policy in terms of the cost
(Kosaraju, Przytycka, and Borgstrom 1999).

Recently, these results have been brought closer to
decision making by associating each hidden state with
some optimal decision(s). Information gathering policies
no longer aim to reduce all uncertainty – but just enough
to make the right decision. Two algorithms, namely equiv-



alence class edge cutting (EC2) (Golovin, Krause, and Ray
2010) and hyperedge cutting (HEC) (Javdani et al. 2014)
provide approximation guarantees for this problem. Since
our approach builds on these techniques, we review them in
more detail in the next section.

Our contributions In this paper, we provide a principled
framework for a class of non-myopic value of information
problems: We seek a minimum-cost policy which guarantees
that, upon termination, a near-optimal decision – one that
provides almost as much utility as achievable by carrying
out all tests – is identified. Instead of optimizing for this di-
rectly, we construct DIRECT, a surrogate objective function
with a few key properties. Crucially, we show that it exhibits
adaptive submodularity (Golovin and Krause 2011), a nat-
ural diminishing returns property, generalizing the classical
notion of submodularity to adaptive policies. This result
allows us to greedily maximize the surrogate, while still
providing a strong theoretical guarantee. We evaluate our al-
gorithm on four applications: touch-based localization with
a robotic arm (Javdani et al. 2013), comparison-based pref-
erence learning (Karbasi, Ioannidis, and Massoulié 2011;
2012), adaptive management for biodiversity conserva-
tion (Runge, Converse, and Lyons 2011), and preference
elicitation in behavioral economics (Ray et al. 2012).
Experimental results show that our algorithm significantly
outperforms myopic value of information in most settings.
Moreover, our algorithm is exponentially faster than HEC
in theory, significantly faster (often by orders of magnitude)
in practice, while offering similar empirical performance.

Background and Problem Statement
We now formalize the problem addressed in this paper –
efficient information gathering for decision making – and
review existing approaches for solving it.

The Value of Information and Decision Region
Determination Problem
Assume that there is some unknown hidden discrete random
variable Y ∈ Y upon which we want to make a decision.
In our medical diagnostics example, Y may represent the
condition of the patient. We are given a set T = {1, . . . , n}
of possible (e.g., medical) tests; performing each test t ∈ T
incurs a certain cost of c(t) > 0 and produces an outcome
that is correlated with Y . We model the outcome of each
test t by a discrete random variable Xt ∈ X and denote
its observed outcome by xt. Hereby, xA ∈ XA is a vector
of outcomes indexed by a set of tests A ⊆ T that we have
performed, and y is the realized value of the hidden variable
Y . Further assume that there is a known prior distribution
P [Y,X1, . . . , Xn] over the hidden variable and test out-
comes admitting efficient inference, i.e., we can compute
the posterior distribution P [Y = y | xA] efficiently after
having observed any xA.

Suppose there is a finite set D of decisions to choose
from. After performing a set of tests and observing their
outcomes, we want to make the best decision given our be-
lief about the hidden variable Y (e.g., we must decide how

to treat the patient). Formally, we quantify the benefit of
making a decision d ∈ D for any y ∈ Y by a utility function
u : Y × D → R≥0. The expected value of a decision d
after observing xA is U(d | xA) = Ey[u(y, d) | xA]. The
value of a specific set of observations xA is then defined
as: VoI(xA) = maxd∈D U(d | xA), i.e., the maximum ex-
pected utility achievable when acting upon observations xA.

Consider performing all tests, receiving outcomes xT ,
and making the most informed decision possible. This would
achieve a value of VoI(xT ). However, it may be possible to
achieve nearly VoI(xT ) with far fewer tests. Our goal is to
adaptively select the cheapest tests to do so. Formally, we
define the regret1 of a decision d given observations xA by
R(d | xA) = maxxT :P[xT |xA]>0[VoI(xT ) − U(d | xT )].
This regret bounds our loss in expected utility if we stop
upon observing xA and committing to action d. Our goal is
to find a policy π of minimum cost with regret of at most
ε. Formally, a policy is a partial mapping from observation
vectors xA to tests, specifying which test to run next (or
that we should stop testing if xA is not in the domain of
π) for any observation vector xA. If variables X1, . . . , Xn

would result in outcomes xT , we will obtain a set of obser-
vations, denoted as S(π,xT ) ⊆ T × X , by running policy
π until termination (likely before exhausting all tests). The
expected cost of a policy π is cost(π) = ExT [c(S(π,xT ))],
where c(S(π,xT )) is the total cost of all tests run by π in
the event xT . Fix some small tolerance ε ≥ 0. We seek a
policy π∗ with minimum cost, such that upon termination,
π∗ will suffer regret of at most ε:

π∗ ∈ arg min
π

cost(π), s.t.

∀xT ∃d : R(d | S(π,xT )) ≤ ε whenever P [xT ] > 0. (1)

In other words, we require that each feasible policy
satisfies the following condition: Upon termination, we
must be able to commit to a decision, such that we lose at
most ε expected utility, compared to the optimal decision
we could have made if we had also observed all remaining
unobserved variables. We call Problem (1) the nonmyopic
value of information problem for achieving near-maximal
utility (NVOI-NMU).2

Importantly, this problem reduces3 to a problem known
as the Decision Region Determination (DRD) problem (Jav-
dani et al. 2014). In DRD, we are given (1) a set of hypothe-
sesH = {h1, . . . , hN}; (2) a random variable H distributed
overH with known distribution P; (3) a set of tests modeled
as deterministic functions f1, . . . fn : H → X ; (4) a cost
function c : {1, . . . , n} → R+ and (5) a collection of subsets
R1, . . . ,Rm ⊆ H called decision regions. We seek a policy
π∗ of minimum cost, which adaptively picks tests i, observes
their outcomes Xi = fi(H), where H ∈ H is the unknown
hypothesis, such that upon termination, there exists at least

1Clearly, this regret is also an upper bound on the expected loss
in expected utility, i.e., ExT [VoI(xT )− U(d | xT ) | xA].

2In classical value of information, costs and utilities have the
same units, and we aim to maximize benefit minus cost. In many
cases (e.g. medical diagnosis), this is not the case, so we formulate
our problem to achieve near-maximal utility with minimum cost.

3The NVOI-NMU and DRD problems are in fact equivalent.



one decision region that contains all hypotheses consistent
with the observations made by the policy. That is, we seek

π∗ ∈ arg min
π

cost(π), s.t. ∀h ∃d : H(S(π, h)) ⊆ Rd. (2)

Hereby h ∈ H, and H(xA) = {h′ ∈ H : (i, x) ∈ xA ⇒
fi(h

′) = x} is the set of hypotheses consistent with xA.
To reduce the NVOI-NMU Problem (1) to DRD (2), we
interpret every outcome vector xT with positive probability
as a hypothesis h. The interpretation of the prior, tests, and
costs follow immediately. It remains to define the decision
regions. For each decision d, we set Rd to be the set of
outcome vectors, for which d is an ε-optimal action, or
formally:Rd = {xT : U(d | xT ) ≥ VoI(xT )− ε}.

Existing approaches for solving the DRD problem
As a special case of the Decision Region Determination
problem, the Equivalence Class Determination (ECD)
problem (Golovin, Krause, and Ray 2010) only allows
disjoint decision regions, i.e., Ri ∩ Rj = ∅ for i 6= j. This
means that each hypothesis h is associated with a unique
decision. The EC2 algorithm (Golovin, Krause, and Ray
2010) considers hypotheses as nodes in a graphG = (V,E),
and defines weighted edges between hypotheses in different
decision regions: E = ∪i 6=j{{h, h′} : h ∈ Ri, h′ ∈ Rj},
where the weight of an edge is defined as w({h, h′}) =
P [h] · P [h′]; similarly, the weight of a set of edges is
w(E′) =

∑
e∈E′ w(e). An edge is consistent with the

observation iff both hypotheses incident to the edge are con-
sistent. Hence, a test t with outcome xt is said to cut edges
E(xt) = {{h, h′} ∈ E : ft(h) 6= xt ∨ ft(h′) 6= xt}. Per-
forming tests will cut edges inconsistent with the observed
test outcomes, and we aim to eliminate all inconsistent
edges while minimizing the expected cost incurred.

The EC2 objective is defined as the total weight of edges
cut: fEC(xA) := w

(⋃
t∈AE(xt)

)
. Let P [Ri] be the total

prior probability mass of all hypotheses h in Ri. Then the
weight of edges between distinct decision regionsRi,Rj is
w(Ri × Rj) =

∑
h∈Ri,h′∈Rj

P [h]P [h′] = P [Ri]P [Rj ].
Naively, computing the total edge weight requires enu-
merating all pairs of regions. However, we can compute
this in linear time by noting it is equivalent to an ele-
mentary symmetric polynomial of degree 2:

∑
i6=j w(Ri ×

Rj) = 1
2

(
(
∑
i P [Ri])2 −

∑
i P [Ri]2

)
. We similarly com-

pute the total edge weight after observations xA using
P [Ri ∩H(xA)] for the probability mass of all hypotheses
in Ri consistent with observations xA. Finally, we subtract
these two quantities to compute fEC(xA) =

∑
i6=j w(Ri ×

Rj)−
∑
i 6=j w(Ri ∩H(xA)×Rj ∩H(xA)).

EC2 is known to be near-optimal for the ECD problem.
This result relies on the fact that fEC is adaptive submodu-
lar, and strongly adaptive monotone (Golovin and Krause
2011). Let xA and xB be two observation vectors. We
call xA a subrealization of xB, denoted as xA � xB, if
the index set A ⊆ B and P [xB | xA] > 0. A function
f : 2T ×X → R is called adaptive submodular w.r.t. a
distribution P, if for any xA � xB and any test t it holds

that ∆(t | xA) ≥ ∆(t | xB), where ∆(t | xA) :=
Ext

[
f(xA∪{t})− f(xA) | xA

]
(i.e., “adding information

earlier helps more”). Further, function f is called strongly
adaptively monotone w.r.t. P, if for all A, t /∈ A, and
xt ∈ X , it holds that f(xA) ≤ f(xA∪{t}) (i.e., “adding
information never hurts”). For decision problems satisfying
adaptive submodularity and strongly adaptive monotonicity,
the policy that greedily, upon having observed xA, selects
the test t∗ ∈ arg maxt ∆(t | xA)/c(t), is guaranteed to at-
tain near-minimal cost (Golovin and Krause 2011).

EC2 crucially relies on the fact that decision regions are
disjoint. In the presence of overlapping regions, there is no
principled way to apply EC2. Recently, the HEC algorithm
(Javdani et al. 2014) was proposed for solving the general
DRD problem. It does so by creating an alternate repre-
sentation – a hypergraph for splitting decision regions. The
computational bottleneck for HEC lies in the construction
of this hypergraph, where computation cost grows exponen-
tially with the hyperedge cardinality, which depends on the
maximum number of optimal decisions one can make for
a hypothesis. Thus, when we have large overlap between
regions – the common case for NVOI-NMU, in particular
with larger ε – HEC becomes intractable.

The Decision Region Edge Cutting Algorithm
We now develop an efficient yet near-optimal criterion,
namely Decision Region Edge Cutting (DIRECT), for solv-
ing the DRD – and hence the NVOI-NMU – problem.

The Noisy-OR Construction
Suppose there are m possible decisions: |D| = m. Our
strategy will be to reduce the DRD problem to O(m)
instances of the ECD problem, such that solving any one of
them is sufficient for solving the DRD problem. Crucially,
the problem we end up solving depends on the unknown
hypothesis h∗. We design our surrogate DIRECT so that it
adaptively determines which instance to solve in order to
minimize the expected total cost.

Concretely, we construct m different graphs, one for
each decision. The role of graph i is to determine whether
the unknown hypothesis h∗ is contained in decision region
Ri or not. Thus we aim to distinguish all the hypotheses
in this decision region from the rest. To achieve this, we
model graph i as an ECD problem, with one of the decision
regions being Ri. Further, we partition the remaining set
of hypotheses H \ Ri into a collection of subregions, such
that within each subregion, all hypotheses are contained in
exactly the same collection of decision regions from the
original DRD problem. All the subregions are disjoint by
definition, and hence we have a well-defined ECD prob-
lem. Solving this problem amounts to cutting all the edges
betweenRi and the subregions. See Figure 1 for illustration.

Notice that in this ECD problem, once all the edges are
cut, either i is the optimal decision, or one of the subre-
gions encodes the optimal decision. Therefore, optimizing
the ECD problem associated with one of the m graphs is a
sufficient condition for identifying the optimal decision.
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Figure 1: A toy DRD problem with three decision regions {R1,R2,R3}, and four possible hypotheses {h1, h2, h3, h4}. t is a test with
two possible outcomes: ft(h1) = ft(h3) = 1 and ft(h2) = ft(h4) = 0. For each possible decision we can make, we construct a separate
ECD problem: The three figures on the right illustrate the EC2 graphs for each of the ECD problems. We can successfully make an optimal
decision once one of the graphs is fully cut: e.g., if Xt = 0, graph 2 is fully cut, and we identify the optimal decision d2.

Further notice that, among the m ECD problems asso-
ciated with the m graphs, at least one of them has to be
solved (i.e., all edges cut) before we uncover the optimal
decision. Therefore, we get a necessary condition of the
DRD constraints: we have to cut all the edges in at least
one of the m graphs. This motives us to apply a logical
OR operation on the m optimization problems. Denote the
EC2 objective function for graph i as f iEC , and normalize
them so that f iEC(∅) = 0 corresponds to observing nothing
and f iEC(xT ) = 1 corresponds to all edges being cut. We
combine the objective functions f1EC , . . . , f

m
EC using a

Noisy-OR formulation:

fDRD(xA) = 1−
m∏
i

(
1− f iEC(xA)

)
(3)

Note that by design fDRD(xA) = 1 iff f iEC(xA) = 1 for
at least one i. Thus, the DRD (and hence NVOI-NMU)
Problem is formally equivalent to the following problem:

π∗ ∈ arg min
π

cost(π), s.t.

∀xT : fDRD(S(π,xT )) ≥ 1 whenever P [xT ] > 0. (4)

The crucial advantage of this new formulation is given by
the following Lemma:
Lemma 1. fDRD is strongly adaptive monotone, and adap-
tive submodular w.r.t. P.

That is, the Noisy-OR formulation for multiple EC2

functions preserves adaptive submodularity. The proof of
this result can be found in the supplemental material4.
These properties make fDRD amenable for efficient
greedy optimization. Formally, let ∆fDRD

(t | xA) :=
Ext

[
fDRD(xA∪{t})− fDRD(xA) | xA

]
be the expected

marginal benefit in fDRD by adding test t to xA. With
fDRD, we can associate the following greedy algorithm:
It starts with the empty set, and at each iteration, having
already observed xA, selects the test t∗ with the largest
benefit-to-cost ratio: t∗ ∈ arg maxt ∆fDRD

(t | xA)/c(t). A

4Similar constructions have been used for classical submodular
set functions (Guillory and Bilmes 2011; Deshpande, Hellerstein,
and Kletenik 2014), utilizing the fact that f = 1 −

∏m
i (1− fi)

is submodular if each fi is submodular. However, the function f is
not necessarily adaptive submodular, even when each fi is adaptive
submodular and strongly adaptively monotone.

major benefit of adaptive submodularity is that we can use
a technique called lazy evaluation to dramatically speed up
the selection process (Golovin and Krause 2011). Further,
we have the following performance guarantee:
Theorem 2. Let m be the number of decisions, and πDRD
be the adaptive greedy policy w.r.t. the objective function
Eq. (3). Then it holds that

cost(πDRD) ≤ (2m ln (1/pmin) + 1) cost(π∗),

where pmin = minh∈H P [h] is the minimum prior probabil-
ity of any set of observations, and π∗ is the optimal policy
for Problem (4), and hence also the NVOI-NMU and DRD
Problems.

This result follows from Lemma 1 and the general perfor-
mance analysis of the greedy policy for adaptive submodular
problems by (Golovin and Krause 2011). More details are
given in the supplement. The bound of the greedy algorithm
is linear in the number of decision regions. Here the factorm
is a result of taking the product of m EC2 instances. In the
following, we show how this bound can often be improved.

Improving the bound via Graph Coloring
For certain applications, the number of decisions m can
be large. In the extreme case where we have a unique de-
cision for each possible observation, the bound of Theo-
rem 2 becomes trivial. As noted, this is a result of taking
the product of m EC2 instances. Thus, we can improve this
bound by constructing fewer instances, each with several
non-overlapping decision regions. As long as every decision
region is accounted for by at least one ECD instance, prob-
lem 4 remains equivalent to the DRD problem. We select
the sets of decision regions for each ECD instance through
graph coloring. See Figure 2 for illustration.

Formally, we construct an undirected graph G := {D, E}
over all decision regions, where we establish an edge
between any pair of overlapping decision regions. That is,
two decision regions Ri and Rj are adjacent in G iff there
exists a hypothesis h for which both decisions are optimal,
i.e., h ∈ Ri∩Rj . Finding a minimal set of non-overlapping
decision region sets that covers all decisions is equivalent to
solving a graph coloring problem, where the goal is to color
the vertices of the graph G, such that no two adjacent vertices
share the same color, using as few colors as possible. Thus,
we can construct one ECD problem for all the decision
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regions of the same color, resulting in r different instances,
and then use the Noisy-OR formulation to assemble these
objective functions. That gives us the following theorem:
Theorem 3. Let πDRD be the adaptive greedy policy w.r.t.
the objective function Eq. (3), which is computed over ECD
problem instances obtained via graph coloring. Let r be the
number of colors used. Then it holds that

cost(πDRD) ≤ (2r ln (1/pmin) + 1) cost(π∗),

where pmin is the minimum prior probability of any set of
observations, and π∗ is the optimal policy.

While obtaining minimum graph colorings is NP-hard in
general, one can show that every graph can be efficiently
colored with at most one color more than the maximum
vertex degree, denoted by deg, using a greedy coloring
algorithm (Welsh and Powell 1967): consider the vertices
in descending order according to the degree; we assign to
a vertex the smallest available color not used by its neigh-
bours, adding a fresh color if needed. In the DRD setting,
deg is the maximal number of decision regions that any
decision region can be overlapped with. In practice, greedy
coloring often requires far fewer colors than this upper
bound. Additionally, note that when regions are disjoint,
deg = 0 and DIRECT reverts to the EC2 algorithm.

Dealing with Noisy Observations
The computational complexity of DIRECT depends lin-
early5 on the number of hypotheses in the DRD problem,
i.e., the number N of all possible outcome vectors xT in
the NVOI-NMU problem. However, N can be large, in par-
ticular in settings where we model complex joint distri-
butions P [Y,X1, . . . , Xn]. Fortunately, often one can ex-
ploit structure in the probabilistic model to dramatically im-
prove the computation complexity. Note that for any discrete
prior P [Y,X1, . . . , Xn] we can define a latent variable Θ,
such that P [X1, . . . , Xn | Y,Θ] becomes deterministic, i.e.,
Xi = fi(Y,Θ) for some deterministic function fi. Thus, we
can simply interpret each pair of (y, θ) as a hypothesis h in
DRD. One natural reason to introduce the latent variable Θ
is to deal with noisy observations. In our medical diagno-
sis example, patients with the same condition Y may have
different symptoms, and thus react differently to the same

5Since DIRECT requires the computation of r EC2 scores, the
computational complexity of DIRECT is linear in both r and N .

medical tests. Here Θ captures the possible clinical mani-
festations that come along with Y .

For some noise models, Θ could have exponentially large
support, and thus keeping track of all the noisy realizations
of a hypothesis will be prohibitive. To overcome this chal-
lenge, we show that for certain distributions of Θ, one can
compute the objective fDRD much more efficiently. In par-
ticular, we study a natural restricted noise model, where Θ
encodes a bounded number of k (k � n) flips of the ground
truth label6 induced by y. Imagine that for each hidden
state y, there is some θy such that hypothesis h = (y, θy)
corresponds to the “clean” state of y, while hypotheses
ĥ ∈ {(y, θ̂y) : θ̂y 6= θy} correspond to the noisy versions of
y. We further suppose that a noisy hypothesis ĥ flips the la-
bel of each test with probability ε, and that the total number
of label flips, denoted as δ(h, ĥ), follows a truncated bino-
mial distribution: P

[
δ] = 1

Z

(
n
δ

)
εδ(1− ε)n−δ for δ ≤ k (and

P [δ] = 0 for δ > k), where Z =
∑k
δ=1

(
n
δ

)
εd(1 − ε)n−δ

is the normalizing constant. Since the utility function
in the NVOI-NMU problem is defined in terms of
the state y, to compute fDRD, it suffices to be able
to efficiently compute the remaining probability mass
P [y,xA] associated with state y after observing xA. Let
l = | {t : t ∈ A ∧ ft(h) 6= xt} | be the number of labels in
xA that are inconsistent with (y, θy). One can show that
P [y,xA] = P [y] · 1

Z ε
l(1 − ε)|A|−l

∑k−l
i=0

(
n−|A|
i

)
εi(1 −

ε)n−|A|−i. Therefore, P [y,xA] can be computed efficiently
without enumerating all O

(
nk
)

(y, θ) pairs, and hence we
can compute fDRD efficiently as well.

Experimental Results
We now consider four instances of the general non-myopic
value of information problem. Table 1 summarizes how
these instances fit into our framework. For each of the prob-
lems, we compare DIRECT against several existing ap-
proaches as baselines. The first baseline is myopic optimiza-
tion of the decision-theoretic value of information (VOI)
(Howard 1966). At each step we greedily choose the test
that maximizes the expected value given the current observa-
tions xA, i.e., t ∈ arg maxt Ext

[
U(xA∪{x})

]
. The second

baseline is the recently proposed objective for addressing the
DRD problem, HEC (Javdani et al. 2014). We also compare

6We assume, w.l.o.g., that test outcomes are binary.



APPLICATION TEST / ACTION DECISION
Active Loc. guarded move manipulation action

Pref. learning. pair of movies recommendation
Conservation monitoring / probing conservation action
Risky choice pair of lottery choices valuation theory

Table 1: Tests and decisions for different applications
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Figure 3: Experimental results - Robot

with algorithms designed for special cases of the DRD prob-
lem: generalized binary search (GBS) and equivalence class
edge cutting (EC2)7. We compare with two versions of these
algorithms: one with the algorithms’ original stopping crite-
ria, which we call GBS and EC2; and one with the stopping
criteria of the DRD problem, which is referred to as GBS-
DRD and EC2-DRD in the results.

Active touch-based localization
Our first application is a robotic manipulation task of
pushing a button, with uncertainty over the target’s pose.
Tests consist of guarded moves (Will and Grossman 1975),
where the end effector moves along a path until contact is
sensed. Those hypotheses which would not have produced
contact at that location (e.g., they are far away) can be
eliminated. Decisions correspond to putting the end effector
at a particular location and moving forward. The coinciding
decision region consists of all object poses where the button
would successfully be pushed. Our goal is to concentrate
all consistent hypotheses within a single decision region
using the fewest tests. We model pose uncertainty with 4
parameters: (x, y, z) for positional uncertainty, and θ for
rotation about the z axis. An initial set of 20000 hypotheses
are sampled from a normal distribution N(µ,Σ), where µ is
some initial location (e.g., from a camera), and Σ is diagonal
with σx = σy = σz = 2.5cm, and σθ = 7.5◦. We then run
DIRECT on both simulated data and a real robot platform.
In the first simulated experiment, we preselect a grid of 25
button pushing actions D while ensuring the overlap r is
minimal. We randomly generate guarded moves T to select
from, varying |T | . In the second, we randomly generate

7When hypotheses are in multiple decision regions, EC2 cannot
be used as is. Hence, we randomly assign each hypothesis to one
of the decision regions that it is contained in.

(a) Hypotheses (b) Tests (c) Decision regions

Figure 4: Experimental setup for touch-based localization. (a) Un-
certainty is represented by hypotheses over object pose. (b) Tests
are guarded moves, where the end effector moves along a path un-
til contact is sensed. Hypotheses which could not have produced
contact at that location (e.g. they are too far or too close) are re-
moved. (c) Decisions are button-push attempts: trajectories starting
at a particular location, and moving forward. The corresponding re-
gion consists of all poses for which that button push would succeed.

decision regions, varying |D| while fixing |T | = 250. To
compute the myopic value of information (VOI) (Howard
1966), we define a utility function u(h,R) which is 1 if
h ∈ R and 0 otherwise. Results are plotted in Figure 3(a)
and Figure 3(b). Note that HEC cannot be computed in this
experiment, as the overlap r becomes very large8 and HEC
quickly becomes intractable. We see that DIRECT generally
outperforms other baselines. Here, myopic VOI performs
comparably – likely because the problem is solved within
a short horizon. We also demonstrate DIRECT on a real
robot platform as illustrated in Figure 4. See supplemental
material for more results and a video demonstration.

Comparison-based preference learning
The second application considers a comparison-based movie
recommendation system, which learns a user’s movie prefer-
ence (e.g., the favorable genre) by sequentially showing her
pairs of candidate movies, and letting her choose which one
she prefers. We use the MovieLens 100k dataset (Herlocker
et al. 1999), which consists a matrix of 1 to 5 ratings of 1682
movies from 943 users. For fair comparison with baselines,
we adopt the same parameters as reported in (Javdani et
al. 2014). That is, for each movie we extract a 10-d feature
representation from the rating matrix through SVD. To
generate decision regions, we cluster movies using k-means,
and assign each movie to the r closest cluster centers.

We demonstrate the performance of DIRECT on Movie-
Lens in Figure 5(a) and 5(b). We fix the number of clusters
(i.e., decision regions) to 12, and vary r, the number of as-
signed regions for each hypothesis, from 1 to 6. Note that r
controls the hyperedge cardinality in HEC, which crucially

8Moreover, when running on a real robot, many actions are in-
feasible due to kinematic constraints. Sampling decisions enables
us to generate arbitrarily many, ensuring we always have many de-
cisions available.
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Figure 5: Experimental results: MovieLens, EMPCranes, and Risky Choice Theory

affects the computational complexity. As we can observe,
the query complexity (i.e., the number of queries needed to
identify the target region) of DIRECT is lower than all base-
lines except HEC. However, it is significantly faster to com-
pute. See Figure 5(b) (for r = 5, HEC failed to pick any
tests within an hour).

Adaptive management for wild-life conservation
Our third application is a real-world value of information
problem in natural resource management, where one needs
to determine which management action should be under-
taken for wild-life conservation. Specifically, the task is
to preserve the Eastern Migration Population of whooping
cranes (EMP Cranes). An expert panel came up with 8
hypotheses for possible causes of reproductive failure,
along with 7 management strategies (as decisions). The
decision-hypothesis utility matrix is specified in Table 5 of
(Runge, Converse, and Lyons 2011). Tests aim to resolve
specific sources of uncertainty. Our goal is to find the best
conservation strategy using the minimal number of tests.

We assume that ε-optimal decisions are allowed for each
hypothesis, where ε is the tolerance threshold. We further
assume test outcomes to be noisy, i.e., the test outcome
corresponding to a particular hypothesis can be flipped. In
our experiments, a maximum of 1 flip is allowed for each
outcome vector, which amounts to a total of 37 “noisy”
hypotheses. When multiple hypotheses are consistent with a
outcome vector, we assign the most probable one to that out-
come. Results are plotted in Figure 5(c). We see that HEC
and DIRECT perform comparably well, while significantly
outperforming myopic VOI and all other baselines.

Preference Elicitation in Behavioral Economics
We further conduct experiments in an experimental de-
sign task. Several theories have been proposed in behav-
ioral economics to explain how people make decisions un-
der risk and uncertainty. We test DIRECT on six theo-
ries of subjective valuation of risky choices (Wakker 2010;
Tversky and Kahneman 1992; Sharpe 1964), namely the (1)
expected utility with constant relative risk aversion, (2) ex-
pected value, (3) prospect theory, (4) cumulative prospect

theory, (5) weighted moments, and (6) weighted standard-
ized moments. Choices are between risky lotteries, i.e.,
known distribution over payoffs (e.g., the monetary value
gained or lost). Tests are pairs of lotteries, and hypotheses
correspond to parametrized theories that predict, for a given
test, which lottery is preferable. The goal, is to adaptively
select a sequence of tests to present to a human subject in
order to distinguish which of the six theories best explains
the subject’s responses.

We employ the same set of parameters used in (Ray et al.
2012) to generate tests and hypotheses. The original setup in
(Ray et al. 2012) was designed for testing EC2, and there-
fore test realizations of different theories cannot collide. In
our experiments, we allow a tolerance ε - that is, if one hy-
pothesis differs from another by at most ε, they are consid-
ered to be similar, and thus have the same set of optimal
decisions. Results for simulated test outcomes with varying
ε are shown in Figure 5(d). We see that DIRECT performs
best in this setting.

Conclusion
We have proposed DIRECT, an efficient surrogate for the
problem of nonmyopically optimizing value of information
to achieve near-maximal utility. We prove that DIRECT
is adaptive submodular, making it amenable for efficient
greedy optimization. We demonstrated the efficiency and
effectiveness of DIRECT extensively on four real-world
applications, and showed that it compares favorably with
existing approaches, while being significantly faster than
competing methods. We believe that our results provide
an important step towards solving challenging real-world
information gathering problems.

Acknowledgements. This work was supported in part
by the Intel Embedded Computing ISTC, NSF NRI Pur-
poseful Prediction grant, NSF GRFP No. 0946825, NSF-
IIS-1227495, DARPA MSEE FA8650-11-1-7156, ERC StG
307036, a Microsoft Research Faculty Fellowship, a Google
European Doctoral Fellowship, and the Office of Naval Re-
search Young Investigator Award.



References
Balcan, M.; Beygelzimer, A.; and Langford, J. 2006. Ag-
nostic active learning. In ICML.
Chakaravarthy, V. T.; Pandit, V.; Roy, S.; Awasthi, P.; and
Mohania, M. 2007. Decision trees for entity identification:
Approximation algorithms and hardness results. In SIG-
MOD/PODS.
Chaloner, K., and Verdinelli, I. 1995. Bayesian experimental
design: A review. Statistical Science 10(3):273–304.
Chen, S. J.; Choi, A.; and Darwiche, A. 2014. Algorithms
and applications for the same-decision probability. JAIR
601–633.
Choi, A.; Xue, Y.; and Darwiche, A. 2012. Same-decision
probability: A confidence measure for threshold-based de-
cisions. International Journal of Approximate Reasoning
53(9):1415 – 1428.
Dasgupta, S. 2004. Analysis of a greedy active learning
strategy. In NIPS.
Deshpande, A.; Hellerstein, L.; and Kletenik, D. 2014. Ap-
proximation algorithms for stochastic boolean function eval-
uation and stochastic submodular set cover. In SODA.
Golovin, D., and Krause, A. 2011. Adaptive submodular-
ity: Theory and applications in active learning and stochastic
optimization. JAIR.
Golovin, D.; Krause, A.; and Ray, D. 2010. Near-optimal
bayesian active learning with noisy observations. CoRR.
Guillory, A., and Bilmes, J. 2011. Simultaneous learning
and covering with adversarial noise. In ICML, 369–376.
Hanneke, S. 2007. A bound on the label complexity of
agnostic active learning. In ICML.
Herlocker, J. L.; Konstan, J. A.; Borchers, A.; and Riedl, J.
1999. An algorithmic framework for performing collabora-
tive filtering. In SIGIR.
Howard, R. A. 1966. Information value theory. In IEEE
Transactions on Systems Science and Cybernetics.
Javdani, S.; Klingensmith, M.; Bagnell, J. A. D.; Pollard, N.;
and Srinivasa, S. 2013. Efficient touch based localization
through submodularity. In ICRA.
Javdani, S.; Chen, Y.; Karbasi, A.; Krause, A.; Bagnell, D.;
and Srinivasa, S. 2014. Near-optimal bayesian active learn-
ing for decision making. In AISTATS.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101:99–134.
Karbasi, A.; Ioannidis, S.; and Massoulié, L. 2011. Content
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Table of Notations Defined in the Main Paper
We summarize the notations used in the main paper in Table 2.

Table 2: A reference table of notations used in the main paper

n total number of tests
N total number of hypotheses in the DRD problem
m total number of decision regions
r number of EC2 instances needed after applying graph coloring
k bounded number of label flips in the restricted noise model
T set of all available tests
A subset of tests
t test
X domain of test observations
Xt (observable) random variable associated with a test t
xt observed value of a test t
xA vector of observations of tests in A
xT vector of observations of all tests
P [xT ] probability of a specific realization
pmin the minimum prior probability of any set of observations
Y domain of the hidden states
Y random variable associated with a hidden state
y value of the hidden state Y
D set of decisions that can be made
d decision
Rd the decision region indexed by d
u(d, y) utility function quantifying the benefit of making a decision d ∈ D for any y ∈ Y
U(d | xA) the expected value of a decision d after observing xA
VoI(xA) the value of a specific set of observations xA
R(d | xA) the regret of a decision d given observations xA
ε tolerance, maximal regret allowed
π policy, i.e., a partial mapping from observation vectors to tests
S(π,xT ) the set of observations obtained by playing policy policy π, under realization xT
c(t) the cost of performing a test t ∈ T
c(xA) the cost of performing a sequence of tests xA ∈ XA
cost(π) the expected cost of a policy π
H set of hypotheses in the DRD problem
h hypothesis
H a random variable distributed overH.
ft(h) the realization of test t under hypothesis h
G = (V,E) EC2 graph
w(h, h′) weight of edge (h, h′) ∈ E in the EC2 graph G
fEC the EC2 objective function
∆fEC

the expected marginal benefit in fEC by adding test t to xA
fDRD the DIRECT objective function
∆fDRD

(t | xA) the expected marginal benefit in fDRD by adding test t to xA
G = {D, E} (undirected) graph over D; edges are drawen between overlapped decision regions
deg the maximal degree of G
Θ latent (nuisance) variable that models the noise of a hidden state
θ value of latent variable Θ

δ(h, ĥ) the total number of label (i.e, test outcome) flips from h to ĥ



Proofs
Proof of Lemma 1
In the following, we show that the function defined in the form of Eq. 3 is strongly adaptive monotone and adaptive submodular.

Proof of Lemma 1. We first show fDRD is strongly adaptively monotone: We know that each individual f iEC is strongly adap-
tively monotone. Moreover, the partial derivative of fDRD w.r.t. each f iEC is non-negative. Applying the chain rule of deriva-
tives, we know that fDRD is strongly adaptively monotone.

To proof adaptive submodularity, we need to prove that for all xA � xB and t ∈ T , it holds that ∆fDRD
(t | xA) ≥

∆fDRD
(t | xB). First we introduce several auxiliary notations, as shown in Table 3. Let na(xA) =

∑
i ni,a(xA) be the number

of hypotheses in the current hypotheses space given xA and Xt = a, and nT (xA) = |H(xA)| be the number of hypotheses
that are consistent with the observation xA (See Table 3 for a list of notations used in this proof).

Table 3: A reference table of auxiliary notations

nT (xA) |H(xA)|, the number of hypotheses that are consistent with the observation xA.
ni(xA) |H(xA) ∩Ri|, the number of hypotheses inRi that are consistent with xA.
na(xA)

∑
i ni,a(xA),

the number of hypotheses in the current version space given xA and Xt = a.
ni,a(xA) |{h : h ∈ H(xA, Xt = a) ∩Ri}|,

the number of hypotheses inRi that are consistent with the observation xA and Xt = a.
n(xA) the vector consisting of ni,a(xA) for all i and a.
φ the expected marginal benefit of a test given some observations.

As of (Golovin, Krause, and Ray 2010), we can represent the marginal gain of fEC on each graph as a function φ(·) only
depending on n(xA):

∆fEC
(t | xA) = φ(n(xA)) =

1

2

∑
i 6=j

∑
a6=b

ni,a(xA) · nj,b(xA) +
∑
a

na
nT
· 1

2

∑
i 6=j

∑
b 6=a

ni,b · nj,b (5)

Now let nk,c be the number of hypotheses in auxiliary equivalence class k, which are consistent with the observationXt = c.
From (Golovin, Krause, and Ray 2010), we get ∂φ/∂nk,c ≥ 0 for any choice of k and c.

To show that ∆fDRD
(t | xA) = φfDRD

(n(xA)) is monotone decreasing with more observations, we need to show that for
any k and c, it holds that ∂φfDRD

(n(xA))/∂nk,c ≥ 0. Denote the set A ∪ {t} as A + t. By the definition of ∆(t | xA), we
know

∆fDRD
(t | xA)

=E

[(
1−

m∏
i

(
1− f iEC(xA+t))

))
−
(

1−
m∏
i

(
1− f iEC(xA)

))]

=E

(1− f1EC(xA)) ·
m∏
i6=1

(
1− f iEC(xA)

)
− (1− f1EC(xA+t)) ·

m∏
i 6=1

(
1− f iEC(xA+t))

) (6)

We first show for the simple case, where there are only two regions, the objective f (2)EC is adaptive submodular w.r.t. uniform
priors. For discussion simplicity we drop the normalization constants Qi from the analysis.

Define δi(xt | xA) = f iEC(xA+t)− f iEC(xA). If there are two regions, i.e., m = 2, Eq 6 becomes

∆EC(t | xA)

=E
[
(1− f1EC(xA)) · (1− f2EC(xA))− (1− f1EC(xA+t)) · (1− f2EC(xA+t))

]
=E

[
f1EC(xA+t)− f1EC(xA) + f2EC(xA+t)− f2EC(xA)−

(
f1EC(xA+t)f

2
EC(xA+t)− f1EC(xA)f2EC(xA

)]
=E

[
δ1(xt | xA) + δ2(xt | xA)− (δ1(xt | xA)f2EC(xA+t) + δ2(xt | xA)f1EC(xA)) | xA

]
=E

[
(1− f1EC(xA))δ2(xt | xA) | xA

]
+ E

[
(1− f2EC(xA+t))δ1(xt | xA) | xA

]
=
(
1− f1EC(xA)

)
E [δ2(xt | xA) | xA] + E

[(
1− f2EC(xA+t)

)
δ1(xt | xA) | xA

]
(7)

For the first term on the R.H.S. of Eq. 7, we have(
1− f1EC(xA)

)
E [δ2(xt | xA) | xA] ≥

(
1− f1EC(xB)

)
E [δ2(xt | xB) | xB] (8)



Let the second term be θ(n), and denote h(n) = 1− f2EC(xA+t). In the following, we will show that ∂θ(n)/∂nk,c ≥ 0 for all
nk,c.

θ(n) = E [h(n)δ1(xt | xA) | xA]

=
∑
a

h(n)
na
nT
· 1

2

∑
i 6=j

∑
b6=d

ni,b(xA) · nj,d(xA) +
∑
i6=j

∑
b 6=a

ni,b(xA) · nj,b(xA)


Taking the partial derivative of θ(n) w.r.t. nk,c, we have

∂θ(n)

∂nk,c
=
∑
a

∂h(n)

∂nk,c
· na
nT
· 1

2

∑
i 6=j

∑
b 6=d

ni,b(xA) · nj,d(xA) +
∑
i6=j

∑
b 6=a

ni,b(xA) · nj,b(xA)


+
∑
a

h(n) · ∂

∂nk,c

{
na

2nT
·
∑
i6=j

∑
b 6=d

ni,b(xA) · nj,d(xA) +
na

2nT
·
∑
i6=j

∑
b 6=a

ni,b(xA) · nj,b(xA)

}
(9)

Since f2EC(xA+t) is monotone decreasing w.r.t. nk,c, h(n) is monotone increasing, and thus ∂h/∂nk,c ≥ 0. Therefore, the first
term on the R.H.S. of Eq. 9 is nonnegative.

Let p = 1
2

∑
i6=j,b 6=d ni,bnj,d, and qa = 1

2

∑
i 6=j,b 6=a ni,bnj,b. For simplicity we drop the dependency of variables on xA.

Then the second term on the R.H.S. of Eq. 9 is

∑
a

h(n) · ∂

∂nk,c

{
na ·

1

nT
· p+ na ·

1

nT
· qa
}

=h(n) · ∂

∂nk,c

{
nc ·

1

nT
· p+ nc ·

1

nT
· qc
}

︸ ︷︷ ︸
1

+
∑
a 6=c

h(n) · ∂

∂nk,c

{
na ·

1

nT
· p+ na ·

1

nT
· qa
}

︸ ︷︷ ︸
2

(10)

Expand term 1 to get

1 =
nc
nT
· ∂p

∂nk,c
+

p

nT
·
�
�
��

1
∂nc
∂nk,c

+ pnc ·
∂(1/nT )

∂nk,c
+
nc
nT
·
�

�
��

0
∂qc
∂nk,c

+
qc
nT
·
�
�
��

1
∂nc
∂nk,c

+ qcnc ·
∂(1/nT )

∂nk,c

=
nc
nT
·
∑

j 6=k,b 6=c

nj,b +
p

nT
− pnc
n2T

+
qc
nT
− qcnc

n2T

=
nc
nT
·
∑

j 6=k,b 6=c

nj,b + p ·
(

1

nT
− nc
n2T

)
+ qc ·

(
1

nT
− nc
n2T

)
≥ 0 (11)

Similarly, for term 2 ,

2 =
na
nT
· ∂p

∂nk,c︸ ︷︷ ︸∑
j 6=k,b 6=c nj,b

+
p

nT
·
�
�
��

0
∂na
∂nk,c

+ pna ·
∂(1/nT )

∂nk,c
+
na
nT
· ∂qa
∂nk,c︸ ︷︷ ︸∑
j 6=k nj,c

+
qa
nT
·
�

�
��

0
∂na
∂nk,c

+ qana ·
∂(1/nT )

∂nk,c

=
na
nT
·
∑

j 6=k,b 6=c

nj,b −
pna
n2T

+
na
nT
·
∑
j 6=k

nj,c −
qana
n2T

=
na
nT
·
{∑
j 6=k

∑
b

nj,b −
(
p

nT
+
qa
nT

)
︸ ︷︷ ︸

3

}
(12)



Substitute p = 1
2

∑
i 6=j,b 6=d ni,bnj,d, and qa = 1

2

∑
i 6=j,b 6=a ni,bnj,b in term 3 to get:

p

nT
+
qa
nT

=
1

2

∑
i6=j,b 6=d

ni,b
nj,d
nT

+
1

2

∑
i 6=j,b 6=a

ni,b
nj,b
nT

≤ 1

nT
· 1

2

∑
i6=j,b 6=d

(ni,bnj,d + ni,bnj,b)

≤ 1

nT

∑
i,d

ni,d

 ·
∑
j 6=k

∑
b

nj,b


=
∑
j 6=k

∑
b

nj,b (13)

Hence term 2 is nonnegative. Combining Eq. 10 to 13 with Eq. 9, we get ∂θ(n)/∂nk,c ≥ 0. Therefore, fix xA � xB and
t ∈ T , it holds that ∆ER(t | xA) ≥ ∆ER(t | xB) for the case where there are two regions, and thus fEC is adaptive submodular
for m = 2 w.r.t. a uniform prior (note that we can adapt the proof technique from (Golovin, Krause, and Ray 2010) to prove
A.S. for arbitrary prior).

Now assume that f (m)
DRD is adaptive submodular for m = k and k > 2, and we want to prove when m = k + 1, f (k+1)

DRD is
also adaptive submodular. By definition, we have

f
(k+1)
DRD = 1−

k+1∏
i=1

(
1− f iEC(S(π,xT ))

)
= 1− (1− fk+1

EC (S(π,xT )) ·
k∏
i=1

(
1− f iEC(S(π,xT ))

)
= 1− (1− fk+1

EC (S(π,xT )) · (1− f (k)DRD)

Since f (k)DRD is adaptive submodular and strongly adaptive monotone, we can apply the same analysis for the two region case,
to the above problem. Therefore, f (k+1)

DRD is adaptive submodular, and thus f (m)
DRD is adaptive submodular for any m ≥ 1.

Remarks (“intuitive explanation” of the proof of Lemma 1). In fact, one can find concrete examples where Noisy-OR does not
preserve adaptive submodularity. Fortunately, for EC2-like objectives, we have proved that it does preserve adaptive submodu-
larity. The intuition lies in that the EC2 objective characterizes a class of adaptive submodular functions with certain structures,
which offers enough slack for our proof to go through.

Proof of Theorem 2
Proof. Let Q be the quota to be achieved, and η be any value such that fDRD(S(π,xT )) > Q−η implies fDRD(S(π,xT )) =
Q, then by Theorem 10 of (Golovin and Krause 2011), the cost of πDRD satisfies

c(πDRD) ≤ c(π∗)(ln (Q/η) + 1).

In our case, apply Q = 1 and η ≥
(

1
p2min

)m
to get c(πDRD) ≤ cost(π∗)(2m ln (1/pmin) + 1).


