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Abstract

We consider the Bayesian active learning and
experimental design problem, where the goal
is to learn the value of some unknown target
variable through a sequence of informative,
noisy tests. In contrast to prior work, we
focus on the challenging, yet practically rele-
vant setting where test outcomes can be con-
ditionally dependent given the hidden target
variable. Under such assumptions, common
heuristics, such as greedily performing tests
that maximize the reduction in uncertainty
of the target, often perform poorly.

We propose ECED, a novel, efficient active
learning algorithm, and prove strong theoreti-
cal guarantees that hold with correlated, noisy
tests. Rather than directly optimizing the pre-
diction error, at each step, ECED picks the
test that maximizes the gain in a surrogate
objective, which takes into account the de-
pendencies between tests. Our analysis relies
on an information-theoretic auxiliary function
to track the progress of ECED, and utilizes
adaptive submodularity to attain the approxi-
mation bound. We demonstrate strong empir-
ical performance of ECED on two problem
instances, including a Bayesian experimental
design task intended to distinguish among
economic theories of how people make risky
decisions, and an active preference learning
task via pairwise comparisons.

1 Introduction

Optimal information gathering, i.e., selectively acquir-
ing the most useful data, is one of the central challenges
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in interactive machine learning. The problem of op-
timal information gathering has been studied in the
context of active instance labeling (Dasgupta, 2004a;
Settles, 2012), active feature evaluation! (Kaplan et al.,
2005; Deshpande et al., 2014; Dasgupta, 2004a; Settles,
2012), Bayesian experimental design (Fedorov, 1972;
Chaloner & Verdinelli, 1995), policy making (Heck-
erman et al., 1994; Runge et al., 2011), probabilistic
planning and optimal control (Smallwood & Sondik,
1973), and numerous other domains. In a typical set-up
for these problems, there is some unknown target vari-
able Y of interest, and a set of tests, which correspond
to observable variables defined through a probabilistic
model. The goal is to determine the value of the target
variable via a sequential policy, which adaptively selects
the next test based on previous observations, such that
the cost of performing these tests is minimized.

Deriving the optimal testing policy is NP-hard in gen-
eral (Chakaravarthy et al., 2007); however, under cer-
tain conditions, some approximation results are known.
In particular, if test outcomes are deterministic func-
tions of the target variable (i.e., in the noise-free set-
ting), a simple greedy algorithm, namely Generalized
Binary Search (GBS), is guaranteed to provide a near-
optimal approximation of the optimal policy (Kosaraju
et al., 1999). On the other hand, if test outcomes are
noisy, but the outcomes of different tests are condition-
ally independent given Y (i.e., under the Naive Bayes
assumption), then using the most informative selection
policy, which greedily selects the test that maximizes
the expected reduction in uncertainty of the target vari-
able (quantified in terms of Shannon entropy), is guar-
anteed to perform near-optimally (Chen et al., 2015a).

However, in many practical problems, due to the effect
of noise or complex structural dependencies in the
probabilistic model (beyond Naive Bayes), we only
have access to tests that are indirectly informative
about the target variable Y (i.e., test outcomes depend
on Y through another hidden random variable. See

!Structurally, the problem of active feature evaluation is
the same with active instance labeling, and hence the term
“Bayesian active learning” is used to refer to both cases.
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Fig. 1.) — as a consequence, the test outcomes become
conditionally dependent given Y. Consider a medical
diagnosis example, where a doctor wants to predict the
best treatment for a patient, by carrying out a series of
medical tests, each of which reveals some information
about the patient’s physical condition. Here, outcomes
of medical tests are conditionally independent given
the patient’s condition, but are not independent given
the treatment, which is made based on the patient’s
condition. It is known that in such cases, both GBS and
the most informative selection policy (which myopically
maximizes the information gain w.r.t. the distribution
over Y) can perform arbitrarily poorly. Golovin et al.
(2010) then formalize this problem as an equivalence
class determination problem (See §2.3), and show that
if the tests’ outcomes are noise-free, then one can obtain
near-optimal expected cost, by running a greedy policy
based on a surrogate objective function. Their results
rely on the fact that the surrogate objective function
exhibits adaptive submodularity (Golovin & Krause,
2011), a natural diminishing returns property that
generalizes the classical notion of submodularity to
adaptive policies. Unfortunately, in the general setting
where tests are noisy, no efficient policies are known to
be provably competitive with the optimal policy.

Our Contribution. In this paper, we introduce
Equivalence Class Edge Discounting (ECED), a novel
algorithm for practical Bayesian active learning and
experimental design problems, and prove strong the-
oretical guarantees with correlated, noisy tests. In
particular, we focus on the setting where the tests’ out-
comes indirectly depend on the target variable (and
hence are conditionally dependent given Y'), and we
assume that the outcome of each test can be corrupted
by some random, persistent noise” (§2). We prove that
when the test outcomes are binary, and the noise on
test outcomes are mutually independent, then ECED
is guaranteed to obtain near-optimal cost, compared
with an optimal policy that achieves a lower prediction
error (§3). We develop a theoretical framework for
analyzing such sequential policies, where we leverage
an information-theoretic auxiliary function to reason
about the effect of noise, and combine it with the theory
of adaptive submodularity to attain the approximation
bound (§4). The key insight is to show that ECED
is effectively making progress in the long run as it
picks more tests, even if the myopic choices of tests
do not have immediate gain in terms of reducing the
uncertainty of the target variable. We demonstrate the
compelling performance of ECED on two real-world
problem instances: A Bayesian experimental design
task intended to distinguish among economic theories
of how people make risky decisions, and an active pref-

ZPersistent noise means that repeating a test produces
identical outcomes.

erence learning task via pairwise comparisons (§5). To
facilitate better understanding, we provide the detailed
proofs, illustrative examples and a third application on
pool-based active learning in the supplemental material.

2 Preliminaries and Problem
Statement

2.1 The Basic Model

Let Y be the target random variable whose value we
want to learn. The value of Y, which ranges among set
Y ={w1,...,y}, depends deterministically on another
random variable © € supp(©) = {64,...,60,} with
some known distribution P[0]. Concretely, there is
a deterministic mapping r : supp(©) — ) that gives
Y = r(0) (see Fig. 1).

Figure 1: The basic model

Let X = {Xy,...,X,,} be a collection of discrete ob-
servable variables that are statistically dependent on ©.
We use e €V 2 {1,...,m} as the indexing variable of
a test. Performing each test X. produces an outcome
Ze € O (here, O encodes the set of possible outcomes
of a test), and incurs a unit cost. We can think of © as
representing the underlying “root-cause” among a set of
n possible root-causes of the joint event {X1,..., X},
and Y as representing the optimal “target action” to
be taken for root-cause ©. Also, each of the X.’s is a
“test” that we can perform, whose observation reveals
some information about ©. In our medical diagnosis
example (see Fig. 2(a)), X.’s encode tests’ outcomes,
Y encodes the treatment, and © encodes the patient’s
physical condition.

Crucially, we assume that X.’s are conditionally
independent® given O, ie., P[0, X,...,X,,] =
P[O] T2, P[X; | ©] with known parameters. Note
that noise is implicitly encoded in our model, as we can
equivalently assume that X.’s are first generated from
a deterministic mapping of O, and then perturbed by
some random noise. As an example, if test outcomes
are binary, then we can think of X, as resulting from
flipping the deterministic outcome of test e given ©
with some probability, and the flipping events of the
tests are mutually independent.

3In active instance selection, this simply implies that
labeling errors are independent, which is a standard as-
sumption made in the statistical learning literature.
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2.2 Problem Statement

We consider sequential, adaptive policies for picking
the tests. Denote a policy by 7. In words, a policy
specifies which test to pick next, as well as when to
stop picking tests, based on the tests picked so far
and their corresponding outcomes. After each pick,
our observations so far can be represented as a partial
realization ¥ € 2VX9 (e.g., ¥ encodes what tests have
been performed and what their outcomes are). For-
mally, a policy 7 : 2¥*© — V is defined to be a partial
mapping from partial realizations ¥ to tests. Sup-
pose that running 7 till termination returns a sequence
of test-observation pairs of length k, denoted by ¥,
Le., ¢¥r £ {(eml’ xew@)v (em?’ xe'rr,Z)’ B (e‘mkv xew,k)}'
This can be interpreted as a random path taken by pol-
icy m. Once 1, is observed, we obtain a new posterior
on O (and consequently on Y). The best prediction one
can thus make under the Bayesian setting is the MAP
estimator ¢ of Y, i.e., § = arg max,, .y P[Y =y | ¢n].
The error probability of predicting g is

ng{gp(i/)w) £ P[Z} 7& Yy | 1/% =1- maX]P)[y | 7/}71']
yey

We call pMAP the prediction error of the MAP esti-
mator. The expected prediction error after running
policy 7 is then defined as pype(7) £ By, [pNAT (¥r)]-
Let the (worst-case) cost of 7 be cost(r) £ maxy, |1/,
i.e., the maximum number of tests performed by 7 over
all possible paths it takes. Given some small tolerance
§ € [0,1], we seek a policy with the minimal cost, such
that upon termination, the posterior puts at least 1 —§
mass on the most likely target value y in expectation.
In other words, we require that the expected prediction
error after running the policy is at most §. Denote
such policy by OPT(d). Formally, we seek

OPT(0) € argmin cost(r), s.t. perr(m) < 4. (2.1)

Remarks. Note that there are different ways of defin-
ing “success” of a policy. Other than bounding the pre-
diction error as considered in Eq. (2.1), an alternative
option is to ensure that the excess error, or regret of
acting upon v, compared to having observed all the
tests is not more than §. While the regret-based success
criterion might be an alternative sensible criterion to
consider, the prediction error criterion offers a natural
stopping condition for running a policy (as one can
compute the pMAP (1)) purely based on the posterior).
Hence we focus on Problem 2.1 throughout this paper.

2.3 Special Case: The Equivalence Class
Determination Problem

Computing the optimal policy for Problem (2.1) is
intractable in general. When § = 0, this problem

reduces to the equivalence class determination problem
(Golovin et al., 2010; Bellala et al., 2010). Here, the
target variables are referred to as equivalence classes,
since each y € Y corresponds to a subset of root-causes
in supp(©) that (equivalently) share the same “action”.

Noise-free setting: the EC? algorithm. If tests
are noise-free, i.e., Ve, P[X, | ©] € {0, 1}, this problem
can be solved near-optimally by the equivalence class
edge cutting (EC?) algorithm (Golovin et al., 2010).
As illustrated in Fig. 2, EC? employs an edge-cutting
strategy based on a weighted graph G = (supp(©), E),
where vertices represent root-causes, and edges link
root-causes that we want to distinguish between. For-
mally, E = {(6,0") : r(0) # (')} consists of all (un-
ordered) pairs of root-causes corresponding to different
target values (see Fig. 2(b)). We define a weight func-
tion w : E — Rxq by w((6,0)) = P[0] - P[0], i.e., as
the product of the probabilities of its incident root-
causes. We extend the weight function on sets of edges
E’ C E as the sum of weight of all edges (0,6") € E’,

i.e., ’lU(E/) é Z(a,@’)EE' w((@,e’))

Performing test e € V with outcome z. is said to
“cut” an edge, if at least one of its incident root-
causes is inconsistent with z. (See Fig. 2(c)). Denote
E(z.) 2 {{0,0/} € E:Plz.|0] =0 V Plz. | 0] =0}
as the set of edges cut by observing z.. The EC?
objective (which is greedily maximized per iteration
of ECQ), is then defined as the total weight of edges

cut by the current partial observation v frc2(1r) =

w( U(e,ze)ewﬂ E@e))-

The EC? objective function is adaptive submodular,
and strongly adaptive monotone. Formally, let 11,19 €
2V*O be two partial realizations of tests’ outcomes. We
call i1 a subrealization of 15, denoted as 11 = 1o, if ev-
ery test seen by 1 is also seen by s, and P [¢)5 | 1] >
0. A function f : 2¥*© — R is called adaptive sub-
modular w.r.t. a distribution P, if for any ¢, =< 9
and any X, it holds that A(X, | 1) > A(Xe | 92),
where A(X, | ¥) == E,, [f(¥U{(e.z0)}) — F(¥) | ]
(i-e., “adding information earlier helps more”). Fur-
ther, function f is called strongly adaptively mono-
tone w.r.t. P, if for all ¢, test e not seen by v, and
xz. € O, it holds that f(¢p) < f(v U{(e,z.)}) (ie.,
“adding new information never hurts”). For sequen-
tial decision problems satisfying adaptive submodu-
larity and strongly adaptive monotonicity, the policy
that greedily, upon having observed 1, selects the test
e* € argmax, A(X, | ¢), is guaranteed to attain near-
minimal cost (Golovin & Krause, 2011).

Noisy setting. Notice that, the EC? algorithm can,
to some extent, deal with noisy observations. In par-
ticular, for noise with “small” support (e.g., assume
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Medical tests: [x, X5, X;]

Treatment Y

® O o

0,:[1,0,01  83:[1,1,1] 85:[0,1,0]
65:[0,0,0 8 [1,0,1]

Treatment Y2 Treatment Y3

(a) Medical diagnosis example

(b) Initialization

(c) EC?

(d) ECED

Figure 2: (a) shows an illustrative example of the medical diagnosis problem. In (b), we initialize EC?, by
drawing edges between all pairs of root-causes (diamonds) that are mapped into different treatments (circles). In
(¢), we run EC? and remove all the edges incident to root-causes 5[0, 0,0] and 5[0, 1,0] if we observe X; = 1.
(d) ECED, instead, discounts the edge weights accordingly.

that for any root-cause ©, a maximal number of k tests
are allowed to be corrupted, where k is some finite
integer), one can reduce the noisy problem to a noise-
less one, by enumerating all possible realizations of
tests, and treat each realization as a new “root-cause”.
However, for the more general setting with i.7.d. noise
(e.g., P[X. | ©] € (0,1)), it may not be possible to
cut all the edges constructed for EC? (or equivalently,
to attain 0 error probability in prediction Y'), even if
we exhaust all tests. Hence the theoretical results of
Golovin et al. (2010) no longer apply. A natural ap-
proach to solving Problem (2.1) for § > 0 would be to
pick tests greedily maximizing the expected reduction
in the error probability psrz. However, this objective
is not adaptive submodular; in fact, as we show in the
supplemental material (Appendix C), such policy can
perform arbitrarily badly if there are complementaries
among tests, i.e., the gain of a set of tests can be far
better than sum of the individual gains of the tests in
the set. Therefore, motivated by the EC? objective
in the noise-free setting, we would like to optimize a
surrogate objective function which captures the effect
of noise, while being amenable to greedy optimization.

3 The ECED Algorithm

We now introduce ECED for Bayesian active learning
under correlated noisy tests, which strictly generalizes
EC? to the noisy setting, while preserving the near-
optimal guarantee.

EC? with Bayesian Updates on Edge Weights.
In the noisy setting, the test outcomes are not
necessarily deterministic given a root-cause, i.e.,
Vo, P[X. | 0] € [0,1]. Therefore, one can no longer
“cut away” a root-cause 6 by observing x., as long
as P[X, =z, | 6] > 0. In such cases, a natural ex-
tension of the edge-cutting strategy will be — instead
of cutting off edges — to discount the edge weights

through Bayesian updates: After observing x., we can
discount the weight of an edge (6,6’), by multiply-
ing the probabilities of its incident root-causes with
the likelihoods of the observation®: w((6,6') | z.) :=
POIP[] Pz, | O] Pz | 0] =P[O, z]- P[0, x.]. This
gives us a greedy policy that, at every iteration, picks
the test that has the maximal expected reduction in
total edge weight. We call such policy EC2-Bayes. Un-
fortunately, as we demonstrate later in §5, this seem-
ingly promising update scheme is not ideal for solving
our problem: it tends to pick tests that are very noisy,
which do not help facilitate differentiation among dif-
ferent target values. Consider a simple example with
three root-causes distributed as P [0;] = 0.2,P[6;] =
P[f3] = 0.4, and two target values r(01) = r(62) =
y1,7(03) = y2. We want to evaluate two tests: (1) a
purely noisy test X1, i.e., V8, P[X; =11 6] =0.5, and
(2) a noiseless test Xy with P[Xo=1]6;] = 1 and
P[Xy=1]6s] =P[X3=1]03] =0. One can easily
verify that by running EC?-Bayes, one actually prefers
X1 (with expected reduction in edge weight 0.18, as
opposed to 0.112 for X5).

The ECED Algorithm. The example above hints
at an important principle of designing proper objective
functions for this task: as the noise rate increases,
one must take reasonable precautions when evaluating
the informativeness of a test, such that the undesired
contribution by noise is accounted for. Suppose we
have performed test e and observed x.. We call a
root-cause 6 to be “consistent” with observation z,,
if z. is the most likely outcome of X, given 6 (i.e.,
z. € argmax, P[X,. = z | ]). Otherwise, we say 6 is
inconsistent. Now, instead of discounting the weight
of all root-causes by the likelihoods P [X, = z. | ] (as

4Here we choose not to normalize the probabilities of
0,0’ to their posterior probabilities. Otherwise, we can end
up having 0 gain in terms of edge weight reduction, even if
we perform a very informative test.
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EC?-Bayes does), we choose to discount the root-causes
by the likelihood ratio:

) a P[X. =z, | 6]
8z max,: P[X. =a | 0]

Intuitively, this is because we want to “penalize” a root-
cause (and hence the weight of its incident edges), only
if it is inconsistent with the observation (see Fig. 2(d)).
When z. is consistent with root-cause 0, then A\g ., =1
and we do not discount 8; otherwise, if x. is inconsis-
tent with 6, we have \gp,, < 1. When a test is not
informative for root-cause 6, i.e. P[X, | 6] is uniform,
then \gp . = 1, so that it neutralizes the effect of such
test in terms of edge weight reduction.

Formally, given observations v, we define the (basic)
value of observing x. as the total amount of edge weight
discounted:

535(335 | ww) £ Z H”[@v%]P[9”%]'(14\0@/\0'@6)-

(0,0eE

Further, we call test e to be non-informative, if its out-
come does not affect the distribution of ©, i.e., V 0,0" €
supp(©) and z, € O, P[ X, =2, | 0] =P [X. =z, | &'].
Obviously, performing a non-informative test does not
reveal any useful information of © (and hence Y).
Therefore, we should augment our basic value func-
tion dgg, such that the value of a non-informative test
is 0. Following this principle, we define doppspr(Ze |
wﬂ) £ Z(G,@’)eE P [97 wﬂ} P [9/7 ’(/}77] : (1 —Inaxg )‘37%)’ as
the offset value for observing outcome z.. It is easy
to check that if test e is non-informative, then it holds
that dgs(xe | ¥r) — dorrser(Te | ¥r) =0 for all z, € O;
otherwise 0ps(ze | ¥r) — doprser(Te | ¥x) > 0. This
motivates us to use the following objective function:

AECED (Xe | wﬂ) £ Ewe [635(37@ ‘ '(/Jﬂ') - 5OFFSET($6 ‘ w‘n')]
(3.1)

as the expected amount of edge weight that is effectively
reduced by performing test e. We call the algorithm
that greedily maximizes Agcgp the Fquivalence Class
Edge Discounting (ECED) algorithm, and present the
pseudocode in Algorithm 1.

Similar with EC?, both the computation complexity
(i.e., the running time) and the query complexity (i.e.,
number of tests needed) of ECED depends on the num-
ber of root-causes. Let €g . £ 1-max, P[X, =z | 6] be
the noise rate for test e. As our main theoretical result,
we show that under the basic setting where test out-
comes are binary, and the test noise is independent of
the underlying root-causes (i.e., V6 € supp(©), €g. =
€e), ECED is competitive with the optimal policy that
achieves a lower error probability for Problem (2.1):

Algorithm 1: The Equivalence Class Edge Discount-
ing (ECED) Algorithm
Input: [Ag z]nxm (or Conditional Probabilities
P[X | ©]), Prior P[©], Mapping r : supp(©) — V;
begin
U 0
foreach (0,0') € E do
‘ w97 < P [9] P [9/};
while pMAF (1) > § do

*
e* < argmax, E,, [Z(@,G’)GE wepr -

weight
discounted

( 1-— AQ,a:e )\9',115 - (1 — maxgr Ag”,zc) )j| )
Observe T«

Wy g0 < Wop - P [Ter
Yo P U {(e*a :Ee*)};

Output: y* = argmax, P[y | ¢x].

offset term

O [ze- | 6'];

Theorem 1. Fix § € (0,1). To achieve expected er-
ror probability less than §, it suffices to run ECED

for O (é (log £ log %)2) steps where n = |supp(O)|

denotes the number of root-causes, c. = min.cy(1
2¢.)? characterizes the severity of noise, and k
cost (OPT (dopt)) is the worst-case cost of the optimal

policy that achieves expected error probability dopt =

O(m).

Note that a pessimistic upper bound for k is the total
number of tests m, and hence the cost of ECED is at
most O ((log(mn/é) log(n/(S))2 /CE) times the worst-
case cost of the optimal algorithm, which achieves a
lower error probability O (§/(logn - log(1/6))?). Fur-
ther, as one can observe, the upper bound on the
cost of ECED degrades as we increase the maximal
noise rate of the tests. When c¢. = 1, we have ¢, =0
for all test e, and ECED reduces to the EC? al-
gorithm. Theorem 1 implies that running EC? for

L

0] (k (log %" log %)2) in the noise-free setting is suffi-
cient to achieve pgrr < §. Finally, notice that by con-
struction ECED never selects any non-informative test.
Therefore, we can always remove purely noisy tests (i.e.,
{e:Vl, P[X.=1|0]=P[X.=0]6] =1/2}), so that
ce > 0, and the upper bound in Theorem 1 becomes
non-trivial.

4 Theoretical Analysis

Information-theoretic Auxiliary Function. We
now present the main idea behind the proof of Theo-
rem 1. In general, an effective way to relate the per-
formance (measured in terms of the gain in the target
objective function) of the greedy policy to the optimal
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policy is by showing that, the one-step gain of the
greedy policy always makes effective progress towards
approaching the cumulative gain of OPT owver k steps.
One powerful tool facilitating this is the adaptive sub-
modularity theory, which imposes a lower bound on the
one-step greedy gain against the optimal policy, given
that the objective function in consideration exhibits a
natural diminishing returns condition. Unfortunately,
in our context, the target function to optimize, i.e.,
the expected error probability of a policy, does not
satisfy adaptive submodularity. Furthermore, it is non-
trivial to understand how one can directly relate the
two objectives: the ECED objective of (3.1), which
we utilize for selecting informative tests, and the gain
in the reduction of error probability, which we use for
evaluating a policy.

We circumvent such problems by introducing auxiliary
functions, as a proxy to connect the ECED objective
Agcgp with the expected reduction in error probability
Perr- ldeally, we aim to find some auxiliary objective
faux, such that the tests with the maximal Agcgp also
have a high gain in f,,x; meanwhile, f,,x should also
be comparable with the error probability pgrr, such
that minimizing f.ux itself is sufficient for achieving
low error probability.

We consider the function fyux : 2V*° — R>q, defined
as

Fax@) = Y P[P |y .1ogP;

RoR BT [ 9]
+e) Hy (Ply| ). (4.1)
yeY
Here Hj (x) := —zlogz — (1 — z)log(1l — z), and ¢

is a constant that will be made concrete shortly (in
Lemma 3). Interestingly, we show that function f,ux
is intrinsically linked to the error probability:

Lemma 2. We consider the auziliary function defined
in Equation (4.1). Let n = |supp(©)]| be the number of
root-causes, and pMAF (1)) be the error probability given
Then

partial realization 1.

QC-p%'éP(’lﬂ) < faux ()

< (Bc+4) - (Ha (pi” () + pera” (¥) logn)
Therefore, if we can show that by running ECED, we
can effectively reduce f.yx, then by Lemma 2, we can
conclude that ECED also makes significant progress

in reducing the error probability pMAF.

Bounding the Gain w.r.t. the Auxiliary Func-
tion. It remains to understand how ECED interacts
with fix. For any test e, we define A,ux (X, | ) 2

E.. [favx (¥ U{e,ze}) — faux(¥) | 9] to be the expected

gain of test e in fyux. Let Agc2 (Xe) denote the gain
of test e in the EC? objective, assuming that the edge
weights are configured according to the posterior dis-
tribution P [© | 1]. Similarly, let Apcep,y(Xe) denote
the ECED gain, if the edge weights are configured
according to P [© | ¢]. We prove the following result:

Lemma 3. Let n = |supp(©)|, t = |Y|, and € be the
noise rate associated with test e € V. Fixz n € (0,1).
We consider faux as defined in Equation (4.1), with

c=38 (10g(2n2/n))2. It holds that

AAUX(XC | 11[}) + Cne Z AECED,w(AXe) : (1 - 6)2/16
= CeAEc2,zp(Xe)7

where ¢, = 2t(1 — 2€)?n, and ¢ = (1 — 2¢)?/16.

Lemma 3 indicates that the test being selected by
ECED can effectively reduce fiux.

Lifting the Adaptive Submodularity Frame-
work. Recall that our general strategy is to bound
the one step gain in f,yx against the gain of an op-
timal policy. In order to do so, we need to show
that our surrogate exhibits, to some extent, the di-
minishing returns property. By Lemma 3 we can relate
| ¥r), i.e., the gain in f,yx under the noisy
(X.), i.e., the expected weight of
edges cut by the EC? algorithm. Since frc2 is adap-
tive submodular, this allows us to lift the adaptive
submodularity framework into the analysis. As a re-
sult, we can now relate the 1-step gain w.r.t. faiux
of a test selected by ECED, to the cumulative gain
w.r.t. frcz of an optimal policy in the noise-free set-
ting. Further, observe that the EC? objective at 1
satisfies:

AUX(
setting, to Agcz y

JTec2y = ZP[Q | ] (1 =Py | ¢])

(@)
> 1—maxPly [ ¢] = pp’ (V). (42)

Hereby, step (a) is due to the fact that the error prob-
ability of a MAP estimator always lower bounds that
of a stochastic estimator (which is drawn randomly
according to the posterior distribution of Y'). Suppose
we want to compare ECED against an optimal policy
OPT. By adaptive submodularity, we can relate the
1-step gain of ECED in fgc2, to the cammulative
gain of OPT. Combining Equation (4.2) with Lemma 2
and Lemma 3, we can bound the 1-step gain in faux
of ECED against the k-step gain of OPT, and con-
sequently bound the cost of ECED against OPT for
Problem 2.1. We defer a more detailed proof outline
and the full proof to the supplemental material.
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5 Experimental Results

We now demonstrate the performance of ECED on two
real-world problem instances: a Bayesian experimental
design task intended to distinguish among economic
theories of how people make risky decisions, and an
active preference learning task via pairwise comparisons.
For these two tasks, we run experiments on benchmark
datasets which have been used in the existing literature.
Due to space limitations, we defer a third case study
on pool-based active learning to the Appendix.

Baselines. The first baseline we consider is EC*-
Bayes, which uses the Bayes’ rule to update the edge
weights when computing the gain of a test (as described
in §3). Note that after observing the outcome of a test,
both ECED and EC?-Bayes update the posteriors on
O and Y according to the Bayes’ rule; the only differ-
ence is that they use different strategies when selecting
a test. We also compare with two commonly used se-
quential information gathering policies: Information
Gain (IG), and Uncertainty Sampling (US), which
consider picking tests that greedily maximizing the
reduction of entropy over the target variable Y, and
root-causes © respectively. Last, we consider myopic
optimization of the decision-theoretic value of informa-
tion (VoI) (Howard, 1966). In our problems, the VoI
policy greedily picks the test maximizing the expected
reduction in prediction error in Y.

5.1 Preference Elicitation in Behavioral
Economics

We first conduct experiments on a Bayesian experimen-
tal design task, which intends to distinguish among
economic theories of how people make risky decisions.
Several theories have been proposed in behavioral eco-
nomics to explain how people make decisions under
risk and uncertainty. We test ECED on six theories
of subjective valuation of risky choices (Wakker, 2010;
Tversky & Kahneman, 1992; Sharpe, 1964), namely
(1) expected utility with constant relative risk aversion,
(2) expected value, (3) prospect theory, (4) cumulative
prospect theory, (5) weighted moments, and (6) weighted
standardized moments. Choices are between risky lot-
teries, i.e., known distribution over payoffs (e.g., the
monetary value gained or lost). A test e £ (L, Ls)
is a pair of lotteries, and root-causes © corresponds
to parametrized theories that predict, for a given test,
which lottery is preferable. The goal, is to adaptively
select a sequence of tests to present to a human subject
to distinguish which of the six theories best explains
the subject’s responses. We employ the same set of pa-
rameters used in Ray et al. (2012) to generate tests and
root-causes. In particular, we have generated ~16K
tests. Given root-cause 6 and test e = (L1, Lo), one can

compute the values of L1 and Lo, denoted by v; and
vo. The noise of a test is characterized by the Bradley-
Terry-Luce (BTL) preference model® (Bradley & Terry,
1952), where the probability that root-cause 6 favors
L, is defined as P[ X, =1 0] = m
Results. To evaluate ECED, we do not specify a
target error probability § as input. Instead, we set a
budget on the number of iterations allowed, and plot
the error probability as a function of the number of
iterations. Fig. 3(a) demonstrates the performance of
ECED. The average error probability has been com-
puted across 1000 random trials for all methods. We
observe that ECED and EC?-Bayes have similar be-
havior on this data set; however, the performance of
the US algorithm is much worse. This can be explained
by the nature of the data set: it has more concentrated
distribution over ©, but not Y. Therefore, since tests
only provide indirect information about Y through ©,
what the uncertainty sampling scheme tries to optimize
is actually ©, hence it performs quite poorly.

5.2 Active Preference Learning via Pairwise
Comparisons

The second application considers a comparison-based
movie recommendation system, which learns a user’s
movie preference (e.g., the favorable genre) by sequen-
tially showing her pairs of candidate movies, and letting
her choose which one she prefers. We use the MovieLens
100k dataset (Herlocker et al., 1999), which consists
of a matrix of 1 to 5 ratings of 1682 movies from 943
users, and adopt the experimental setup proposed in
Chen et al. (2015b). In particular, we extract movie
features by computing a low-rank approximation of
the user/rating matrix of the MovieLens 100k dataset
through singular value decomposition (SVD). We then
simulate the target “categories” Y that a user may
be interested by partitioning the set of movies into
t (non-overlapping) clusters in the Euclidean space.
A root-cause © corresponds to user’s favorite movie,
and tests e’s are given in the form of movie pairs, i.e.,
e £ (mq, mp), where a and b are embeddings of movie
mg and my in Euclidean space. Suppose user’s movie
is represented by 6, then test e is realized as 1 if a is
closer to y than b, and 0 otherwise. Similarly with the
previous application, we model the noise with the BTL
model, i.e., P[X,=1]|0] = 1+exp(—/\-(d(n}a,9)—d(mb,0)))'
where d(-,-) is the distance function, and A controls
the level of noise in the system.

5The BTL model has been widely used for pairwise
data, e.g., Negahban et al. (2012); Shah et al. (2015), etc.
Intuitively, the user is more prone to error if the utilities of
a pair are close. l.e., for preference elicitation, if a pair of
lotteries (L1, L2) is almost of equal value to the user, then
her feedback on whether she favors L, over L, is very noisy.
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Figure 3: Experimental results: ECED outperforms most baselines on both data sets.
Results. Fig. 3(b) shows the performance of ECED

compared to other baseline methods when we fix
|Y| = 20 and A = 10. We compute the average er-
ror probability across 1000 random trials for all meth-
ods. We can see that ECED consistently outperforms
all other baselines. Interestingly, EC?-Bayes performs
poorly on this data set. This could be because the
noise level is still high, misguiding the two heuristics to
select noisy, uninformative tests. Fig. 3(c) shows the
performance of ECED as we vary A\. When A = 100,
the tests become close to deterministic given a root-
cause, and ECED can achieve 0 error with ~ 12 tests.
As we increase the noise rate (i.e., decrease M), it takes
ECED many more queries for the prediction error to
converge. This is because with high noise rate, ECED
discounts the root-causes more uniformly, hence they
are hardly informative in Y. It comes at the cost of
performing more tests, and hence low convergence rate.

6 Related Work

Active learning in statistical learning theory.
In most of the theoretical active learning literature
(e.g., Dasgupta (2004b); Hanneke (2007, 2014); Bal-
can & Urner (2015)), active learning algorithms are
mainly considered in terms of their statistical complex-
ity (e.g., the reduction in labels required), disregarding
their computational complexity (Balcan et al., 2006;
Zhang & Chaudhuri, 2014). Bounds on statistical
complexity have been characterized in terms of the
structure of the hypothesis class, as well as additional
distribution-dependent complexity measures (e.g., split-
ting index (Dasgupta, 2004b), disagreement coefficient
(Hanneke, 2007), etc); In comparison, in this paper we
seek computationally-efficient approaches that are prov-
ably competitive with the optimal policy. Therefore, we
do not seek to bound how the optimal policy behaves,
and hence we make no assumptions on the hypothesis
class (e.g., we don’t restrict ) or supp(©) to be a set
of linear classifiers).

Persistent noise vs. non-persistent noise. If
tests can be repeated with i.i.d. outcomes, the noisy
problem can then be effectively reduced to the noise-
free setting (Kééridinen, 2006; Karp & Kleinberg, 2007;
Nowak, 2009). While the modeling of non-persistent
noise may be appropriate in some settings (e.g., if
the noise is due to measurement error), it is often
important to consider the setting of persistent noise:
In many applications, repeating tests are impossible
or produces identical outcomes. For example, it could
be unrealistic to replicate a medical test for practical
clinical treatment. Despite some recent development in
dealing with persistent noise in simple graphical models
(Chen et al., 2015a) and strict noise assumptions
(Golovin et al., 2010), more general settings, which we
focus on in this paper, are much less understood.

7 Conclusion

We have introduced ECED, which strictly generalizes
the EC? algorithm, for solving practical Bayesian ac-
tive learning and experimental design problems with
correlated and noisy tests. We have proved that ECED
enjoys strong theoretical guarantees, by introducing
an analysis framework that draws upon adaptive sub-
modularity and information theory. We have demon-
strated the compelling performance of ECED on two
(noisy) problem instances, including an active prefer-
ence learning task via pairwise comparisons, and a
Bayesian experimental design task for preference elic-
itation in behavioral economics. We believe that our
work makes an important step towards understanding
the theoretical aspects of complex, sequential informa-
tion gathering problems, and provides useful insight on
how to develop practical algorithms to address noise.
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A Table of Notations Defined in the Main Paper

We summarize the notations used in the main paper in Table 1.

Table 1: A reference table of notations used in the main paper

Y random variable encoding the value of the target variable

y domain of the target variable

y value of Y

(C] random variable encoding the root-cause

supp(©) the ground set / domain of root-causes

0 root-cause

r © — Y, a function that maps a root-cause to a target value

1% the ground set of tests

m [V|, number of tests

e test

Xe random variable encoding the test outcome

Te observed test outcome

t | V|, number of possible target values

n | supp(©)|, number of root-causes

s policy, i.e., a (partial) mapping from observation vectors to tests

v random variable encoding a partial realization, i.e., set of test-observation pairs

U the partial realization, i.e., set of test-observation pairs observed by running m

) tolerance of prediction error

PpAIAT (1)) error probability (of a MAP decoder), having observed partial realization

Perr (7T) Ey, [paat ()], expected error probability by running policy =

OPT optimal policy for Problem (2.1)

G G = (supp(0), E), the (weighted) graph constructed for the EC* algorithm

w({6,0'}) weight of edge {0,0'} € E in the EC? graph G

fec? the EC? objective function, with fgcz(0) ==Y oc P O] P[0'].

TeC2 0 the EC” objective function, with fpce ,(0) := 200cP 0 [YIP | Y]

Ao,e discount coefficient of root-cause 6, used by ECED when computing Agcep-

€9 1 — arg max, P[X, = x.], the noise rate for a test e

Ops (e | V) the “basic” component in the ECED gain by observing z., having observed

dorrser(Ze | V) the “offset” component in the ECED gain by observing ., having observed

Agcep(Xe | ¥) | the ECED gain which is myopically optimized at each iteration of ECED

AgcED,y(Xe) suppose we have observed 1, and re-initialize the EC? graph so that the total
edge weight is frc2 4 (0). Then, Agce ,(Xe) is the expected reduction in
edge weight, by performing test e and discounting edges’ weight according to
ECED. It is the re-normalized version of Agcep(ze | ¥), i.e., AgcED,p(Xe) =
Aecep (@ | ¥)/P [¥]°.

Apee 4 (Xe) the expected gain in fgce by performing test e, and cutting edges weight
according to EC2. It can be interpreted as AgcED,y(Xe), as if the test’s
outcome is noise-free, i.e., V8, €y . = 0.

Favx the auxiliary function defined in Equation (4.1)

n parameter of f,yx (see Equation (4.1), Lemma 3). It is only used for analysis.

c 8 (log(nQ/n))Q, parameter of f.ux. It is only used for the analysis of ECED.

Ajox(Xe | ©) the expected gain in f,yx by performing test e given partial realization v

Cpye» Ce constants required by Lemma 3

A parameter controlling the error rate of tests (see §5)
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B The Analysis Framework

In this section, we provide the proofs of our theoretical results in full detail. Recall that for the theoretical
analysis, we study the basic setting where test outcomes are binary, and the test noise is independent of the
underlying root-causes (i.e., given a test e, the noise rate on the outcome of test e is only a function of e, but not
a function of 6).

B.1 The Auxiliary Function and the Proof Outline

The general idea behind our analysis, is to show that by running ECED, the one-step gain in learning the value of
the target variable is significant, compared with the cumulative gain of an optimal policy over k steps (see Fig. 4).

favux (¥e)

Figure 4: On the left, we demonstrate a sequential policy in the form of its decision tree representation. Nodes
represent tests selected by the policy, and edges represent outcomes of tests. At step ¢, a policy maps partial
realization ¢, = {(e1, ¢, ), - .., (€r, Te,)} to the next test egyq1 to be performed. In the middle, we demonstrate
the tests selected by an optimal policy OPT of length k. On the right, we illustrate the change in the auxiliary
function as ECED selects more tests. Running OPT at any step of execution of ECED will make f,,x below
some threshold (represented by the red dotted line). The key idea behind our proof, is to show that the greedy
policy ECED, at each step, is making effective progress in reducing the expected prediction error (in the long
run), compared with OPT.

In Appendix §C, we show that if tests are greedily selected to optimize the (reduction in) expected prediction
error, we may end up failing to pick some tests, which have negligible immediate gain in terms of error reduction,
but are very informative in the long run. ECED bypasses such an issue by selecting tests that maximally
distinguish root-causes with different target values. In order to analyze ECED, we need to find an auxiliary
function that properly tracks the “progress” of the ECED algorithm; meanwhile, this auxiliary function should
allow us to connect the heuristic by which we select tests (i.e., Agcgp), with the target objective of interest (i.e.,
the expected prediction error pggp)-

We consider the auxiliary function defined in Equation (4.1). For brevity, we suppress the dependence of ¢ where
it is unambiguous. Further, we use pg, py/, and p, as shorthand notations for P[0 | ¢], P[#' | ¢] and Py | ¢].
Equation (4.1) can be simplified as

1
fAUX = Z Popo’ IOg — +c Z H2 (py) (Bl)
(0.0)€E poper =Y

We illustrate the outline of our proofs in Fig. 5. Our goal is to bound the cost of against the cost of
(Theorem 1; proof provided in Appendix §B.6). As we have explained earlier, our strategy is to relate the one-step
gain of ECED ' 1-step: Aaux(ect1 | ¥¢) with the gain of OPT in k-steps OPT: Asux (Appendix §B.5, Lemma 8).
To achieve that, we divide our proof into three parts:
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3 UB( MAP) i Theorem 1, § App.B.6
\ ””””””” ’ The Key Lemma (§ App.B.5)

Jaux (¥e)

Lemma 2 3—¢€ Lemma 2, § App.B.4
<+— Lemma 3 Ada. Submodularity

1-step gain

OPT
k-step gain

OPT: Axux a—% OPT: Agg2, >— l-step: Agcz g F)— LI-step: Aaux(Xe,,, | ¥e)

Figure 5: The proof outline.

1. We show that the auxiliary function f,ux is closely related with the target objective function pgrr. More

specifically, we provide both an upper bound Us (") and a lower bound |LB (") of faux in Lemma 2, and

give the detailed proofs in Appendix §3.2.

2. To analyze the one-step gain of ECED, we introduce another intermediate auxiliary function: For a test e;41
chosen by ECED, we relate its one-step gain in the auxiliary function 1-step: Aaux(Xe,,, [ %¢) , to its one-step
gain in the EC? objective 1-step: Agca y, (<+— Lemma 3, detailed proof provided in Appendix §B.3). The
reason why we introduce this step is that the EC? objective is adaptive submodular P—, by which we can
relate the 1-step gain of a greedy policy 1-step: Agcz2 ¢ to an optimal policy OPT: Agce 4 .

3. To close the loop, it remains to connect the gain of an optimal policy OPT in the EC? objective function
OPT: Agc2 4 , with the gain of OPT in the auxiliary function OPT: Ajux . We show how to achieve this
connection (3—&) in Appendix §B.4, by relating OPT: Agcz 4 to the expected reduction in prediction error,

””” MAP)

and further in §B.5, by applying the upper bound [Us (#") | provided in §B.2.

To make the proof more accessible, we insert the annotated color blocks from Fig. 5 (i.e., [Us(@i’) |, [Le(mia’) |

L-step: Aaux(Xe,,, [%e) , 1-step: Apczy , OPT: Ageey, ,  OPT: Apux , etc), into the subsequent subsections in
Appendix §B, so that readers can easily relate different parts of this section to the proof outline. Note that we
only use these annotated color blocks for positioning the proofs, and hence readers can ignore the notations, as it
may slightly differ from the ones used in the proof.

B.2 Proof of Lemma 2: Relating fiux tO perr

Define pg (1)) £ > yey Ply [ ¥] (1 —Ply | ¢]) as the prediction error of a stochastic estimator upon observing 1,
i.e., the probability of mispredicting y if we make a random draw from P[Y | ¢)]. We show in Lemma 4 that

pMAP (1)) is within a constant factor of ps(v):

Lemma 4. Fiz ¢, it holds that pYAF (1) < pe(v) < 2pMAP (4),

ERR ERR

Proof of Lemma /. We can always lower bound pj by pMAF . since by definition, pMAaF (1) = 1 —max, Py | ¢] =

ERR
Soyey Ply [ 9] (L =max, Ply [ ¢]) <3 ey Ply [ %] (1= Ply | 4]) = pu(¥).
To prove the second part, we write p,, =P[Y =y, | ¢] for all y;, € Y. W.Lo.g., we assume p,, > py, > -+ > py,.
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Then pMAP =1 — Dy, - We further have

ERR

2pMAP:2 1—py1 _QZpyl —2 Zpyl ZpyL py1+zpy% Zpy‘

ERR

2 2py1 (Zpy’l.) + (Zpyi)z
=2 =2
t
2 Zpyipyj Zplh — Py;) = Pe

i#]

Now, we provide lower and upper bounds of the second term in the RHS of Equation (B.1):

Lemma 5. 2pERRP < Zyey H, (py) < 3(H2 (pg/yltﬁp) +pERRP log TL)

Proof of Lemma 5. We first prove the inequality on the left. Expanding the middle term involving the binary

entropy of p,, we get

St () = X (pylog o+ (1= p)low =)

yey yey v

(a) 2

Z s > py(1-py)
yey
Lemma 4 MAP

220 2 2Pugy
Here, step (a) is by inequality Inz > 1 — 1/z for > 0.
To prove the second part, we first show in the following that 3 (1 — py)log ﬁ <23, pylog pi
Yy Yy

W.lo.g., we assume that the probabilities p,’s are in decreasing order, i.e., py, > py, > -+ > py,. Observe that if

[0,1/2], then (1 — p,)log ﬁ < pylog i. Consider the following two cases:
1. py, <1/2. In this case, we have (1 —p,)log ﬁ <>, pylog i.
2. py, >1/2. Since } .., py, = 1 — py,, we have

Z(l _pyi) log 1

)

=(1- py1)10g ‘|’ Z — Py, 10g
- pyl i>1 pyz

= Z Dy, log Z — Dy, log !
— Py,

Z>1py1 i>1

i>1
1
<Zpy log—+z — Py,) log —
i>1 i i>1 Py
< Zpyi ""Zpyl log—
i>1 Y i>1
<2 Zp% log —
i>0
Therefore,
> Ha(py) <3 py log— 3H(Y). (B.2)

yey >0
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Furthermore, by Fano’s inequality (in the absence of conditioning), we know that H(Y) < Hy (pgftﬁp) +
pMAP 1og(|Y| — 1). Combining with Equation (B.2) we get

®)
> Hy (py) < 3H(Y) < 3 (Ha (ppaa”) +1log(|¥] = 1)) < 3 (Ha (pha”) + log(n))
y
where in (b) we use the fact that ¢ = |Y| < |supp(©)| = n, since Y = r(0) is a function of ©. Hence it completes
the proof. O

Next, we bound the first term on the RHS of Equation (B.1), i.e., 2{979,}€Ep9p9/ log ﬁ, against pMAFP.

ERR

Lemma 6. > oy cp Popo log pep - < 2(H (ps) + pelogn).
Proof of Lemma 6. We can expand the LHS as

LHS ==Y po > po(logps +logpp)
0:r(0)#r(0")

~2> po Y, pologpg

0 br(0)#r(9")

—22 Z Do Z po log pe

yeEY 0":17(0" )=y 0:r(0)#y

Pe Do
fzzpy —Dpy) Z 7 <10g1_p Jrlog(lpy))
y

=y or@)2y LY
Do
= —QZpy(l—py)log(l—py)+2Zpy(1—py)H ({(1_)} ) (B.3)
ey yey Py) ) 6:r(0)y
§2Zpsz(1py)+22py(1py)H<{(lfe)} )
yey yey Py) ) or0)2y

Since H ({ T py) }H:T(G);éy) <logt < logn, we have

LHS§2ZpyH2( —Dy) —&—QZpy — py)logn
vey pe logn

Jensen
< 2H, Z py py + 2pg logn
yey

= 2 (Hy (pg) + pslogn).
which completes the proof. O

Now, we are ready to state the upper bound Us (A7) and lower bound féi(ibiégﬁt of faux-

Proof of Lemma 2. Clearly, Z{e o}y PoDo! log > 0. By Lemma 5 we get the lower bound:

PGP’ -

faux(¥) > 2¢- pﬁﬁARPW)

Now assume pMaFP < 1/4. By Lemma 4 we know p, < 2pMa¥, and Hs (ps) < Ha (2p34F) < 2H, (pMAT).
Combining with Lemma 5 and Lemma 6, we get

fAUX('(/)) <3c- (HQ (pg/}iﬁp) +pERRP 10g TL) +4 (H (pE) + P IOg n)
< (3C+ 4) : (H2 (pl];/lIKIQP) +pERRP log n)

which completes the proof. O
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B.3 Proof of Lemma 3: Bounding A,yx against Agc2, AECED

In this section, we analyze the 1-step gain in the auxiliary function I-step: Aaux(Xe,, [¥0) , of any test e € V.
By the end of this section, we will show that it is lowered bounded by the one-step gain in the EC? objective
1-step: Agczy .

Recall that we assume test outcomes are binary for our analysis, and in the following of this section, we assume
the outcome z, of test e is in {+, —} instead of {0, 1}, for clarity purposes.

B.3.1 Notations and the Intermediate Goal

[p:Prl{e} | X =+]] (2:Prl{0} | Xe =]

Figure 6: Performing binary test e on © and Y. Dots represent root-causes 6 € supp(0), and circles represent
values of the target variable y € ). The favorable outcome of X, for the root-causes in solid dots are +; the
favorable outcome for root-causes in hollow dots are —. We also illustrate the short-hand notations used in §B.3.
They are: p,q (i.e., the posterior probability distribution over Y and ©), h (i.e., the prior distribution over Y and
©) and a, § (i.e., the probability mass of solid and hollow dots, respectively, before performing test e).

Table 2: Summary of notations introduced for the proof of Lemma 3

h P[- | ], i.e., probability distribution on © and Y, before performing test e

hy, he P[Xe =+ [Y]P[Xe = — | ¢]

Do, Py P[- | ¢, Xe = +], i.e., probability distribution on © and Y having observed
X =+

90, Gy P[- | ¢, X = —], i.e., probability distribution on © and Y having observed
X, = —

OF, ©~ | set of positive / negative root-causes

@j‘, ©; | set of positive / negative root-causes associated with target y;

a, B total probability mass of positive / negative root-causes

g, Bi probability mass of positive / negative root-causes associated with target y;

Wi, Vi a;/a, Bi/B (defined in §B.3.5)

A r(0) # r(0'), i.e., root-causes 6 and 6’ do not share the same target value

For brevity, we first define a few short-hand notations to simplify our derivation. Let p, ¢ be two distributions on
O, and h = hyp + h_q be the convex combination of the two, where hy,h_ >0 and hy +h_ = 1.

In fact, we are using p and ¢ to refer to the posterior distribution over © after we observe the (noisy) outcome of
some binary test e, and use h to refer to the distribution over © before we perform the test, i.e., pyg = P[0 | X, = +],
g9 =P[0| X.=—],and hg £ P[] = hypp+h_qg, where hy =P[X, =+]and h_ =P[X, = —]. For y; € Y, we
use p; = ZO:T(G):yi pe to denote the probability of y; under distribution p, and use ¢; £ ZG:T(@):yi qo to denote
the probability of y; under distribution q.

Further, given a test e, we define 6;‘, ©; to be the set of root-causes associated with target y;, whose favorable
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outcome of test e is + (for ©) and — (for ©;). Formally,

O 2{0:r(0) =y AP[X. =+ | 0] > 1/2}

07 £{0:1(0) =y AP[X, = + | 6] < 1/2}
We then define ©F £ Uie{l,...,t} @3‘, and @~ £ Uie{17..‘7t} O, to be the set of “positive” and “negative” root-causes
for test e, respectively.
Let oy, 8; be the probability mass of the root-causes in ©; and O, i.e., a; = Zyee)j P[], and B; £ Zy&@{ Plo].

We further define o £ D yiey @i = D gco+ P[0], and B £ > yiey By = 2 gco- P[0], then clearly we have a+ 8 = 1.
See Fig. 6 for illustration.

Now, we assume that test e has error rate e. That is, V0, min{P[X. =+ |60],P[X. = — | 0]} = €. Then, by
definition of hy, h_, p;, q;, Po, qo, it is easy to verify that

hy =€+ fe, h_ = ae+ Pe

e+ Bie  aiet Bie
e P Al S
hge hge .
= — = — foecor
Po Iy qo h woe o)
hge hgé . _
pg:%, qa:h%, if 0 € O (B.4)

For the convenience of readers, we summarize the notations provided above in Table 2.

Given root-causes 6 and €', we use 6 = 6’ to denote that the values of the target variable Y associated with
root-causes 0 and ¢’ are different, i.e., r(0) # r(¢’).

We can rewrite the auxiliary function (as defined in Equation (4.1)) as follows:

faux = Z hehg: IOg + c Z H2

60’ yi €Y

If by performing test e we observe X, = +, we have

fAUX €, + Z PoDpo’ IOg + c Z HQ pt
O’ yi €Y

otherwise, if we observe X, = —,

fAUX €, — Z q04e’ IOg + & Z HQ Qz

60’ Yyi €Y

Therefore, the expected gain (i.e., I-step: Agux(Xe,,, | %) ) of performing test e is,

1 1
Ayox = Y hohorlog —— — [ by Y poper log ——— + h- > 0o log
0’ h he/ 00’ 000’ q990’

Z Hy (hi) — | hy Z Hz (pi) + h- Z Hy (g:) (B.5)

yi €Y Y €Y Yy €Y

In the following, we derive lower bounds for the above two terms respectively.
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B.3.2 A Lower Bound on Term 1

Let gg 0/ £ hypepe + h_qeqer. Then, we can rewrite Term @ as,

1 1
Term @ = Z hohg: log - Z 9o, log

00" hoho 7=, 9o.6'

Part 1

1
+ > 90,0 log — — <h+ > pope log +h_ Y qoqe log ) (B.6)
00’ 96,6" P Pope Pord de9e’

Part 2

Part 1. We first provide a lower bound for part 1 of Equation (B.6).

Notice that for concave function f(z) = zlog 1 and ¢ < z, it holds that f(z) — f(z — 6) > 5%|1 =6(logl —1),
then we get

1 1 L
Z hehe log Tl Z ge,0 log Too > Z (hohg — go.07) (log hoha 1)

60’ 606’ ’ 606’

Further, observe

hoho — go.0r = (h4po + h—qe)(hyper + h—_qor) — (hypoper + h—qoger)
= (hypo +h_qo)(per +qor — h_per — hyqe') — (hypoper + h_qage)
= hyh_pgrqe — hyh_pgpe 4+ hih_pege —h_hiqeqe
= —hyh_(pe — q0)(Per — qor)

Combining the above two equations gives us

1
Part 1 > —h_ h_ — s —qp) |1 -1
e MZ@ +h_(po —qo)(Per — qo) ( 08 1 )

For any root-cause pair {6, 0’} with 6 ~ 6’, and binary test e, there are only 4 possible combinations in terms of
the root-causes’ favorable outcomes. Namely,

1. Both 6 and ¢’ maps = to +, i.e., 0 € OT AH € O,

We define such set of root-cause pairs with positive favorable outcomes as Uiy ) = {{6,6'} : 6 € ©T A0’ € ©T}
(For other cases, we define U_ _y, Uy _y, U 4) in a similar way).
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In this case, we have

1
> —hih_(po—q0)(per — o) <1°g hohg: 1)

{0,0'YeUG )
Eq (B.4) Z ra hge) <h9/€ h9/€> < 1
U —hih_ < -— - log -1
h h_ h h_ hoheg
(0.0} €05 1) + + ohe
h_e—hye\> 1
=hi h_ | ——— —hghgr (1 -1
’ ( hh_ ) 2 e (Oghehe/ )
0.0 €Ut 1)
B2 (1 — 2¢) 1
= —hghg (1 -1
hih_ > 070" \ 8 hioher
10,0'}eU 4 +)

2(1 — 2¢)? 1
:% Z (—2h9h9/ lOg hf + h9h9/>
e {0,0"}U4,+) 0

252(17_26) Z (Oé —ai) Z —2hyg loghig + Z Oéi(Oé —ai)

hih_
Yi€Y oco; Yi€Y

2
:ﬂ —23? Z(a_ai) Z hgloghig + 2 Z ai(a — ;)

hyh_
+ yi€Y geco; Yi€Y

2. Both 6 and 6’ maps z to —. Similarly, we get

1
> —hyh_(po — a0)(per — q07) (log hohe 1)

{0,0}eU_ _,
2
_(1—2¢f _m2§(6—&)§:%bg%+ﬂ2z:&w_&)

hih_
+ yi €Y 0cO; Yi€Y

3. 6 maps x to +, # maps x to —. We have

1
Z —h+h7 (p0 - QQ)(pe' - qe') (log hohg B 1)

(6,6")€U4,—)
02297 (05 S (3-8 Y holog a8 X (a—a) S holog - — a8 Y (s - 4
= h+h_ 7 0 gh@ ’ 0 ghe ’ '

yi€Y oco; Yyi €Y 0€0; yi €Y

4. 6 maps = to —, ' maps z to +. By symmetry we have

1
> —hih_(ps— a0)(per — qo) ( log -1
hohg
(6,6")€U(— )

1
= > —hyh_(po—qo)(pe — qo) <1Og hohg: 1)

(0.0)€U -
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Combining the above four equations, we obtain a lower bound on Part 1:

2
PabrtlzM —2625 (@ — ) g hgloghi—&—ﬁ2 g a;(a— a;)
0

hih_
+ Y, €Y aeei+ Yi €Y

20?3 (8- 5) Y holog - +a® 3 A5 - )

Y, €Y 9co; yi €Y

208 3 (=5 Y halog - +208 3 (= ai) 3 holog - —2a8 Y as(5 - 5)

yi €Y gco;f yi €Y 0€O; yi €Y
(1—2¢)° ) 1
= (208 2o (B-8)-28" 3 (a-ai)| 3 hologs-
e yi €Y Yi €Y 969;r 0
1
+ | 208 Z(a—ai)—Qaz Z(ﬁ—ﬂi) Z h@logh—
Y €Y yi€Y 0cO; o

+8° > aila—a)+a Y Bi(B—Bi) =28 Y ai(B— i)

yi €Y Yyi€Y Yyi€Y

(1—2¢)
hoh_

2) " B(Bai—aB) Y he loghie +2 > alaBi —Bai) Y he 1oghi0 = (Bai — apy)?

yi €Y 9co; Yi €Y 9co; Yy €Y
C(1-2¢)?
hyh_
ha 1 hg 1 2
2 (Boi —apBy) | Bai Y —log,— —ap; > begﬁf - > (Bai —aBy) (B.7)
i€y peo; 0 seo; ¢ i€y

Part 2. Next, we will provide a lower bound on Part 2 of Equation (B.6).
By definition, we have

1
lo
5 hypoper + h_qoqe:

1
— | ht Z poper log )
( = doder

+h- Z qoqer log
00’

Part 2= Y (hypope + h—qoqe)
08’

Poper

@ hoh_  — qpae)?
> + Z (pepe qm]a)
o=a PoPor + doqor

Hereby, step (a) is due to the strong concavity® of f(z) = xlog %

Similarly with the analysis of Part 1, we consider the four sets of {6,6'} pairs:
1. {0,0'} € Uy 4y: both 6 and 6" maps = to +.

STf f is strongly concave, then for ¢ € [0, 1], it holds that f(tx 4 (1 —t)y) —tf(z) — (1 —t)f(y) > @m(m —y)?, where
m = min (|f"(z)], | ()]) -
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In this case, we have

hih_ (poper — qoger)” hy h_ )
> 5 > > == (Voo — Vo)

(6,60")€U (4, +) Peper -+ dodo- (6,60")€U+,+)
2
Eq (_1?.4) Z h+h, ( hgg h@/g \/h@ﬁ h3/6>
- 2 hy hye \ h_ h_
(0,0)€U4,4) A
hyh_ e e\’
= hohg | — — —
2 2 0 (h+ h_)
(0,6)€U+,+)
hyh_ 2(1—2¢)°
= > 3 heh@’ﬂ(é I )62)
(6,6)€U 4 4 0=
(1—26) 9
= hih B Zai(a*ai)
yi €Y

2. (0,0") € U _y. Similarly, we get

hyh_ (poper — goge')* _ (1—2¢€)
Y, > 225& B:)

(0,6 €U _y PoPer + Q090 ey

3. (0,0") € U,—y: 0 maps x to +, 6 maps x to —. We have

2

Z hih_ (poper — qm]a/)2 > Z hyh_ ho€hgre  [hge hg €
2 poper +aeqer 2 hy hy h_ h_

(‘9,0/)€U(+7_) (9,9/)€U(+7+>
hih_ 1 1)
= Z + hghglee < - )
hy h_
(0.69)€U+,+)
(1—2¢)° _ 2
= Wﬁ(a - B) Z o; (8 — Bi)

yi €Y

4. (0,0") € U~ 4y: 0 maps = to —, 6’ maps = to +. By symmetry we have

Z hyh_ (poper — qoge )’ < (1 —2¢)?

2 ‘+apqe ~ 2hiho
6.6V Poper T doqe ¥

Combining the above four equations, we obtain a lower bound on Part 2:

hoh_ ' — qoqe)* hih_ ' — qoqer)*
Part 2 > Z +h— (peper — 4od0) n Z +h_ (peper — qoqer)

2 r , 2 s+ ’
(0,0)eU, 4 PoPo q099 0.0 ._, PoPo q0q0

hyh_ ' — qoqer)* hoh_ . — goge)?
+ Z +2 (pepo +Q9Q9 ) + Z +2 (pepe +QOQ6 )
(6,6)€U. PoPo 49096 0,00 -, PoPeo q0qp

= (;h_j:_) B2 aila—ai)+a? Y Bi(B—Bi) +2e(a—B) > (B B)

Y €Y Yy €Y Yyi€Y
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B.3.3 A Lower Bound on Term 2

Now we move on to analyze Term @ of Equation (B.6). By strong concavity of f(x) = xlog% +(1—2x)log ﬁ7
we obtain

1 1 1 !
Term @ = cyze:y (hilOghi + (1 —hi)logm —hy (pilngl + (1 —pi)log 1 —pi)

1 1
— h_ (qilong(lqi)log )>
i 1—gq

5 2
footrg)te 6 c- h+h7 Z (pz _ qz)
2 gy max{pi(l = pi) il - i)}

Plugging in the definition of p;, ¢; from Equation (B.4), we get

c-hyh_ (aﬁ—k Bie aie—|—ﬂi€>2 1
Term @ = ———— -
o 2 2 hy h- max{p;(1 — p:), (1 — q;)}

__c Z ((cve + Be) (i + Bi€) — (e + Be) (e + B:€))?
max{p;(1 — pi), ¢:(1 — q;)}

c (a/a’l-e2 + Bo;E — af;e — 5O[i€2)2
Y

2hih c=  max{pi(1-pi) a(l-a)}
(1 —2¢)? (Boi — ;)
T 2hih_ z;] max{p;(1 —pi),q:(1 — )} ()

B.3.4 A Combined Lower Bound for A,y x

Now, combining Equation (B.7), (B.8), and (B.9), we can get a lower bound for A,ux:

1—2¢)? h 1 h 1
B> U2 2 57 (o) [ o 3 Miog —as Y Hiog

i€y pcof beo;

- > (Bai—aBy)’

Yi€Y

+ (1—2¢? 52 Z aila —a;) + a? Z Bi(B — B;) + 2ee(a — B)? Z ai(B = Bi)

2hy h_
+ yi €Y Yyi €Y yi€Y

c(1 — 2¢)? Z (Ba; — aﬁi)Q

+
2h h_ 5 max{p;(1 —p;),¢:(1 —q;)}

(B.10)
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We can rewrite Equation (B.10) as

AAUX 2
9.2
(er ze) > (Bai - aBi)® + 2 Y aila—a)+a® Y Bi(B-Bi)+2eE(a—B)° D ai(B—Bi)
= yi €Y Yyi €Y Yi €Y Yyi €Y
LB1
(1- 26)2 2 2 - 2
i B Z ai(a — o) + o Z Bi(B — Bi) + 2¢€(a — B) Z (B — Bi)
+ Yi €Y yi €Y Yi€Y
(Bas — aBi)® B a2
" 20?;6:); max{p;(1 —pi),qi(1 — ¢;)} 5%26:)} (Bas = afi)
+82(5a-—aﬁ-) ﬁa-zﬁlo i—aﬁ-Z@b 1 (B.11)
7 4 7 Y g ha i Bi g hg .
yi€Y veof 0co;

LB2

B.3.5 Connecting A,yx with Agc2

Next, we will show that term LB1 is lower-bounded by a factor of Agc2 (i.e., 1-step: Agczy ), while LB2 cannot
be too much less than 0. Concretely, we will show

e LBl > (1- 2¢)° Agc2, and
o LB2 > —2t(1—2¢)%n, for € (0,1).

At the end of this subsection, we will combine the above results to connect 1-step: Asux(Xe,,, |¥e) with
I-step: Agc2y (See Equation (B.18)).

LB1 VS. Agc:.  We expand the EC? gain 1-step: Agcey as

Apce = > (ai+B)1—ai—B)—a Y aila—a) -8 BB~ B)

yi€Y yi €Y yi€Y
=8> aila—a)+ad BB-B)+2) alB-B) (B.12)
Yi €Y Yi €Y yi €Y

Define

>

@ =l g
=4 (Zyiey (Bai — aBy)? + B2 Ypey @il —ai) +a® Y Bi(B — i)
+2ee(a = B)° ¥,y il = 1))

O 2n.h g
= (cé(a = B)* +aB) (B, epaila —ai) +a Xy BilB = ) +25,,ey ailB - 5))

To bound LB1 against 15 (1 — 2¢)> Apce, it suffices to show @ > %

To prove the above inequality, we consider the following two cases:
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1. e€(a — B)? < aB. In this case, we have ee(a — 8)? + a8 < 2a3. Then,

-0 z%—aﬁ (ﬁZaxa—ai)wZﬁi(ﬁ—ﬁmzZai(ﬁ—ﬁi))

Yi €Y Yi €Y yi €Y

>B(1+8) Y aila—ai)+a*(L+a) Y Bi(B— ) —2a8 Y ailB - Bi)

yi €Y yi €Y yi €Y
+ > (Boi — aBi)’
yi €Y
> 82 ala—a)+a Y BiB—Bi) =208 Y (B Bi)+ Y (Bai —aBi)’
yi €Y yi €Y

Yi €Y Yi €Y
=0

ee(a—B)? > af. W.lo.g., weassume 3 <a < 1. By a+ 8 =1 we get 2a > 1.

Observe the fact that
Y (Bai—aBi)’ == aila—a)—a> Y Bi(B—Bi)+2a8 > ai(B—Bi) >0

Yi €Y Yi €Y yi €Y Yyi €Y

Rearranging the terms in the above inequality, we get

BY aila—ai) <20 ai(B—B) <2(aB— D afi) =2 a(B—p) (B.13)
Yi€Y Yy €Y yi €Y yi €Y
Hence,
% < 2¢é(a — B)? (ﬁ Z ai(la—a;) +a Z Bi(B—B:)+2 Z a; (8 — @))
Yyi€Y Yyi€Y yi €Y
(B.13)
< 2e(a—B) [a ) Bi(B—B)+4) alB—Bi)
Yi€Y yi €Y
Y 2ee(a - p)? (2a2 S B(B-B)+4 Y ailB- @))
yi€Y Yi€Y
ee(a—p)?<1
< 4 (2ee(a - B)? Z ai(B—Bi) +a? Z Bi(B — ﬁz))
Yyi€Y Yi€Y
<@
Therefore, we get
LB1 > 11% (1—2¢)° Apee (B.14)
A lower bound on LB2. In the following, we will analyze LB2.
(1- 26)2 2 2 2
LB2> o= | 82 ) aila—ai)+a® Y Bi(B—B:) =5 ) (Boi —af)
= yi€Y Yyi€Y yi€Y
(Bai — aBi)?
e yze:y max{p;(1 —pi),qi(1 — ¢:)}
ho . o 1 ho ., Bi 1
+8 (Ba; — af;) | Boy —log — + Ba;log — — af; — log — — af;log —
yze:y ( eezej a;  hg Q; eezez Bi " he 51')
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For brevity, define u; £ o;/a, and v; 2 8;/8. We can simplify the above equation as

0262 (1 — 2¢)? 2 (i — v3)°
IB2> ——— - (1 — ;) +v(l—1v;) —5 **l/inr l :
Ahoh_ yizey :ul( 2 ) z( z) (.UZ ) max{pi(l _pi>7(Zi(1 — (Zi)}

ho 1 he
+ 8 —vi) | i Y floghfﬂulogua vi Yy 7 lggz vilog - (B.15)

vco; i 0co;

Denote the summand on the RHS of the above equation as LB2;. If for any y; € ) we can lower bound LB2;, we
can then bound the whole sum. Fix ¢. W.l.o.g., we assume u; > v;. Then

2¢ (pi — vi)*

LB2Z £ /Jl(l — /j,Z) + 7/7,(]. — 1/7;) — 5(/1,1 — I/i)2 +

max{p;(1 —p;), (1 — ¢)}

+8(pi — vi)

n 1
> (L= )+ (0 = ) = 300 = 20 = 85— ) (welog § + wilog -

2¢ (p; — ;)
+ max{p;(1 —p;),¢:(1 —q;)}

In order to put a lower bound on the above terms, we first need to lower bound the term involving

i—vi)? . it+Bie/€ i€/€+Bi :
max{pi(({ips,zzi(lffh)}' Notice that p; = aa+§5€//;’ and p; = aazfég. Therefore, min{u;,v;} < pi,q <

max {1, V; }.

We check three different cases:

o u;>v; >1/2 0or vy < p; <1/2.
In this case, max{p;(1 — p;), ¢:(1 — ¢;)} < max{p;(1 — p;),vi(1 —v;)}. Therefore,

1
LB2; > —5(u; — vi)? — 8(pi — 1) (z/i log% + v; log 1/-)

2¢ (i — ;)
* max{p; (1 — pi), vi(1 —v4)}

1
> —5(pi — v3)* — 8(pi — 1) <Vi log% + v;log u)

+ pi(l — i) +vi(1 — )

2¢ (1 — v;)°
+ max{p; (1 — p;), v (1 —vy)}

> —5(pi — vi)% — 8(pi — 1) <yz log 5 v log — ) + 2v2¢(p; — vy)
(i — v7) (2\/? _5/2 - (W 1og% + v, log V))
Y =) (2\/% ~5/2 —8log Z)

+ max{p; (1 — p), vi(1 —vy)}

,u.,;—l/ifl/2
>
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Here, step (a) is due to the fact that f(z) = zlog 35 Is monotone increasing for n > 3. When n < 3, we have
i =1 and v; = 0 (otherwise, there is no uncertainty left in Y') and hence the problem becomes trivial.
o 1/n<wy; <1/2 < p,.

In this case, we cannot replace p;, ¢; with u; or v;. However, notice that max{p; (1 — p;),vi(1 —v;)} <1/4, we
have

1
LB2; > pi(1 — p) +vi(1 — v;) — 5(pi — VZ-)Q —8(ps — ) (Vi log% + v; log V) + 8¢ (ui — Vi)z
i

= w1 — i) + vi(L = vi) + (i — vi)* + (8¢ — 6) (s — 13)®

n

1
— 8(pi — v4) (Vi log 5 +v;log u-)

1
= wi(1— ) + v (1 — i) + (8¢ — 6) (s — v3)* — 8(pi — v3) (VZ' log% + v log u)

7

> (1 — ;) + (8¢ — 6) (s — v3)* — 8(pui — vs) (1/1- log% + v;log Vl> (B.16)

v;>1/n 5 n2
> i1 —vi) + (8¢ —6) (i — v3)” — 8(ps — vi)v; log Kl

To further simplify notation, we denote v; £ 8¢ — 6, and 75 = 8log %2 Then the above equation can be
rewritten as

LB2; > pi(1 — ) + 1 (pi — vi)* — 2 (pi — vi)vi

Ifp; —v; < 2—}&, then

1 v;
LB2; > pi(1 — vs) + 71 (s — 13)* — 5—72vs = pi(l —vi) — = >0
2’}/2 2

Otherwise, if p; — v; > i7 we have

LB2; > pi(1 — v3) + (s — v3) (1 (i — vi) — v2v4)

1
> pi(1— v i — Vi — Y2V
(1 = 23) + s = ) (g =)

> Hi — Vi <71 _72)
2 Y2

o v; <1/n<1/2< p;. In this case, we have

Eq (B.16) 9 n 1
LB2; > wi(l =) + (s —vi)” — 8(wi — vs) | vilog B + v;log -

7

1 n logn
> (1= v3) + (i — vi)? = 8(ps — 1) <n10gﬁ+ - >

2

Y2
- Mi(l - Vi) + 71(#1’ - Vi) - z(,ul — I/i)

Step (a) is due to the fact that 1/n < 1/2 and therefore n > 3.
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Putting the above cases together, we obtain the following equations:

(i — v3) (2\/%—5/2—81055%) if iy >0 >1/2,0or v <py <1/2

0 if 1/n<v; <1/2 < py, and p; — vy < 5
LB >4 ., /. oy / o
Bt (2 — if 1/n < vy <1/2 < pg, and p; —v; > 5
2 2 2 2 2
Fixn>0. Let c=8 (log%) , we have v > (SIOg%) ,and v = SIOg%, SO
VI —12) (VL + VLt
ﬂ_w:( =) (VI ) v ’VQIOg@
72 72 72 n
and thus we get
8(M—Vi)log% ifp; >v; >1/2,0or vy <py <1/2
LB2; > 40 ifl/nguiSl/?guhandui—wgi
wlogﬁ if v; <1/2 < g, and p; — v > 5=
V2 n b= =7 ¢ LT 2y
That is, if 8 > n, we have LB2; > 0 for all ¢ € {1,...,t}.
n2 n2
On the other hand, if 3 < 1, we get ATite) 4(log7’+1;g &) < 8, and therefore LB2; > 8(u; — v;) log %

n
72 log 5

Summing over all i € {1,...,t}, we get that for 8 < n, it holds LB2 > Eyiey““ — v - W logg. We
hence get

_ —92¢)2 /I
B2 > 2t (1 —2¢)” aflog B if af <n
ifaf>n

Further relaxing the above condition by af log # <n—af <7, we obtain:
LB2 > —2t (1 —2¢)%n (B.17)

Combining Equation (B.11), (B.14), and (B.17), we get

1
A > 75 (1= 26)% Apcz — 2t (1 — 2¢)° 7. (B.18)
Hence, we have related  1-step: Aaux(Xe,,, [ %) to 1-step: Apczy , as stated in Lemma 3.

B.3.6 Bounding A,yx against Agcep

To finish the proof for Lemma 3, it remains to bound A,yx against Agcgp. In this subsection, we complete the
proof of Lemma 3, by showing that A,ux(Xe | ) + 2t (1 — 26)2 N > Agpcep,y(Xe) /64.

€

Recall that e is the noise rate of test e. Let p = ;= be the discount factor for inconsistent root-causes. By the
definition of Agcgp in Equation (3.1), we first expand the expected offset value of performing test e:

Eme [5OFFSET(xe)] = Z (ai + ﬁz)(l — Q4 — Bz)e (1 - p2) .

yi€Y
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Denote v = ¢ (1 — p2). Then, we can expand Agcgp as

AECED

(initial total edge weight)— (offset value)

=Y | (i+B8)(1—ai—B)(1—7)

yi €Y

expected remaining weight after discounting

— (ha-(i + pBi)(a + pB — a; — pBs) + h—(Bi + pai) (B + pa — Bi — pai))

=hy Z —yai(a — ;) + i (B — ﬂz)(l*’Y*P)Jrﬁi(a*ai)(l*’Y*P)Jrﬂi(ﬂ*@i)(l*’}/*/ﬁ))

yi €Y

+ h- Z —Bi(B — 5%)""61(0‘_041)(1_'V_p)+ai(5_5i)(1_’Y_P)"’ai(a_ai)(l_'V_pg))

Y, €Y
=) (20 —v—p)i(B—Bi)+ (hy(1 =y —p*) = h_7) Bi(B - Bi)
Yi €Y
=+ (h—(l —v=p%) - h+7) ai(a — az’))

Since v = ((11 62)62), 1—y—p?=1=2

2
y—p= (1;2:) , we have,

ha(l =7 =0 —hoy = (a1 —€) + fe) " .

Therefore

AgceDp = (11_2;) aY BB=B)+BY ala—ai)+2 Y a(B—B)

yi €Y yi €Y yi €Y
2
1—2e
= ( > AEC2
1—¢

Combining Equation (B.19) with Equation (B.18) we obtain

(1-¢?
16

1
= E (1 - 26)2 AEcz

Ajox + 2t (1 — 26)2 n > AECED

With the results from Appendix §B.3.5 and §B.3.6, we therefore complete the proof of Lemma 3.

B.4 Bounding the error probability: Noiseless vs. Noisy setting

— (ae+B(1— e))eg_f;) = (1 - 2€>2

(B.19)

Now that we have seen how ECED interacts with our auxiliary function in terms of the one-step gain, it remains
to understand how one can relate the one-step gain to the gain of an optimal policy OPT: Ajux , over k steps.

In this subsection, we make an important step towards this goal.

Specifically, we provide

Lemma 7. Consider a policy 7 of length k, and assume that we are using a stochastic estimator (SE). Let p] be
the error probability of SE before running policy , pé"noisy be the average error probability of SE after running m

in the noisy setting, and pinoiseless be the average error probability of SE after running m in the noiseless setting.

Then

1 €
pE,noiseless < pE,noisy
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Proof of Lemma 7. Recall that a stochastic estimator predicts the value of a random variable, by randomly
drawing from its distribution. Let = be a policy. We denote by pg(ms) the expected error probability of an
stochastic estimator after observing my :

L
Prnoisy = Eo[Pe(mo)] Zp 7)oy | me)(1—ply | 74))
yey
where ¢ € V x O denotes a set of test-outcome pairs, and 74 denotes a path taken by 7, given that it observes ¢.

Now, let us see what happens in the noiseless setting: we run 7 exactly as it is, but in the end compute the
error probability of the noiseless setting (i.e., as if we know which test outcomes are corrupted by noise). Denote
the noise put on the tests by =, and the realized noise by £&. We can imagine the noiseless setting through the
following equivalent way: we ran the same policy 7 exactly as in the noisy setting. But upon completion of 7 we
reveal what = was. We thus have

Pyl ms) = py| 7o, Ep(& | )
E=¢
The error probability upon observing m4 and = = ¢ is
Pe(ms, ) = Y p(y | 16, &) (1 = ply | 74, €)).
yey
The expected error probability in the noiseless setting after running 7 is

pEl,noiseless E¢> nLPE 7T¢7’ Zp Ts 5 Zp ‘ T, 5 1 - (y | 7T¢7€)) (B20)

yey

1 1
Now, we can relate D noisy 10 P noiseless-

pé_,noisy Zp 7T¢ Zp y | 7T¢ 1_ (y | 7T¢))

yeY
—Zp (m6) > p(& [ w)p(y | 7o, 5)(1—2 (& | 7o)p(y | 7,€))
yeY ¢
>Zp7r¢ S ST 0le | ool | 1o (1~ ply | 79, 6))
yeY ¢
:Zp 76:6) Y p(y | 74, &)1 = ply | 7,€))
Y vey

where (a) is by Jensen’s inequality and the fact that f(x) = 2(1 — z) is concave. Combining with Equation (B.20)
we complete the proof. O

Essentially, Lemma 7 implies that, in terms of the reduction in the expected prediction error of SE, running a
policy in the noise-free setting has higher gain than running the exact same policy in the noisy setting. This result
is important to us, since analyzing a policy in the noise-free setting is often easier. We are going to use Lemma 7
in the next section, to relate the gain of an optimal policy OPT: Aggz,, in the EC? objective (which assumes
tests to be noise-free), with the gain OPT: Aayx in the auxiliary function (which considers noisy test outcomes).

B.5 The Key Lemma: One-step Gain of ECED VS. k-step Gain of OPT

Now we are ready to state our key lemma, which connects 1-step: Asux(Xe,,, [ %) to OPT: Ajxux .

Lemma 8 (Key Lemma). Fiz n,7 € (0,1). Let n = |supp(O)| be the number of root-causes, t = |Y| be the
number of target values, OPT (dopt) be the optimal policy that achieves perr(OPT (dopt)) < dopt, and iy be the

avg

partial realization observed by running ECED with cost £. We denote by fiux(€) := By, [faux(¥e)] the expected
value of faux(e) over all the paths 1 at cost €. Assume that fi58(0) < 6. We then have

() — &, Ce
w0 - ey > DOt e
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where k = cost(OPT (dopt))), Cne = 2t(1 — 2€)%*n, cs = (6c+ 8)log(n/d), ¢ = 8 (10g(2n2/n))2, and c. = (1 —
2¢)2/16.

Proof of Lemma 8. Let 1, be a path ending up at level ¢ of the greedy algorithm. Recall that Agcz(Xe | 1¢)
denotes the gain in frc2 if we perform test e and assuming it to be noiseless (i.e., we perform edge cutting as
if the outcome of test e is noiseless), conditioning on partial observation ;. Further, recall that A ux(Xe | ¥¢)
denotes the gain in f,,x if we perform noisy test e after observing 1, and perform Bayesian update on the
root-causes.

Let e = argmax,, Agpcep(Xe | 1) be the test chosen by ECED, and é = argmax,, Agcz (X | ¢¢) be the test
that maximizes Aggz2, then by Lemma 3 we know

1— 2
AAUX(XE | w@) + 017,6 Z %

Lo
- 16

1
1= 2¢)? Apcz .y (Xe) (B.21)

(AECED,y, (Xe))

(AECED,y, (Xe))

Note that Agc2 4, (Xe) is the EC2 gain of test e over the normalized edge weights at step £+ 1 in the noiseless

setting. That is, upon observing 1y, we create a new EC2 problem instance (by considering the posterior

probability over root-causes at 1), and run (noiseless) greedy algorithm w.r.t. the EC2 objective on such problem
A

instance. Recall that ¢ = (1 — 2¢)/16. By adaptive submodularity of fgc2 (in the noiseless setting, see
Golovin et al. (2010)), we obtain

adaptive

. 1
submodul f —
su mo>u arity EC2,1/J2 ]E[fEC2,¢2]

- k

max AE02,1/}(X5)

where by fg e », We mean the initial EC2 objective value given partial realization ¢, and by E[fgce W] we mean
the expected gain in fgc2 when we run OPT (Jopt). Note that OPT (opt) has worst-case length k.

Now, imagine that we run the policy OPT (dopt), and upon completion of the policy we can observe the noise. We
consider the gain of such policy in frce:

(@) ®)
‘]L‘]::ll—C2 - ]E[f}éCﬂ] = p;lr - E[fEL)CQ] > p;:r _pEl,noiseless'

The reason for step (a) is that the error probability of the stochastic estimator upon observing 1y, i.e., p/ , is
equivalent to the total amount of edge weight at vy, i.e., fgCQ)W. The reason for step (b) is that under the
noiseless setting (i.e., assuming we have access to the noise), the EC2 objective is always a lower-bound on the
error probability of the stochastic estimator (due to normalization). Thus, E[fgq.] < pénoiseless.

Hence we get

Pepe — Pinoi
AAUX(XQ ‘ ¢) + Coe 2 ce E, ¢ E];:nmsclcss,dzg ]

Here p; 4, denotes the error probability under P [Y | ¢¢], and pé:noisva denotes the expected error probability of
running OPT (dopt) after 1, in the noise-free setting. By Lemma 7 we get

T €
Pi,yy ~ PEnoisy, .
k )

AAUX(Xe | IZJ) + Cne > Ce

where pé-’noisy,d}z denotes the expected error probability of running OPT (dopt) after ¢, in the noisy setting. By
(the lower bound in) Lemma 4, we know that p;—,w = pe(tpe) > pMAP (1)), and hence

ERR

MAP _5
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Taking expectation with respect to 1y, we get

sz [pg/P[{QP (1;[}@)] - 5opt

]EW [AAL‘X(XQ | 7!]) + Cn,e] > Ce 2

(B.22)

Using (the upper bound in) Lemma 2, we obtain

25;5( (f) = sz [fAUX ("/}5)]
< (Bc+4) (Ey, [Ha (phnn ()] + Ey, [phan’ (10¢)] log n)

()

< (Bc+4) (Ha (Ey, [porn (©0)]) +Eq, [pare - (0)] logn) (B.23)

where (a) is by Jensen’s inequality.

Suppose we run ECED, and achieve expected error probability dg, then clearly before ECED terminates we have
Ey, [PMAF (10¢)] > 6. Assuming Ey, [pMAF (¢,)] < 1/2, we have

W5 (0) < (3c+ 4)Ey, [pMAP ()] (2 log 4 log n>

1
Ey, [P ()]

< (Bc+4)Ey, [ gﬁﬁp(w)] (2 log6l + log n>
g

n
< Ey, [poe ($0)] - (6e+8)log = (B.24)
g
which gives us
avg cs2(6c+8)log & AV
MAP (0) 5=(6e+8) log 37 (0)
Ey, [pERR (wz)] > m = %~ (B-25)
Combining Equation (B.25) with Equation (B.22), we get
e (0) = R+ 1) = Ey, [Asux(e | ¥)]
0 s
> Ce © L o — Cn,e
_ fg)g((g) — OoptCs . Ce c
k Cs e
which completes the proof. O

B.6 Proof of Theorem 1: Near-optimality of ECED

We are going to put together the pieces from previous subsection, to give a proof of our main theoretical result
(Theorem 1).

Proof of Theorem 1. In the following, we use both OPT;; and OPT(dopt) to represent the optimal policy that
achieves prediction error dope, with worst-cast cost (i.e., length) k. Define S(7, ¢) to be the (partial) realization seen
by policy 7 under realization ¢. With slight abuse of notation, we use fi'% (OPT(y) := Eg [ faux(S(OPT (i, ¢))]
to denote the expected value achieved by running OPTy.

After running OPT;), we know by Lemma 2 that the expected value of f,yx is lower bounded by 2c¢ - dopr. That is,
Sopt " C5 < favg (OPT ) - 52 < favg (OPTyy) - 4log(n/dg), where the last inequality is due to cs = (6¢+8) log &<
8clog Jﬂg. We then have

Lemma 8 C

aa(l) = fRE+1) = (fRE(0) — Gopt - C5) - chE(; — e

Ce

av, av, n
2 ( Z\U)g(;(g) - AU)g( (OPT[k]) : 410g 5g> : k‘iC(S — Cnye (B26)
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Let Ay = fug(0) — f52 (OPT k) - 4log %, so that Inequality (B.26) implies Ay — Agyq > Ay - fes = Cp,e. From
here we get Ayyq < ( ) Ay + cy.e, and hence
c K’ K’ e\ !
Ay < < A 1— =1 -¢e
- k/
(a) ce 1 ( - ;525)
= o ( ¥ kca) Bot hes e
®) ) k
< exp (—k' ¢ ) Ao + ‘s Crp e
kcs Ce
/ K’
where step (a) is due to the fact that (1 —2)¥ < exp(—k'z) for any = < 1, and step (b) is due to ( kC5> >0

It follows that

av, av, n Ce ]CCg
AU;g((k/) - AU)g( (OPT[k]) -4log (57 <exp (k/ ]{365> Ao + 7 " Cpe
g €

. k
<oxp [ =K —= ) ( f250) — F2E (OPTyy) - 4log = ) + —2 - ¢
k05 6%

Ce

This gives us

e . k
REW) < 250 o () 4 12 OPT) atog 2 (1- e () )+ X2 )
g €
————
UB1 UB2 UB3

Denote the three terms on the RHS. of Equation (B.27) as UB1, UB2 and UB3, respectively. We get

Eq (B.23)

UB1 < (Bc+4)(1+logn)-exp ( K ;;6)
Eq (B.24)

UB2 < (6¢+8) - dopt log & Fow -4log 2 &

UB3 =k (6c+8)log 3 - %—(&M)m-k-leg%m

Now we set

k/ AL kcﬁ .In SISgn
A © 5g (B28)
Jopt = £

64-36-log n-log si -log %

and obtain exp ( K kccfé) = slogn It is easy to verify that UB1 < 2¢- Zg and UB2 < 2¢ 79

We further set

A d¢

17 T e (B.29)
and obtain UB3 = 2¢ Ig
Combining the upper bound derived above for UB1, UB2, UB3, and by Equation (B.27), we get fiig(k') < 2¢- d,.
By Lemma 2 we know that the error probability is upper bounded by pgrr = Ey,, [ MAP (4, )] < f‘UX (k < dg.

ERR

That is, with the cost k&’ specified in Equation (B.28), ECED is guaranteed to achieve pgrp < dg.

It remains to compute the (exact) value of k. Combining the definition of ¢ £ 8 (log(2n? /77))2 and c; =
(6¢ + 8) log(n/dg) with Equation (B.29) it is easy to verify that

n

2
nk
cs <cy- <log 6> -log 5
g g
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holds for some constant ¢;. Therefore by Equation (B.28),

E\? n 1. 8logn k nk\ 2 n\?
/ < . n ) _ .
EK<k-c¢ (log —(sg ) log —5g . In 3 0] (Cs (log —Jg ) (log 5g>

2 2
To put it in words, it suffices to run ECED for O (Ck (log g—k) (log %) ) steps to have expected error
€ g g

below dg, where k denotes the worst-case cost the optimal policy that achieves expected error probability

Jopt £0 (m); hence the completion of the proof. O
g

C Examples When GBS and the Most Informative Policy Fail

In this section, we provide problem instances where GBS and/or the Most Informative Policy may fail, while
ECED performs well. Since in the noise-free setting ECED is equivalent to EC?, it suffices to demonstrate the
limitations of GBS and the most informative policy, even if we provide just examples that apply to the noise-free
setting.

C.1 A Bad Example for GBS: Imbalanced Equivalence Classes

We use the same example as provided in Golovin et al. (2010). Consider an instance with a uniform prior
over n root-causes, 61, ...,0,, and two target values y; = r(61) = ...7(0n—1), and yo = 7(6,). There are tests
YV ={1,...,n} such that P[X, =116;] =1 {i = e} (all of unit cost). Here, 1{-} is the indicator function. See
Fig. 7 for illustration.

X1

=1

Y1 0) Xi = Y2

Figure 7: A problem instance where GBS performs significantly worse than ECED (EC?).

Now, suppose we want to solve Problem (2.1) for 6 = 1/n. Note that in the noise-free setting, the problem is
equivalent to find a minimal cost policy 7 that achieves 0 prediction error, because once the error probability
drops below 1/n we will know precisely which target value is realized.

In this case, the optimal policy only needs to select test n, however GBS may select tests {1,...,n} in order until
running test e, where © = 6, is the true root-cause. Given our uniform prior, it takes n/2 tests in expectation
until this happens, so that GBS pays, in expectation, n/2 times the optimal expected cost in this instance. Note
that in this example, ECED (equivalently, EC2) also selects test n, which is optimal.

C.2 A Bad Example for the Most Informative Policy: Treasure Hunt

In this section, we provide a treasure-hunt example, in which the most informative policy pays 2 (n/log(n)) times
the optimal cost. This example is adapted from Golovin et al. (2010), where they show that the most informative
policy (referred to as the Informative Gain policy), as well as the myopic policy that greedily maximizes the
reduction in the expected prediction error (referred as the Value of Information policy), both perform badly,
compared with EC?.

Consider the problem instance in Fig. 8(a). Fix s > 0 to be some integer, and let ¢ = |Y| = 2°. For each
target value y; € Y, there exists two root-causes, i.e., 8;1, 6;0, such that r(6,1) = 7(0;0) = y;- Denote a
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Y2

(a) Root-causes and their associated target values

ot A RYATY;

(b) Test set 1

ng{el,...

(d) Test set 3

Figure 8: A problem instance where the maximal informative policy, and the the myopic policy that greedily
maximizes the reduction in the expected prediction error, perform significantly worse than ECED (EC2).

root-causes as 6; o, if it belongs to target ¢ and is indexed by o. We assume a uniform prior over the root-causes:
{0i0}icqr, .. .t},0€0,1-

Suppose we want to solve Problem (2.1) for 6 = 1/3. Similarly with §C.1, the problem is equivalent to find a
minimal cost policy 7 that achieves 0 prediction error, because once the error probability drops below 1/3, we
will know precisely which target value is realized.

There are three set of tests, and all of them have binary outcomes and unit cost. The first set Vi := {eg} contains
one test eg, which tells us the value of o of the underlying root-cause 6; ,. Hence for all i, ® =6, , = X., =0
(see Fig. 8(b)). The second set of tests are designed to help us quickly discover the index of the target value via
binary search if we have already run eg, but to offer no information whatsoever (in terms of expected reduction in
the prediction error, or expected reduction in entropy of Y') if eg has not yet been run. There are a total number
of s tests in the second set Vs := {e1,ea,...,es}. For z € {1,...,t}, let b(z) be the k'" least-significant bit of
the binary encoding of z, so that z = > _; 2=1bi(2). Then, if © = 6, ,, then the outcome of test e € Vs is
X, = 1{¢r(i) = o} (see Fig. 8(c)). The third set of tests are designed to allow us to do a (comparatively slow)
sequential search on the index of the the target values. Specifically, we have V5 := {e]°?, ..., ej°1}, such that
© =0;0 = Xeea = 1{i = k} (Fig. 8(d)).

Now consider running the maximal informative policy 7 (the same analysis also applies to the value of information
policy, which we omits from the paper). Note that in the beginning, no single test from V; U Vs results in any
change in the distribution over Y, as it remains uniform no matter with test is performed. Hence, the maximal
informative policy only picks tests from Vs, which have non-zero (positive) expected reduction in the posterior
entropy of Y. In the likely event that the test chosen is not the index of Y, we are left with a residual problem in
which tests in V; UV, still have no effect on the posterior. The only difference is that there is one less class, but
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the prior remains uniform. Hence our previous argument still applies, and 7 will repeatedly select tests in Vs,

until a test has an outcome of 1. In expectation, the cost of 7 is least cost(m) > % 22:1 z= %

On the other hand, a smarter policy 7* will select test eg € V) first, and then performs a binary search by running
test eq,...,es € Vo to determine bg (i) for all 1 < k < s (and hence to determine the index ¢ of Y). Since the
tests have unit cost, the cost of 7* is cost(n*) = s + 1.

Since t = 2%, and n = 2t = 251! we conclude that

() t+1>t ns+1 n (")
cost(m) = —— > = = — = ——— cost(n™).
2 2 4logn  4log(n)

D Case Study: Pool-based Active Learning for Classification

Experimental setup. To demonstrate the empirical performance of ECED, we further conduct experiments
on two pool-based binary active classification tasks. In the active learning application, we can sequentially query
from a pool of data points, and the goal is to learn a binary classifier, which achieves some small prediction error
on the unseen data points from the pool, with the smallest number of queries as possible.

Active Learning: Targets and Root-causes To discretize the hypotheses space, we use a noisy version of
hit-and-run sampler as suggested in Chen & Krause (2013). Each hypothesis can be represented by a binary
vector indicating the outcomes of all data points in the training set. Then, we construct an epsilon-net on the
set of hypotheses (based on the Hamming distance between hypotheses). We obtain the equivalence classes for
ECED, by assigning each hypothesis to its closest center of epsilon-ball, measured by their Hamming distances.
Note that the Hamming distance between two hypotheses reflects the difference of prediction error. Consider
epsilon-net of fixed radius €. By construction, hypotheses that lie in the some equivalence classes are at most 2¢
away from each other; therefore the hypotheses which are within the epsilon-ball of the optimal hypotheses are
considered to be near-optimal. Using the terminology in this paper, hypotheses correspond to root-causes, and
the groups of hypothesis correspond to the target variable of interest. Running ECED, ideally, will help us locate
a near-optimal epsilon-ball as quickly as possible.

Baselines. We compare ECED with the popular uncertainty sampling heuristic (UNC-SVM), which sequentially
queries the data points which are the closest to the decision boundary of a SVM classifier. We also compare with
the GBS algorithm, which sequentially queries the data points that maximally reduces the volume of the version
space.

0.1 0.4
0.09 0.38
0.36
0.08 - UNC-sVM
2z 2034/
= 0.07 Random £0.32 Random
Qo Qo
0.06 s

£0.05 - UNC-SVM
0.04+ GBS /
0.03} ECED
0.22 5ps ECED/
0.02 0.2
20 40 60 80 5 10 15 20 25 30 35
Budget Budget
(a) EC? VS. GBS (b) WDBC (c) Fourclass

Figure 9: Pool-based Active Learning for Classification

In Fig. 9(a), we demonstrate the different behaviors between GBS and EC? on a 2-d plane. In this simple
example, there are 4 color-coded equivalence classes: we first sample hypotheses uniformly within the unit circle,
and then generate equivalence classes, by constructing an epsilon-net over the sampled hypotheses as previously
described. Fig. 9(a) illustrates two tests (i.e., the gray lines intersecting the circles) selected by ECED and
GBS, respectively. ECED primarily selects tests that best disambiguate the clusters, while GBS focuses on
disambiguate individual hypotheses.



Yuxin Chen, S. Hamed Hassani, Andreas Krause

Results. We evaluate ECED and the baseline algorithms on the UCI WDBC dataset (569 instances, 32-d)
and Fourclass dataset (862 instances, 2-d). For ECED and GBS, we sample a fixed number of 1000 hypotheses
in each random trial. For both instances we assume a constant error rate ¢ = 0.02 for all tests. Fig. 9(b) and
Fig. 9(c) demonstrate that ECED is competitive with the baselines. Such results suggests that grouping of
hypotheses could be beneficial when learning under noisy data.
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