Adaptive Sampling for Risk-Averse Stochastic

Learning

tldr: AdaCVaR, a novel algorithm for CVaR optimization in deep learning

What is the CVaR?

* In high-stake applications, we want to do well even in rare events.

 Standard ERM may sacrifice large-but-rare losses for the sake of
performing well in average.

 Rather than focusing on the mean, the CVaR optimizes the average of the

tail of the distribution and focuses on harder examples.
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Related Work and Stochastic Optimization

Most of the previous work (e.g., Fan et al. (2019)) optimize the CVaR using
the variational formula of Rockafellar & Uryasev (2000).
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Unfortunately, this formula is not well suited for large-scale stochastic

optimization. The variance of gradients is increased due to:
* Truncating the losses to zero

Multiplying losses by é
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AdaCVaR: A DRO Game

Instead of using the variational formula of Rockafellar & Uryasev (2000), we
use the distirbutionally robust formulation of the CVaR (Shapiro et al. 2014).
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 Game between a learner and a sampler. Challenge: DRO set is combinatorial.

* Sampler plays k.EXP3 from Alatur et al. (2020) to find the hardest
distributions for the models the learner selects, adaptively.
* Learner plays SGD on the examples proposed by the sampler.

 We exploit the problem structure i.e., combinatorial set with additive losses

implementing k. EXP3 with k-DPPs (Kulesza & Taskar 2012).
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Definition (Game Regret):
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Non-convex:

GameRegret = O(y/TN log N + esgpT)

Theorem (AdaCVaR Regret):
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Corollary (Online-to-Batch + Population Guarantee):
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Experimental Results

Convex Optimization Tasks:

Regression (Convex) Classification (Convex) Distribution Shift (Convex)
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« AdaCVaR has lower CVaR in Regression.
« AdaCVaR has highest accuracy and low CVaR in Classification.
« AdaCVaR has highest accuracy and lowest CVaR with distribution shift.

Non-Convex Optimization Tasks:

Non-Convex Classification Non-Convex Distribution Shift Accuracy
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« AdaCVaR has highest accuracy and lowest CVaR in image recognition.
« AdaCVaR performs consistently better under distribution shift.
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