
Non-convex: 
SGD error on ERM
Convex: 

Adaptive Sampling for Risk-Averse Stochastic 
Learning

What is the CVaR? 
• In high-stake applications, we want to do well even in rare events. 
• Standard ERM may sacrifice large-but-rare losses for the sake of 

performing well in average.
• Rather than focusing on the mean, the CVaR optimizes the average of the 

tail of the distribution and focuses on harder examples. 

AdaCVaR: A DRO Game

Related Work and Stochastic Optimization
Most of the previous work (e.g., Fan et al. (2019)) optimize the CVaR using 
the variational formula of Rockafellar & Uryasev (2000).

Experimental Results
Convex Optimization Tasks:

• AdaCVaR has lower CVaR in Regression. 
• AdaCVaR has highest accuracy and low CVaR in Classification.
• AdaCVaR has highest accuracy and lowest CVaR with distribution shift.
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• AdaCVaR has highest accuracy and lowest CVaR in image recognition.
• AdaCVaR performs consistently better under distribution shift.

Non-Convex Optimization Tasks:

VGG16 ResNet18
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Unfortunately, this formula is not well suited for large-scale stochastic 
optimization. The variance of gradients is increased due to:
• Truncating the losses to zero
• Multiplying losses by

Instead of using the variational formula of Rockafellar & Uryasev (2000), we 
use the distirbutionally robust formulation of the CVaR (Shapiro et al. 2014).

tldr: AdaCVaR, a novel algorithm for CVaR optimization in deep learning

• Game between a learner and a sampler. Challenge: DRO set is combinatorial.
• Sampler plays k.EXP3 from Alatur et al. (2020) to find the hardest 

distributions for the models the learner selects, adaptively. 
• Learner plays SGD on the examples proposed by the sampler.  
• We exploit the problem structure i.e., combinatorial set with additive losses

implementing k.EXP3 with k-DPPs (Kulesza & Taskar 2012).

min
✓

CVaR↵[L(✓)] = min
✓,`2R

`+
1

↵
E [max {0,L(✓)� `}]

`

Data

L
os
s `+ 1

↵ max {0;L(✓)� `}
L(✓)

min
✓

CVaR↵[L(✓)] = min
✓2⇥

max
q2Q↵

Eq[L(✓)]

Model ✓

Model ✓

Model ✓

Distribution q

Distribution q

Distribution q

Sampling Prob

D
at
a

Sampling Prob

D
at
a

Sampling Prob

D
at
a


