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Abstract
The optimization of expensive to evaluate, black-
box, mixed-variable functions, i.e. functions that
have continuous and discrete inputs, is a difficult
and yet pervasive problem in science and engi-
neering. In Bayesian optimization (BO), special
cases of this problem that consider fully contin-
uous or fully discrete domains have been widely
studied. However, few methods exist for mixed-
variable domains and none of them can handle dis-
crete constraints that arise in many real-world ap-
plications. In this paper, we introduce MIVABO, a
novel BO algorithm for the efficient optimization of
mixed-variable functions combining a linear surro-
gate model based on expressive feature representa-
tions with Thompson sampling. We propose an ef-
fective method to optimize its acquisition function,
a challenging problem for mixed-variable domains,
making MIVABO the first BO method that can han-
dle complex constraints over the discrete variables.
Moreover, we provide the first convergence analy-
sis of a mixed-variable BO algorithm. Finally, we
show that MIVABO is significantly more sample
efficient than state-of-the-art mixed-variable BO al-
gorithms on several hyperparameter tuning tasks,
including the tuning of deep generative models.

1 Introduction
Bayesian optimization (BO) [Močkus, 1975] is a well-
established paradigm to optimize costly-to-evaluate, com-
plex, black-box objectives that has been successfully applied
to many scientific domains. Most of the existing BO literature
focuses on objectives that have purely continuous domains,
such as those arising in tuning of continuous hyperparame-
ters of machine learning algorithms, recommender systems,
and preference learning [Shahriari et al., 2016]. More re-
cently, problems with purely discrete domains, such as food
safety control and model-sparsification in multi-component
systems [Baptista and Poloczek, 2018] have been considered.

However, many real-world optimization problems in sci-
ence and engineering are of mixed-variable nature, involv-
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ing both continuous and discrete input variables, and exhibit
complex constraints. For example, tuning the hyperparame-
ters of a convolutional neural network involves both continu-
ous variables, e.g., learning rate and momentum, and discrete
ones, e.g., kernel size, stride and padding. Also, these hyper-
parameters impose validity constraints, as some combinations
of kernel size, stride and padding define invalid networks.
Further examples of mixed-variable, potentially constrained,
optimization problems include sensor placement [Krause et
al., 2008], drug discovery [Negoescu et al., 2011], optimizer
configuration [Hutter et al., 2011] and many others. Nonethe-
less, only few BO methods can address the unconstrained ver-
sion of such problem and no existing method can handle the
constrained one. This work introduces the first algorithm that
can efficiently optimize mixed-variable functions subject to
known constraints with provable convergence guarantees.

Related Work. Extending continuous BO methods
[Shahriari et al., 2016] to mixed inputs requires ad-hoc
relaxation methods to map the problem to a fully continuous
one and rounding methods to map the solution back. This
ignores the original domain structure, makes the solution
quality dependent on the relaxation and rounding methods,
and makes it hard to handle discrete constraints. Extend-
ing discrete BO methods [Baptista and Poloczek, 2018;
Oh et al., 2019] to mixed inputs requires a discretization
of the continuous domain part, the granularity of which is
crucial: If it is too small, the domain becomes prohibitively
large; if it is too large, the domain may only contain poorly
performing values of the continuous inputs. Few BO methods
address the mixed-variable setting. SMAC [Hutter et al.,
2011] uses a random forest surrogate model. However, its
frequentist uncertainty estimates may be too inaccurate to
steer the sampling. TPE [Bergstra et al., 2011] uses kernel
density estimation to find inputs that will likely improve upon
and unlikely perform worse than the incumbent solution.
While SMAC and TPE can handle hierarchical constraints,
they cannot handle more general constraints over the discrete
variables, e.g., cardinality constraints. They also lack con-
vergence guarantees. Hyperband (HB) [Li et al., 2018] uses
cheap but less accurate approximations of the objective to dy-
namically allocate resources for function evaluations. BOHB
[Falkner et al., 2018] is the model-based counterpart of HB,
based on TPE. They thus extend existing mixed-variable
methods to the multi-fidelity setting rather than propos-



ing new ones, which is complementary to our approach,
rather than in competition with it. [Garrido-Merchán and
Hernández-Lobato, 2018] propose a Gaussian process kernel
to model discrete inputs without rounding bias. Their method
lacks guarantees and cannot handle discrete constraints. We
instead use discrete optimizers for the acquisition function,
which avoid bias by only making integer evaluations. Finally,
while [Hernández-Lobato et al., 2015; Gardner et al., 2014;
Sui et al., 2015] extend continuous BO methods to handle
unknown constraints, no method can handle known discrete
constraints in a mixed-variable domain.
Contributions. We introduce MIVABO, the first BO algo-
rithm for efficiently optimizing mixed-variable functions sub-
ject to known linear and quadratic integer constraints, encom-
passing many of the constraints present in real-world domains
(e.g. cardinality, budget and hierarchical constraints). It re-
lies on a linear surrogate model that decouples the contin-
uous, discrete and mixed components of the function using
an expressive feature expansion (Sec. 3.1). We exploit the
ability of this model to efficiently draw samples from the
posterior over the objective (Sec. 3.2) by combining it with
Thompson sampling, and show how to optimize the result-
ing constrained acquisition function (Sec. 3.3). While in con-
tinuous BO, optimizing the acquisition function is difficult
but has well-established solutions, this is not true for mixed-
variable spaces and doing this efficiently and accurately is
a key challenge that hugely impacts the algorithm’s perfor-
mance. We also provide the first convergence analysis of a
mixed-variable BO algorithm (Sec. 3.5). Finally, we demon-
strate the effectiveness of MIVABO on a set of complex hy-
perparameter tuning tasks, where it outperforms state-of-the-
art methods and is competitive with human experts (Sec. 4).

2 Problem Statement
We consider the problem of optimizing an unknown, costly-
to-evaluate function defined over a mixed-variable domain,
accessible through noisy evaluations and subject to known
linear and quadratic constraints. Formally, we aim to solve

minx∈X f(x) s.t. gc(x) ≥ 0, gd(x) ≥ 0, (1)
where X ⊆ X c × X d with continuous subspace X c and dis-
crete subspace X d. Both constraints gc(x) ≥ 0 over X c and
gd(x) ≥ 0 over X d are known, and specifically gd(x) are
linear or quadratic. We assume, that the domain of the con-
tinuous inputs is box-constrained and can thus, w.l.o.g., be
scaled to the unit hypercube, X c = [0, 1]Dc . We further as-
sume, w.l.o.g., that the discrete inputs are binary, i.e., vectors
xd ∈ X d = {0, 1}Dd are vertices of the unit hypercube. This
representation can effectively capture the domain of any dis-
crete function. For example, a vector xd = [xdi ]

Dd
i=1 ∈ X d can

encode a subset A of a ground set of Dd elements, such that
xdi = 1 ⇔ ai ∈ A and xdi = 0 ⇔ ai /∈ A, yielding a set
function. Alternatively, xd ∈ X d can be a binary encoding of
integer variables, yielding a function defined over integers.
Background. BO algorithms are iterative black-box opti-
mization methods which, at every step t, select an input
xt ∈ X and observe a noise-perturbed output yt , f(xt) + ε

with ε iid∼ N (0, β−1), β > 0. As evaluating f is costly, the

goal is to query inputs based on past observations to find a
global minimizer x∗ ∈ arg minx∈X f(x) as efficiently and
accurately as possible. To this end, BO algorithms leverage
two components: (i) a probabilistic function model (or surro-
gate), that encodes the belief about f based on the observa-
tions available, and (ii) an acquisition function α : X → R
that expresses the informativeness of input x about the lo-
cation of x∗, given the surrogate of f . Based on the model
of f , we query the best input measured by the acquisition
function, then update the model with the observation and re-
peat this procedure. The goal of the acquisition function is
to simultaneously learn about inputs that are likely to be op-
timal and about poorly explored regions of the input space,
i.e., to trade-off exploitation against exploration. Thus, BO
reduces the original hard black-box optimization problem to
a series of cheaper problems xt ∈ arg maxx∈X αt(x). How-
ever, in our case, these optimization problems involve mixed
variables and exhibit linear and quadratic constraints and are
thus still challenging. We now present MIVABO, an algo-
rithm to efficiently solve the optimization problem in Eq. (1).

3 MIVABO Algorithm
We first introduce the linear model used to represent the ob-
jective (Sec. 3.1) and describe how to do inference with it
(Sec. 3.2). We then show how to use Thompson sampling
to query informative inputs (Sec. 3.3) and, finally, provide a
bound on the regret incurred by MIVABO. (Sec. 3.5).

3.1 Model
We propose a surrogate model that accounts for both discrete
and continuous variables in a principled way, while balancing
two conflicting goals: Model expressiveness versus feasibil-
ity of Bayesian inference and of the constrained optimization
of the mixed-variable acquisition function. Linear models de-
fined over non-linear feature mappings, f(x) = w>φ(x), are
a class of flexible parametric models that strike a good trade-
off between model capacity, interpretability and ease of use
through the definition of features φ : X → RM . While the
complexity of the model is controlled by the number of fea-
tures, M , its capacity depends on their definition. Therefore,
to make the design of a set of expressive features more in-
tuitive, we treat separately the contribution to the objective f
from the discrete part of the domain, from the continuous part
of the domain, and from the interaction of the two,

f(x) =
∑
j∈{d,c,m}wj>φj(xj) (2)

where, for j ∈ {d, c,m}, φj(xj) = [φji (x
j)]

Mj

i=1 ∈ RMj and
wj ∈ RMj are the feature and weight vector for the discrete,
continuous and mixed function component, respectively.

In many real-world domains, a large set of features can be
discarded a priori to simplify the design space. It is com-
mon practice in high-dimensional BO to assume that only
low-order interactions between the variables contribute sig-
nificantly to the objective, which was shown for many prac-
tical problems [Rolland et al., 2018; Mutný and Krause,
2018], including deep neural network hyperparameter tun-
ing [Hazan et al., 2017]. Similarly, we focus on features de-
fined over small subsets of the inputs. Formally, we consider



φ(x) = [φk(xk)]Mk=1, where xk is a subvector of x contain-
ing exclusively continuous or discrete variables or a mix of
both. Thus, the objective f(x) can be decomposed into a sum
of low-dimensional functions fk(xk) , wkφk(xk) defined
over subspaces Xk ⊆ X with dim(Xk) � dim(X ). This
defines a generalized additive model [Rolland et al., 2018;
Hastie, 2017], where the same variable can be included in
multiple subvectors/features. The complexity of this model
is controlled by the effective dimensionality (ED) of the
subspaces, which is crucial under limited computational re-
sources. In particular, let D̄d , maxk∈[M ] dim(X dk ) denote
the ED of the discrete component in Eq. (2), i.e. the dimen-
sionality of the largest subspace that exclusively contains dis-
crete variables. Analogously, D̄c and D̄m denote the EDs
of the continuous and mixed component, respectively. Intu-
itively, the ED corresponds to the maximum order of the vari-
able interactions present in f . Then, the number of features
M ∈ O

(
DD̄d

d +DD̄c
c + (Dd +Dc)

D̄m
)

scales exponentially
in the EDs only (as modeling up to L-th order interactions
of N inputs requires

∑L
l=0

(
N
l

)
∈ O(NL) terms), which are

usually small, even if the true dimensionality is large.

Discrete Features φd. We aim to define features φd that
can effectively represent the discrete component of Eq. (2)
as a linear function, which should generally be able to cap-
ture arbitrary interactions between the discrete variables. To
this end, we consider all subsets S of the discrete variables
in X d (or, equivalently, all elements S of the powerset 2Xd

of Xd) and define a monomial
∏
j∈S x

d
j for each subset S

(where for S = ∅,
∏
j∈∅ x

d
j = 1). We then form a weighted

sum of all monomials to yield the multi-linear polynomial
wd>φd(xd) =

∑
S∈2Xd wS

∏
j∈S x

d
j . This functional repre-

sentation corresponds to the Fourier expansion of a pseudo-
Boolean function (PBF) [Boros and Hammer, 2002]. In prac-
tice, an exponential number of features can be prohibitively
expensive and may lead to high-variance estimators as in BO
one typically does not have access to enough data to robustly
fit a large model. Alternatively, [Baptista and Poloczek, 2018;
Hazan et al., 2017] empirically found that a second-order
polynomial in the Fourier basis provides a practical balance
between expressiveness and efficiency, even when the true
function is of higher order. In our model, we also con-
sider quadratic PBFs, wd>φd(xd) = w∅ +

∑n
i=1 w{i}x

d
i +∑

1≤i<j≤n w{i,j}x
d
i x
d
j , which induces the discrete feature

representation φd(xd) , [1, {xdi }
Dd
i=1, {xdi xdj}1≤i<j≤Dd

]>

and reduces the number of model weights to Md ∈ O(D2
d).

Continuous Features φc. In BO over continuous spaces,
most approaches are based on Gaussian process (GP) mod-
els [Williams and Rasmussen, 2006] due to their flexibility
and ability to capture large classes of continuous functions.
To fit our linear model formulation, we leverage GPs’ ex-
pressiveness by modeling the continuous part of our model
in Eq. (2) using feature expansions φc(xc) that result in a
finite linear approximation of a GP. One simple, yet theoret-
ically sound, choice is the class of Random Fourier Features
(RFFs) [Rahimi and Recht, 2008], which use Monte Carlo
integration for a randomized approximation of a GP. Alterna-

tively, one can use Quadrature Fourier Features [Mutný and
Krause, 2018], which instead use numerical integration for
a deterministic approximation, which is particularly effective
for problems with low effective dimensionality. Both feature
classes were successfully used in BO [Jenatton et al., 2017;
Mutný and Krause, 2018]. In our experiments, we use RFFs
approximating a GP with a squared exponential kernel, which
we found to best trade off complexity vs. accuracy in practice.

Mixed Features φm. The mixed term should capture as
rich and realistic interactions between the discrete and con-
tinuous variables as possible, while keeping model infer-
ence and acquisition function optimization efficient. To
this end, we stack products of all pairwise combinations
of features of the two variable types, i.e. φm(xd,xc) ,
[φdi (x

d) ·φcj(xc)]>1≤i≤Md,1≤j≤Mc
. This formulation provides

a good trade-off between modeling accuracy and computa-
tional complexity. In particular, it allows us to reduce φm

to the discrete feature representation φd when conditioned
on a fixed assignment of continuous variables φc (and vice
versa). This property is crucial for optimizing the acqui-
sition function, as it allows us to optimize the mixed term
of our model by leveraging the tools for optimizing the dis-
crete and continuous parts individually. The proposed rep-
resentation contains MdMc features, resulting in a total of
M = Md + Mc + MdMc. To reduce model complexity,
prior knowledge about the problem can be incorporated into
the construction of the mixed features. In particular, one may
consider the following approaches. Firstly, one can exploit
a known interaction structure between variables, e.g., in form
of a dependency graph, and ignore the features that are known
to be irrelevant. Secondly, one can start by including all of
the proposed pairwise feature combinations and progressively
discard not-promising ones. Finally, for high-dimensional
problems, one can do the opposite and progressively add pair-
wise feature combinations, starting from the empty set.

3.2 Model Inference
Let X1:t ∈ Rt×D be the matrix whose ith row contains the
input xi ∈ X queried at iteration i, dimX = D, and let
y1:t = [y1, . . . , yt]

> ∈ Rt be the array of the corresponding
noisy function observations. Also, let Φ1:t ∈ Rt×M be the
matrix whose ith row contains the featurized input φ(xi) ∈
RM . The formulation of f in Eq. (2) and the noisy observa-
tion model induce the Gaussian likelihood p(y1:t|X1:t,w) =
N (Φ1:tw, β

−1I). To reflect our a priori belief about the
weight vector w and thus f , we specify a prior distribution
over w. A natural choice for this is a zero-mean isotropic
Gaussian prior p(w|α) = N (0, α−1I), with precision α > 0,
which encourages w to be uniformly small, so that the final
predictor is a sum of all features, each giving a small, non-
zero contribution. Given the likelihood and prior, we infer the
posterior p(w|X1:t,y1:t, α, β) ∝ p(y1:t|X1:t,w, β)p(w|α),
which due to conjugacy is Gaussian, p(w|X1:t,y1:t) =
N (m,S−1), with mean m = βS−1Φ>1:ty1:t ∈ RM and pre-
cision S = αI + βΦ>1:tΦ1:t ∈ RM×M [Williams and Ras-
mussen, 2006]. This simple analytical treatment of the poste-
rior distribution over w is a main benefit of this model, which
can be viewed as a GP with a linear kernel in feature space.



3.3 Acquisition Function
We propose to use Thompson sampling (TS) [Thompson,
1933], which samples weights w̃ ∼ p(w|X1:t,y1:t, α, β)
from the posterior and chooses the next input by solving
x̂ ∈ arg minx∈X w̃>φ(x). TS intuitively focuses on inputs
that are plausibly optimal and has previously been success-
fully applied in both discrete and continuous domains [Bap-
tista and Poloczek, 2018; Mutný and Krause, 2018].

TS requires solving x̂ ∈ arg minx∈X w̃>t φ(x), which is a
challenging mixed-variable optimization problem. However,
as w̃>t φ(x) decomposes as in Eq. (2), we can naturally use an
alternating optimization scheme which iterates between opti-
mizing the discrete variables xd conditioned on a particular
setting of the continuous variables xc and vice versa, until
convergence to some local optimum. While this scheme pro-
vides no theoretical guarantees, it is simple and thus widely
and effectively applied in many contexts where the objec-
tive is hard to optimize. In particular, we iteratively solve
x̂d ∈ arg minxd∈Xd

(
w̃d>φd(xd) + w̃m>φm(xd,xc =

x̂c)
)
, x̂c ∈ arg minxc∈X c

(
w̃c>φc(xc) + w̃m>φm(xd =

x̂d,xc)
)
. Importantly, using the mixed features proposed in

Sec. 3.1, these problems can be optimized by purely discrete
and continuous optimizers, respectively. This also holds in
the presence of mixed constraints gm(x) ≥ 0 if those decom-
pose accordingly into discrete and continuous constraints.

This scheme leverages independent subroutines for dis-
crete and continuous optimization: For the discrete part,
we exploit the fact that optimizing a second-order pseudo-
Boolean function is equivalent to a binary integer quadratic
program (IQP) [Boros and Hammer, 2002], allowing us to
exploit commonly-used efficient and robust solvers such as
Gurobi or CPLEX. While solving general binary IQPs is
NP-hard [Boros and Hammer, 2002], these optimizers are
in practice very efficient for the dimensionalities we con-
sider (i.e., Dd < 100). This approach allows us to use any
functionality offered by these tools, such as the ability to
optimize objectives subject to linear constraints Axd ≤ b,
A ∈ RK×Dd ,b ∈ RK or quadratic constraints xd

>
Qxd +

q>xd ≤ b, Q ∈ RDd×Dd ,q ∈ RDd , b ∈ R. For the contin-
uous part, one can use optimizers commonly used in contin-
uous BO, such as L-BFGS or DIRECT. In our experiments,
we use Gurobi as the discrete and L-BFGS as the continuous
solver within the alternating optimization scheme, which we
always run until convergence.

3.4 Model Discussion
BO algorithms are comprised of three major design choices:
the surrogate model to estimate the objective, the acquisi-
tion function to measure informativeness of the inputs and
the acquisition function optimizer to select queries. Due to
the widespread availability of general-purpose optimizers for
continuous functions, continuous BO is mostly concerned
with the first two design dimensions. However, this is dif-
ferent for mixed-variable constrained problems. We show
in Sec. 4 that using a heuristic optimizer for the acquisi-
tion function optimization leads to poor queries and, there-
fore, poor performance of the BO algorithm. Therefore, the
tractability of the acquisition function optimization influences

and couples the other design dimensions. In particular, the
following considerations make the choice of a linear model
and TS the ideal combination of surrogate and acquisition
function for our problem. Firstly, the linear model is prefer-
able to a GP with a mixed-variable kernel as the latter would
complicate the acquisition function optimization for two rea-
sons: (i) the posterior samples would be arbitrary nonlin-
ear functions of the discrete variables and (ii) it would be
non-trivial to evaluate them at arbitrary points in the domain.
In contrast, our explicit feature expansion solves both prob-
lems, while second order interactions provide a valid dis-
crete function representation [Baptista and Poloczek, 2018;
Hazan et al., 2017] and lead to tractable quadratic MIPs with
capacity for complex discrete constraints. Moreover, Random
Fourier Features approximate common GP kernels arbitrar-
ily well, and inference in MIVABO scales linearly with the
number of data points, making it applicable in cases where
GP inference, which scales cubically with the number of data
points, would be prohibitive. Secondly, TS induces a sim-
ple relation between the surrogate and the resulting optimiza-
tion problem for the acquisition function, allowing to trade
off model expressiveness and optimization tractability, which
is a key challenge in mixed-variable domains. Finally, the
combination of TS and the linear surrogate facilitates the con-
vergence analysis described in Sec. 3.5, making MIVABO the
first mixed-variable BO method with theoretical guarantees.

3.5 Convergence Analysis
Using a linear model and Thompson sampling, we can lever-
age convergence analysis from linearly parameterized multi-
armed bandits, a well-studied class of methods for solving
structured decision making problems [Abeille et al., 2017].
These also assume the objective to be linear in features
φ(x) ∈ RM with a fixed but unknown weight vector w ∈
RM , i.e. E[f(x)|φ(x)] = w>φ(x), and aim to minimize the
total regret up to time T : R(T ) =

∑T
t=1(f(x∗) − f(xt)).

We obtain the following regret bound for MIVABO:
Proposition 1. Assume that the following assumptions hold
in every iteration t = 1, . . . , T of the MIVABO algorithm:
1. w̃t∼N (m, 24M lnT ln 1

δS
−1), i.e. with scaled variance.

2. xt = arg minx w̃>φ(x) is selected exactly.1

3. ‖w̃t‖2 ≤ c, ‖φ(xt)‖2 ≤ c, ‖f(x∗)−f(xt)‖2 ≤ c ,c ∈ R+.

Then,R(T ) ≤ Õ
(
M3/2

√
T ln 1

δ

)
with probability 1− δ.

Prop. 1 follows from Theorem 1 in [Abeille et al., 2017]
and works for infinite arms x ∈ X , |X | = ∞. In our set-
ting, both the discrete and continuous Fourier features (and,
thus, the mixed features) satisfy the standard boundedness as-
sumption, such that the proof indeed holds. Prop. 1 implies
no-regret, limT→∞R(T )/T = 0, i.e., convergence to the
global minimum, since the minimum found after T iterations
is no further away from f(x∗) than the mean regretR(T )/T .
To our knowledge, MIVABO is the first mixed-variable BO
algorithm for which such a guarantee is known to hold.

1To this end, one can use more expensive but theoretically
backed optimization methods instead of the alternating one, such as
the powerful and popular dual decomposition [Sontag et al., 2011].



4 Experiments
We present experimental results on tuning the hyperparam-
eters of two machine learning algorithms, namely gradient
boosting and a deep generative model, on multiple datasets.

Experimental Setup. For MIVABO2, we set the prior vari-
ance α, observation noise variance β, and kernel bandwidth
σ to 1.0, and scale the variance as stated in Prop. 1. We
compare against SMAC, TPE, random search, and the pop-
ular GPyOpt BO package. GPyOpt uses a GP model with
the upper confidence bound acquisition function [Srinivas et
al., 2010], and accounts for mixed variables by relaxing dis-
crete variables to be continuous and later rounding them to
the nearest discrete neighbor. To separate the influence of
model choice and acquisition function optimization, we also
consider the MIVABO model optimized by simulated anneal-
ing (SA) (MIVABO-SA) and the GP approach optimized by
SA (GP-SA). We compare against the SA-based variants only
in constrained settings, using more principled methods in un-
constrained ones. To handle constraints, SA assigns high en-
ergy values to invalid inputs, making the probability of mov-
ing there negligible. We use SMAC, TPE and GPyOpt and
SA with their respective default settings.

4.1 Gradient Boosting Tuning
The OpenML database [Vanschoren et al., 2014] contains
evaluations for various machine learning methods trained
on several datasets with many hyperparameter settings. We
consider extreme gradient boosting (XGBoost) [Chen and
Guestrin, 2016], one of the most popular OpenML bench-
marks, and tune its ten hyperparameters – three are discrete
and seven continuous – to minimize the classification error
on a held-out test set (without any constraints). We use two
datasets, each containing more than 45000 hyperparameter
settings. To evaluate hyperparameter settings for which no
data is available, we use a surrogate modeling approach based
on nearest neighbor [Eggensperger et al., 2015], meaning
that the objective returns the error of the closest (w.r.t. Eu-
clidean distance) setting available in the dataset. Fig. 1 shows
that MIVABO achieves performance which is either signifi-
cantly stronger than (left dataset) or competitive with (right
dataset) the state-of-the-art mixed-variable BO algorithms on
this challenging task. GPyOpt performs poorly, likely be-
cause it cannot account for discrete variables in a principled
way. As compared to TPE and SMAC, MIVABO seems to
benefit from more sophisticated uncertainty estimation.

4.2 Deep Generative Model (DGM) Tuning
DGMs recently received considerable attention in the ma-
chine learning community. Despite their popularity and im-
portance, effectively tuning their hyperparameters is a ma-
jor challenge. We consider tuning the hyperparameters of a
variational autoencoder (VAE) [Kingma and Welling, 2014]
composed of a convolutional encoder and a deconvolutional
decoder [Salimans et al., 2015]. The VAEs are evaluated on
stochastically binarized MNIST, as in [Burda et al., 2016],

2We provide a Python implementation of MIVABO at https:
//github.com/edaxberger/mixed_variable_bo.

and FashionMNIST. They are trained on 60000 images for
32 epochs, using Adam with a mini-batch size of 128. We
report the negative log-likelihood (NLL; in nats) achieved by
the VAEs on a held-out test set of 10000 images, as estimated
via importance sampling using 32 samples per test point. To
our knowledge, no other BO paper considered DGM tuning.

VAE tuning is difficult due to the high-dimensional and
structured nature of its hyperparameter space, and, in par-
ticular, due to constraints arising from dependencies between
some of its parameters. We tune 25 discrete parameters defin-
ing the model architecture, e.g. the number of convolutional
layers, their stride, padding and filter size, the number and
width of fully-connected layers, and the latent space dimen-
sionality. We further tune three continuous parameters for
the optimizer and regularization. Crucially, mutual dependen-
cies between the discrete parameters result in complex con-
straints, as certain combinations of stride, padding and filter
size lead to invalid architectures. Particularly, for the encoder,
the shapes of all layers must be integral, and for the decoder,
the output shape must match the input data shape, i.e., one
channel of size 28 × 28 for {Fashion}MNIST. The latter
constraint is especially challenging, as only a small number of
decoder configurations yield the required output shape. Thus,
even for rather simple datasets such as {Fashion}MNIST,
tuning such a VAE is significantly more challenging than, say,
tuning a convolutional neural network for classification.

While MIVABO can conveniently capture these restric-
tions via linear and quadratic constraints, the competing
methods cannot. To enable a comparison that is as fair as
possible, we thus use the following sensible heuristic to incor-
porate the knowledge about the constraints into the baselines:
If a method tries to evaluate an invalid parameter configura-
tion, we return a penalty error value, which will discourage
a model-based method to sample this (or a similar) setting
again. However, for fairness, we only report valid observa-
tions and ignore all configurations that violated a constraint.
We set the penalty value to 500 nats, which is the error in-
curred by a uniformly random generator. We investigated the
impact of the penalty value (e.g., we also tried 250 and 125
nats) and found that it does not qualitatively affect the results.

Fig. 3 shows that MIVABO significantly outperforms the
competing methods on this task, both on MNIST (left) and
FashionMNIST (right). This is because MIVABO can nat-
urally encode the constraints and thus directly optimize over
the feasible region in parameter space, while TPE, SMAC and
GPyOpt need to learn the constraints from data. They fail to
do so and get stuck in bad local optima early on. The model-
based approaches likely struggle due to sharp discontinuities
in hyperparameter space induced by the constraint violation
penalties (i.e., as invalid configurations may lie close to well-
performing configurations). In contrast, random search is ag-
nostic to these discontinuities, and thus notably outperforms
the model-based methods. Lastly, GP-SA and MIVABO-SA
struggle as well, suggesting that while SA can avoid invalid
inputs, the effective optimization of complex constrained ob-
jectives crucially requires more principled approaches for ac-
quisition function optimization, such as the one we propose.
This shows that all model choices for MIVABO (as discussed
in Sec. 3.4) are necessary to achieve such strong results.
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Figure 1: XGBoost hyperparameter tuning on monks-problem-1 (left) and steel-
plates-fault (right). Mean ± one std. of the validation error over 16 random seeds. MIVABO
significantly outperforms the baselines on the first dataset, and is competitive on the second.

Figure 2: Randomly chosen MNIST
test images (left column) and their re-
constructions by the best VAE models
found by MIVABO, random search,
GPyOpt, TPE and SMAC (left to
right), thus ordered by NLL values,
which seem to capture visual quality.
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Figure 3: VAE hyperparameter tuning on MNIST (left) and FashionMNIST (right). Mean ±
one std. of the NLL in nats, estimated using 32 importance samples, over 8 random seeds. Every
model was trained for 32 epochs. MIVABO significantly outperforms the state-of-the-art baselines,
demonstrating its ability to handle the complex constrained nature of the VAE’s parameter space.

Method Time NLL
SMAC 0.32s 99.09
TPE 0.12s 97.05
GPyOpt 0.65s 97.33
Random 0.01s 93.74
MIVABO 7.39s 84.25

Figure 4: Mean wall-clock time of
one iteration (excluding function eval-
uation time) and mean negative log-
likelihood (NLL) in nats, estimated
with 5000 importance samples, of the
best VAEs found after 32 BO itera-
tions (as in Fig. 3), when trained for
3280 epochs. Human expert baseline
for even deeper models is 82-83 nats.

Although log-likelihood scores allow for a quantitative
comparison, they are hard to interpret for humans. Thus, for
a qualitative comparison, Fig. 2 visualizes the reconstruction
quality achieved on MNIST by the best VAE configuration
found by all methods after 32 BO iterations. The VAEs were
trained for 32 epochs each, as in Fig. 3. The likelihoods seem
to correlate with the quality of appearance, and the model
found by MIVABO arguably produces the visually most ap-
pealing reconstructions among all models. Note that while
MIVABO requires more time than the baselines (see Fig. 4),
this is still negligible compared to the cost of a function eval-
uation, which involves training a deep generative model. Fi-
nally, the best VAE found by MIVABO achieves 84.25 nats on
MNIST when trained for 3280 epochs and using 5000 impor-
tance samples for log-likelihood estimation, i.e. the setting
used in [Burda et al., 2016] (see Fig. 4). This is compara-
ble to the performance of 82-83 nats achieved by human ex-
pert tuned models, e.g. as reported in [Salimans et al., 2015]
(which use even more convolutional layers and a more sophis-
ticated inference method), highlighting MIVABO’s effective-
ness in tuning complex deep neural network architectures.

5 Conclusion
We propose MIVABO, the first method for efficiently opti-
mizing expensive mixed-variable black-box functions subject

to linear and quadratic discrete constraints. MIVABO com-
bines a linear model of expressive features with Thompson
sampling, making it simple yet effective. Moreover, it is
highly flexible due to the modularity of its components, i.e.,
the mixed-variable features, and the optimization oracles for
the acquisition procedure. This allows practitioners to tailor
MIVABO to specific objectives, e.g. by incorporating prior
knowledge in the feature design or by leveraging optimizers
handling specific types of constraints. We show that MIV-
ABO enjoys theoretical convergence guarantees that compet-
ing methods lack. Finally, we empirically demonstrate that
MIVABO significantly improves optimization performance
as compared to state-of-the-art methods for mixed-variable
optimization on complex hyperparameter tuning tasks.
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