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ETH Zürich
josipd@inf.ethz.ch

Andreas Krause
Department of Computer Science

ETH Zürich
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Abstract

Submodular optimization has found many applications in machine learning and
beyond. We carry out the first systematic investigation of inference in probabilis-
tic models defined through submodular functions, generalizing regular pairwise
MRFs and Determinantal Point Processes. In particular, we present L-FIELD, a
variational approach to general log-submodular and log-supermodular distribu-
tions based on sub- and supergradients. We obtain both lower and upper bounds
on the log-partition function, which enables us to compute probability intervals
for marginals, conditionals and marginal likelihoods. We also obtain fully factor-
ized approximate posteriors, at the same computational cost as ordinary submod-
ular optimization. Our framework results in convex problems for optimizing over
differentials of submodular functions, which we show how to optimally solve.
We provide theoretical guarantees of the approximation quality with respect to
the curvature of the function. We further establish natural relations between our
variational approach and the classical mean-field method. Lastly, we empirically
demonstrate the accuracy of our inference scheme on several submodular models.

1 Introduction

Submodular functions [1] are a rich class of set functions F : 2V → R, investigated originally
in game theory and combinatorial optimization. They capture natural notions such as diminishing
returns and economies of scale. In recent years, submodular optimization has seen many important
applications in machine learning, including active learning [2], recommender systems [3], document
summarization [4], representation learning [5], clustering [6], the design of structured norms [7] etc.
In this work, instead of using submodular functions to obtain point estimates through optimiza-
tion, we take a Bayesian approach and define probabilistic models over sets (so called point pro-
cesses) using submodular functions. Many of the aforementioned applications can be understood
as performing MAP inference in such models. We develop L-FIELD, a general variational infer-
ence scheme for reasoning about log-supermodular (P (A) ∝ exp(−F (A))) and log-submodular
(P (A) ∝ exp(F (A))) distributions, where F is a submodular set function.

Previous work. There has been extensive work on submodular optimization (both approximate and
exact minimization and maximization, see, e.g., [8, 9, 10, 11]). In contrast, we are unaware of pre-
vious work that addresses the general problem of probabilistic inference in Bayesian submodular
models. There are two important special cases that have received significant interest. The most
prominent examples are undirected pairwise Markov Random Fields (MRFs) with binary variables,
also called the Ising model [12], due to their importance in statistical physics, and applications, e.g.,
in computer vision. While MAP inference is efficient for regular (log-supermodular) MRFs, com-
puting the partition function is known to be #P-hard [13], and the approximation problem has been
also shown to be hard [14]. Also, there is no FPRAS in the log-submodular case unless RP=NP [13].
An important case of log-submodular distributions is the Determinantal Point Process (DPP), used
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in machine learning as a principled way of modeling diversity. Its partition function can be com-
puted efficiently, and a 1

4 -approximation scheme for finding the (NP-hard) MAP [15] is known. In
this paper, we propose a variational inference scheme for general Bayesian submodular models, that
encompasses these two and many other distributions, and has instance-dependent quality guaran-
tees. A hallmark of the models is that they capture high-order interactions between many random
variables. Existing variational approaches [16] cannot efficiently cope with such high-order interac-
tions — they generally have to sum over all variables in a factor, scaling exponentially in the size of
the factor. We discuss this prototypically for mean-field in Sec. 5.

Our contributions. In summary, our main contributions are
• We provide the first general treatment of probabilistic inference with log-submodular and

log-supermodular distributions, that can capture high-order variable interactions.
• We develop L-FIELD, a novel variational inference scheme that optimizes over sub- and

supergradients of submodular functions. Our scheme yields both upper and lower bounds
on the partition function, which imply rigorous probability intervals for marginals. We can
also obtain factorial approximations of the distribution at no larger computational cost than
performing MAP inference in the model (for which a plethora of algorithms are available).

• We identify a natural link between our scheme and the well-known mean-field method.
• We establish theoretical guarantees about the accuracy of our bounds, dependent on the

curvature of the underlying submodular function.
• We demonstrate the accuracy of L-FIELD on several Bayesian submodular models.

2 Submodular functions and optimization

Submodular functions are set functions satisfying a diminishing returns condition. Formally, let V
be some finite ground set, w.l.o.g. V = {1, . . . , n}, and consider a set function F : 2V → R. The
marginal gain of adding item i ∈ V to the set A ⊆ V w.r.t. F is defined as F (i|A) = F (A∪ {i})−
F (A). Then, a function F : 2V → R is said to be submodular if for all A ⊆ B ⊆ V and i ∈ V −B
it holds that F (i|A) ≥ F (i|B). A function F is called supermodular if −F is submodular. Without
loss of generality1, we will also make the assumption that F is normalized so that F (∅) = 0.

The problem of submodular function optimization has received significant attention. The (uncon-
strained) minimization of submodular functions, minA F (A), can be done in polynomial time.
While general purpose algorithms [8] can be impractical due to their high order, several classes
of functions admit faster, specialized algorithms, e.g. [17, 18, 19]. Many important problems can
be cast as the minimization of a submodular objective, ranging from image segmentation [20, 12] to
clustering [6]. Submodular maximization has also found numerous applications, e.g. experimental
design [21], document summarization [4] or representation learning [5]. While this problem is in
general NP-hard, effective constant-factor approximation algorithms exist (e.g. [22, 11]).

In this paper we lift results from submodular optimization to probabilistic inference, which lets us
quantify uncertainty about the solutions of the problem, instead of binding us to a single one. Our
approach allows us to obtain (approximate) marginals at the same cost as traditional MAP inference.

3 Probabilistic inference in Bayesian submodular models

Which Bayesian models are associated with submodular functions? Suppose F : 2V → R is a sub-
modular set function. We consider distributions over subsets2 A ⊆ V of the form P (A) = 1

Z e
+F (A)

and P (A) = 1
Z e
−F (A), which we call log-submodular and log-supermodular, respectively. The

normalizing quantity Z =
∑
S⊆V e

±F (S) is called the partition function, and − logZ is also
known as free energy in the statistical physics literature. Note that distributions over subsets of V
are isomorphic to distributions of |V | = n binary random variables X1, . . . , Xn ∈ {0, 1} — we
simply identify Xi as the indicator function of the event i ∈ A, or formally Xi = [i ∈ A].

Examples of log-supermodular distributions. There are many distributions that fit this frame-
work. As a prominent example, consider binary pairwise Markov random fields (MRFs),

1The functions F (A) and F (A) + c encode the same distributions by virtue of normalization.
2In the appendix we also consider cardinality constraints, i.e., distributions over sets A that satisfy |A| ≤ k.
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P (X1, . . . , Xn) = 1
Z
∏
i,j φi,j(Xi, Xj). Assuming the potentials φi,j are positive, such MRFs

are equivalent to distributions P (A) ∝ exp(−F (A)), where F (A) =
∑
i,j Fi,j(A), and Fi,j(A) =

− log φi,j([i ∈ A], [j ∈ A]). An MRF is called regular iff each Fi,j is submodular (and con-
sequently P (A) is log-supermodular). Such models are extensively used in applications, e.g. in
computer vision [12]. More generally, a rich class of distributions can be defined using decompos-
able submodular functions, which can be written as sums of (usually simpler) submodular functions.
As an example, let G1, . . . , Gk ⊆ V be groups of elements and let φ1, . . . , φk : [0,∞) → R be
concave. Then, the function F (A) =

∑k
i=1 φi(|Gi ∩ A|) is submodular. Models using these types

of functions strictly generalize pairwise MRFs, and can capture higher-order variable interactions,
which can be crucial in computer vision applications such as semantic segmentation (e.g. [23]).

Examples of log-submodular distributions. A prominent example of log-submodular distributions
are Determinantal Point Processes (DPPs) [24]. A DPP is a distribution over sets A of the form
P (A) = 1

Z exp(F (A)), where F (A) = log |KA|. Here, K ∈ RV×V is a positive semi-definite
matrix, KA is the square submatrix indexed by A, and | · | denotes the determinant. Because K is
positive semi-definite, F (A) is known to be submodular, and hence DPPs are log-submodular. An-
other natural model is that of facility location. Assume that we have a set of locations V where we
can open shops, and a set N of customers that we would like to serve. For each customer i ∈ N and
location j ∈ V we have a non-negative number Ci,j quantifying how much service i gets from loca-
tion j. Then, we consider F (A) =

∑
i∈N maxj∈A Ci,j . We can also penalize the number of open

shops and use a distribution P (A) ∝ exp(F (A)− λ|A|) for λ > 0. Such objectives have been used
for optimization in many applications, ranging from clustering [25] to recommender systems [26].

The Inference Challenge. Having introduced the models that we consider, we now show how to do
inference in them3. Let us introduce the following operations that preserve submodularity.
Definition 1. Let F : 2V → R be submodular and let X,Y ⊆ V . Define the submodular functions
FX as the restriction of F to 2X , and FX : 2V−X → R as FX(A) = F (A ∪X)− F (X).

First, let us see how to compute marginals. The probability that the random subset S distributed as
P (S = A) ∝ exp(−F (A)) is in some non-empty lattice [X,Y ] = {A | X ⊆ A ⊆ Y } is equal to

P (S ∈ [X,Y ]) =
1

Z
∑

X⊆A⊆Y

exp(−F (A)) =
1

Z
∑

A⊆Y−X

exp(−F (X ∪A)) = e−F (X)ZYX
Z
, (1)

where ZYX =
∑
A⊆Y−X e

−(F (X∪A)−F (X)) is the partition function of (FX)Y . Marginals P (i ∈ S)

of any i ∈ V can be obtained using [{i}, V ]. We also obtain conditionals — if, for example, we
condition on the event on (1), we have P (S = A|S ∈ [X,Y ]) = exp(−F (A))/ZYX if A ∈ [X,Y ],
0 otherwise. Note that log-supermodular distributions are conjugate with each other: for a log-
supermodular prior P (A) ∝ exp(−F (A)) and a likelihood function4 P (E | A) ∝ exp(−L(E;A)),
for which L is submodular w.r.t. A for each evidence E, the posterior P (A | E) ∝ exp(−(F (A) +
L(E;A))) is log-supermodular as well. The same holds for log-submodular distributions.

4 The variational approach
In Section 3 we have seen that due to the closure properties of submodular functions, important in-
ference tasks (e.g., marginals, conditioning) in Bayesian submodular models require computing par-
tition functions of suitably defined/restricted submodular functions. Given that the general problem
is #P hard, we seek approximate methods. The main idea is to exploit the peculiar property of sub-
modular functions that they can be both lower- and upper-bounded using simple additive functions
of the form s(A)+c, where c ∈ R and s : 2V → R is modular, i.e. it satisfies s(A) =

∑
i∈A s({i}).

We will also treat modular functions s(·) as vectors s ∈ RV with coordinates si = s({i}). Because
modular functions have tractable log-partition functions, we obtain the following bounds.
Lemma 1. If ∀A ⊆ V : sl(A) + cl ≤ F (A) ≤ su(A) + cu for modular su, sl, and cl, cu ∈ R, then

logZ+(sl, cl) ≤ log
∑
A⊆V exp(+F (A)) ≤ logZ+(su, cu) and

logZ−(su, cu) ≤ log
∑
A⊆V exp(−F (A)) ≤ logZ−(sl, cl),

where logZ+(s, c) = c+
∑
i∈V log(1 + esi) and logZ−(s, c) = −c+

∑
i∈V log(1 + e−si).

3We consider log-supermodular distributions, as the log-submodular case is analogous.
4Such submodular loss functions L have been considered, e.g., in document summarization [4].
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We can use any modular (upper or lower) bound s(A) + c to define a completely factorized
distribution that can be used as a proxy to approximate values of interest of the original distribution.
For example, the marginal of i ∈ A under Q(A) ∝ exp(−s(A) + c) is easily seen to be 1/(1 + esi).

Instead of optimizing over all possible bounds of the above form, we consider for each X ⊆ V two
sets of modular functions, which are exact atX and lower- or upper-bound F respectively. Similarly
as for convex functions, we define [8][§6.2] the subdifferential of F at X as

∂F (X) = {s ∈ Rn | ∀Y ⊆ V : F (Y ) ≥ F (X) + s(Y )− s(X)}. (2)

The superdifferential ∂F (X) is defined analogously by inverting the inequality sign [27]. For each
subgradient s ∈ ∂F (X), the function gX(Y ) = s(Y ) + F (X) − s(X) is lower bounding F .
Similarly, for a supergradient s ∈ ∂F (X), hX(Y ) = s(Y )+F (X)−s(X) is an upper bound of F .
Note that both hX and gX are of the form that we considered (modular plus constant) and are tight at
X , i.e. hX(X) = gX(X) = F (X). Because we will be optimizing over differentials, we define for
any X ⊆ V the shorthands Z+

X(s) = Z+(s, F (X)− s(X)) and Z−X(s) = Z−(s, F (X)− s(X)).

4.1 Optimizing over subgradients

To analyze the problem of minimizing logZ−X(s) subject to s ∈ ∂F (X), we introduce the base
polyhedron of F , defined as B(F ) = {s ∈ RV | s(V ) = F (V ) and ∀A ⊆ V : s(A) ≤ F (A)}, i.e.
the set of modular lower bounds that are exact at V . As the following lemma shows, we do not have
to consider logZ−X for all X and we can restrict our attention to the case X = ∅.
Lemma 2. For allX ⊆ V we have mins∈∂F (∅)Z−∅ (s) ≤ mins∈∂F (X)Z−X(s). Moreover, the former
problem is equivalent to

minimize
s

∑
i∈V

log(1 + e−si) subject to s ∈ B(F ). (3)

Thus, we have to optimize a convex function over B(F ), a problem that has been already con-
sidered [8, 9]. For example, we can use the Frank-Wolfe algorithm [28, 29], which is easy to
implement and has a convergence rate of O( 1

k ). It requires the optimization of linear functions
g(s) = 〈w, s〉 = wT s over the domain, which, as shown by Edmonds [1], can be done greedily in
O(|V | log |V |) time. More precisely, to compute a maximizer s∗ ∈ B(F ) of g(s), pick a bijection
σ : {1, . . . , |V |} → V that orders w, i.e. wσ(1) ≥ wσ(2) ≥ · · · ≥ wσ(|V |). Then, set s∗σ(i) =

F (σ(i)|{σ(1), . . . , σ(i− 1)}). Alternatively, if we can efficiently minimize the sum of the function
plus a modular term, e.g. for the family of graph-cut representable functions [10], we can apply the
divide-and-conquer algorithm [9][§9.1], which needs the minimization of O(|V |) problems.

1: procedure FRANK-WOLFE(F , x1, ε)
2: Define f(x) = log(1 + e−x) . Elementwise.
3: for k ← 1, 2, . . . , T do
4: Pick s ∈ argminx∈B(F )〈x,∇f(xk)〉
5: if 〈xk − s,∇f(xk)〉 ≤ ε then
6: return xk . Small duality gap.
7: else
8: xk+1 = (1−γk)xk +γks; γk = 2

k+2

1: procedure DIVIDE-CONQUER(F )
2: s← F (V )

|V | 1; A∗ ← minimizer of F (·)− s(·)
3: if F (A∗) = s(A∗) then
4: return s
5: else
6: sA ←DIVIDE-CONQUER(FA)
7: sV−A ←DIVIDE-CONQUER(FA)
8: return (sA, sV−A)

The entropy viewpoint and the Fenchel dual. Interestingly, (3) can be interpreted as a maximum
entropy problem. Recall that, for s ∈ B(F ) we use the distribution P (A) ∝ exp(−s(A)), whose
entropy is exactly the negative of our objective. Hence, we can consider Problem (3) as that of
maximizing the entropy over the set of factorized distributions with parameters in −B(F ). We can
go back to the standard representation using the marginals p via pi = 1/(1+exp(si)). This becomes
obvious if we consider the Fenchel dual of the problem, which, as discussed in §5, allows us to make
connections with the classical mean-field approach. To this end, we introduce the Lovàsz extension,
defined for any F : 2V → R as the support function over B(F ), i.e. f(p) = sups∈B(F ) s

Tp [30].
Let us also define for p ∈ [0, 1]

V by H[p] the Shannon entropy of a vector of |V | independent
Bernoulli random variables with success probabilities p.
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Lemma 3. The Fenchel dual problem of Problem (3) is
maximize
p∈[0,1]V

H[p]− f(p). (4)

Moreover, there is zero duality gap, and the pair (s∗,p∗) is primal-dual optimal if and only if

p∗ =
( 1

1 + exp(s∗i )
, . . . ,

1

1 + exp(s∗n)

)
and f(p∗) = p∗T s∗. (5)

From the discussion above, it can be easily seen that the Fenchel dual reparameterizes the prob-
lem from the parameters −s to the marginals p. Note that the dual lets us provide a certificate of
optimality, as the Lovász extension can be computed with Edmonds’ greedy algorithm.

4.2 Optimizing over supergradients

To optimize over subgradients, we pick for each set X ⊆ V a representative supergradient and
optimize over all X . As in [27], we consider the following supergradients, elements of ∂F (X).

Grow supergradient ŝX Shrink supergradient šX Bar supergradient sX

i ∈ X ŝX({i}) = F (i|V − {i}) šX({i}) = F (i|X − {i}) sX({i}) = F (i|V − {i})
i /∈ X ŝX({i}) = F (i|X) šX({i}) = F ({i}) sX({i}) = F ({i})

Optimizing the bound over bar supergradients requires the minimization of the original function
plus a modular term. As already mentioned for the divide-and-conquer strategy above, we can do
this efficiently for several problems. The exact formulation of the problem is presented below.
Lemma 4. Define the modular functions m1({i}) = log(1 + e−F (i|V−i)) − log(1 + eF (i)), and
m2({i}) = log(1 + eF (i|V−i))− log(1 + e−F (i)). The following pairs of problems are equivalent.

minimizeX logZ+
X(sX) ≡ minimizeX F (X) +m1(X)

maximizeX logZ−X(sX) ≡ minimizeX F (X)−m2(X)

Even though we cannot optimize over grow and shrink supergradients, we can evaluate all three at
the optimum for the problems above and pick the one that gives the best bound.

5 Mean-field methods and the multi-linear extension

Is there a relation to traditional variational methods? If Q(·) is a distribution over subsets of V , then

0 ≤ KL(Q || P ) = EQ
[
log

Q(S)

P (S)

]
= logZ + EQ

[
log

Q(S)

exp(−F (S))

]
= logZ −H[Q] + EQ[F ],

which yields the bound logZ ≥ H[Q] − EQ[F ]. The mean-field method restricts Q to be a com-
pletely factorized distribution, so that elements are picked independently and Q can be described by
the vector of marginals q ∈ [0, 1]

V , over which it is then optimized. Compare this with our approach.

Mean-Field Objective Our Objective: L-FIELD

maximizeq∈[0,1]V H[q]− Eq[F ] maximizeq∈[0,1]V H[q]− f(q)
. Non-concave, can be hard to evaluate. . Concave, efficient to evaluate.

Both the Lovász extension f(q) and the multi-linear extension f̃(q) = Eq[F ] are continuous
extensions of F , introduced for submodular minimization [30] and maximization [31], respec-
tively. The former agrees with the convex envelope of F and can be efficiently evaluated (in
O(|V |) evaluations of F ) using Edmonds’ greedy algorithm (cf., §4.1, [1]). In contrast, evaluating
f̃(q) = Eq[F ] =

∑
A⊆V

∏
i q

[i∈A]
i (1 − qi)[i/∈A]F (A) in general requires summing over exponen-

tially many terms – a problem potentially as hard as the original inference problem! Even if f̃(q)
is approximated by sampling, it is neither convex nor concave. Moreover, computing the coordinate
ascent updates of mean-field can be intractable for general F . Hence, our approach can be motivated
as follows: instead of using the multi-linear extension f̃ , we use the Lovász extension f of F , which
makes the problem convex and tractable. This analogy motivated the name L-FIELD (L for Lovász).
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6 Curvature-dependent approximation bounds

How accurate are the bounds obtained via our variational approach? We now provide theoreti-
cal guarantees on the approximation quality as a function of the curvature of F , which quantifies
how far the function is from modularity. Curvature is defined for polymatroid functions, which
are normalized non-decreasing submodular functions, i.e., a submodular function F : 2V → R is
polymatroid if for all A ⊆ B ⊆ V it holds that F (A) ≤ F (B).
Definition 2 (From [32]). Let G : 2V → R be a polymatroid function. The curvature κ of G is
defined as 5 κ = 1−mini∈V : G({i})>0

G(i|V−{i})
G({i}) .

The curvature is always between 0 and 1 and is equal to 0 if and only if the function is modular.
Although the curvature is a notion for polymatroid functions, we can still show results for the general
case as any submodular function F can be decomposed [33] as the sum of a modular term m(·)
defined as m({i}) = F (i|V − {i}) and G = F −m, which is a polymatroid function. Our bounds
below depend on the curvature of G and GMAX = G(V ) = F (V )−

∑
i∈V F (i|V − i).

Theorem 1. Let F = G+m, whereG is polymatroid with curvature κ andm is modular defined as
above. Pick any bijection σ : V → {1, 2, . . . , |V |} and define sets Sσ0 = ∅, Sσi = {σ(1), . . . , σ(i)}.
If we define s : sσ(i) = G(Sσi )−G(Sσi−1), then s+m ∈ ∂F (∅) and the following inequalities hold.

logZ−(s + m, 0)− log
∑
A⊆V

exp(−F (A)) ≤ κGMAX (6)

log
∑
A⊆V

exp(+F (A))− logZ+(s + m, 0) ≤ κGMAX (7)

Theorem 2. Under the same assumptions as in Theorem 1, if we define the modular function s(·)
by s(A) =

∑
i∈AG({i}), then s + m ∈ ∂F (∅) and the following inequalities hold.

log
∑
A⊆V

exp(−F (A))− logZ−(s + m, 0) ≤ κ(n− 1)

1 + (n− 1)(1− κ)
GMAX ≤

κ

1− κ
GMAX (8)

logZ+(s + m, 0)− log
∑
A⊆V

exp(+F (A)) ≤ κ(n− 1)

1 + (n− 1)(1− κ)
GMAX ≤

κ

1− κ
GMAX (9)

Note that we establish bounds for specific sub-/supergradients. Since our variational scheme con-
siders these in the optimization as well, the same quality guarantees hold for the optimized bounds.
Further, note that we get a dependence on the range of the function via GMAX. However, if we con-
sider αF for large α > 1, most of the mass will be concentrated at the MAP (assuming it is unique).
In this case, L-FIELD also performs well, as it can always choose gradients that are tight at the MAP.
When we optimize over supergradients, all possible tight sets are considered. Similarly, the subgra-
dients are optimized over B(F ), and for any X ⊆ V there exists some sX ∈ B(F ) tight at X .

7 Experiments

Our experiments6 aim to address four main questions: (1) How large is the gap between the upper-
and lower-bounds for the log-partition function and the marginals? (2) How accurate are the fac-
torized approximations obtained from a single MAP-like optimization problem? (3) How does the
accuracy depend on the amount of evidence (i.e., concentration of the posterior), the curvature of the
function, and the type of Bayesian submodular model considered? (4) How does L-FIELD compare
to mean-field on problems where the latter can be applied?

We consider approximate marginals obtained from the following methods: lower/upper: obtained
from the factorized distributions associated with the modular lower/upper bounds; lower-/upper-
bound: the lower/upper bound of the estimated probability interval. All of the functions we consider
are graph-representable [17], which allows us to perform the optimization over superdifferentials
using a single graph cut and use the exact divide-and-conquer algorithm. We used the min-cut

5We differ from the convention to remove i ∈ V s.t. G({i}) = 0. Please see the appendix for a discussion.
6The code will be made available at http://las.ethz.ch.
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implementation from [34]. Since the update equations are easily computable, we have also
implemented mean-field for the first experiment. For the other two experiments computing the
updates requires exhaustive enumeration and is intractable. The results are shown on Figure 1 and
the experiments are explained below. We plot the averages of several repetitions of the experiments.
Note that computing intervals for marginals requires two MAP-like optimizations per variable;
hence we focus on small problems with |V | = 100. We point out that obtaining a single factorized
approximation (as produced, e.g., by mean-field), only requires a single MAP-like optimization,
which can be done for more than 270,000 variables [19].

Log-supermodular: Cuts / Pairwise MRFs. Our first experiment evaluates L-FIELD on a se-
quence of distributions that are increasingly more concentrated. Motivated by applications in semi-
supervised learning, we sampled data from a 2-dimensional Gaussian mixture model with 2 clus-
ters. The centers were sampled fromN ([3, 3], I) andN ([−3,−3], I) respectively. For each cluster,
we sampled n = 50 points from a bivariate normal. These 2n points were then used as nodes
to create a graph with weight between points x and x′ equal to e−||x−x

′||. As prior we chose
P (A) ∝ exp(−F (A)), where F is the cut function in this graph, hence P (A) is a regular MRF.
Then, for k = 1, . . . , n we consider the conditional distribution on the event that k points from the
first cluster are on one side of the cut and k points from the other cluster are on the other side. As we
provide more evidence, the posterior concentrates, and the intervals for both the log-partition func-
tion and marginals shrink. Compared with ground truth, the estimates of the marginal probabilities
improve as well. Due to non-convexity, mean-field occasionally gets stuck in local optima, resulting
in very poor marginals. To prevent this, we chose the best run out of 20 random restarts. These best
runs produced slightly better marginals than L-FIELD for this model, at the cost of less robustness.

Log-supermodular: Decomposable functions. Our second experiment assesses the performance
as a function of the curvature of F . It is motivated by a problem in outbreak detection on networks.
Assume that we have a graph G = (V,E) and some of its nodes E ⊆ V have been infected by
some contagious process. Instead of E, we observe a noisy set N ⊆ V , corrupted with a false
positive rate of 0.1 and a false negative rate of 0.2. We used a log-supermodular prior P (A) ∝
exp
(
−
∑
v∈V

( |Nv∩A|
|Nv|

)µ)
, where µ ∈ [0, 1] and Nv is the union of v and its neighbors. This prior

prefers smaller sets and sets that are more clustered on the graph. Note that µ controls the preference
of clustered nodes and affects the curvature. We sampled random graphs with 100 nodes from a
Watts-Strogatz model and obtained E by running an independent cascade starting from 2 random
nodes. Then, for varying µ, we consider the posterior, which is log-supermodular, as the noise model
results in a modular likelihood. As the curvature increases, the intervals for both the log-partition
function and marginals decrease as expected. Surprisingly, the marginals are very accurate (< 0.1
average error) even for very large curvature. This suggests that our curvature dependent bounds are
very conservative, and much better performance can be expected in practice.

Log-submodular: Facility location modeling. Our last experiment evaluates how accurate L-
FIELD is when quantifying uncertainty in submodular maximization tasks. Concretely, we consider
the problem of sensor placement in water distribution networks, which can be modeled as sub-
modular maximization [35]. More specifically, we have a water distribution network and there are
some junctions V where we can put sensors that can detect contaminated water. We also have a
set I of contamination scenarios. For each i ∈ I and j ∈ V we have a utility Ci,j ∈ [0, 1], that
comes from real data [35]. Moreover, as the sensors are expensive, we would like to use as few
as possible. We use the facility-location model, more precisely P (S = A) ∝ exp(F (A) − 2|A|),
with F (A) =

∑
i∈N maxj∈A Ci,j . Instead of optimizing for a fixed placement, here we consider

the problem of sampling from P in order to quantify the uncertainty in the optimization task. We
used the following sampling strategy. We consider nodes v ∈ V in some order. We then sample a
Bernoulli Z with probability P (Z = 1) = qv based on the factorized distribution q from the modu-
lar upper bound. We then condition on v ∈ S if Z = 1, or v /∈ S if Z = 0. In the computation of the
lower bound we used the subgradient sg computed from the greedy order of V — the i-th element
in this order v1, . . . , vn is the one that gives the highest improvement when added to the set formed
by the previous i − 1 elements. Then, sg ∈ ∂F (∅) : sgi = F (vi|{v0, . . . , vi−1}). We repeated the
experiment several times using randomly sampled 500 contamination scenarios and 100 locations
from a larger dataset. Note that our approximations get better as we condition on more information
(i.e., proceed through the iterations of the sampling procedure above). Also note that even from the
very beginning, the marginals are very accurate (< 0.1 average error).
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Figure 1: Experiments on [CT] Cuts (a-c), [NW] network detection (d-f), [SP] sensor placement (g-i). Note
that to generate (c,f,i) we had to compute the exact marginals by exhaustive enumeration. Hence, these three
graphs were created using a smaller ground set of size 20. The error bars capture 3 standard errors.

8 Conclusion

We proposed L-FIELD, the first variational method for approximate inference in general Bayesian
submodular and supermodular models. Our approach has several attractive properties: It produces
rigorous upper and lower bounds on the log-partition function and on marginal probabilities. These
bounds can be optimized efficiently via convex and submodular optimization. Accurate factorial
approximations can be obtained at the same computational cost as performing MAP inference in the
underlying model, a problem for which a vast array of scalable methods are available. Furthermore,
we identified a natural connection to the traditional mean-field method and bounded the quality of
our approximations with the curvature of the function. Our experiments demonstrate the accuracy
of our inference scheme on several natural examples of Bayesian submodular models. We believe
that our results present a significant step in understanding the role of submodularity – so far mainly
considered for optimization – in approximate Bayesian inference. Furthermore, L-FIELD presents a
significant advance in our ability to perform probabilistic inference in models with complex, high-
order dependencies, which present a major challenge for classical techniques.
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