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Abstract
We consider the problem of approximate
Bayesian inference in log-supermodular models.
These models encompass regular pairwise MRFs
with binary variables, but allow to capture high-
order interactions, which are intractable for ex-
isting approximate inference techniques such as
belief propagation, mean field, and variants. We
show that a recently proposed variational ap-
proach to inference in log-supermodular models
–L-FIELD– reduces to the widely-studied min-
imum norm problem for submodular minimiza-
tion. This insight allows to leverage power-
ful existing tools, and hence to solve the vari-
ational problem orders of magnitude more effi-
ciently than previously possible. We then pro-
vide another natural interpretation of L-FIELD,
demonstrating that it exactly minimizes a spe-
cific type of Rényi divergence measure. This in-
sight sheds light on the nature of the variational
approximations produced by L-FIELD. Further-
more, we show how to perform parallel inference
as message passing in a suitable factor graph at a
linear convergence rate, without having to sum
up over all the configurations of the factor. Fi-
nally, we apply our approach to a challenging
image segmentation task. Our experiments con-
firm scalability of our approach, high quality of
the marginals, and the benefit of incorporating
higher-order potentials.

1. Introduction
Performing inference in probabilistic models is one of the
central challenges in machine learning, providing a foun-
dation for making decisions with uncertain data. Unfor-
tunately, the general problem is intractable and one must
resort to approximate inference techniques. The impor-
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tance of this problem is witnessed by the amount of interest
it has attracted in the research community, which has re-
sulted in a large family of approximations, most notably the
mean-field (Wainwright & Jordan, 2008) and belief propa-
gation (Pearl, 1986) algorithms and their variants. One ma-
jor drawback of these and many other techniques is the ex-
ponential dependence on the size of the largest factor which
restricts the class of models one can use. In addition, these
methods generally involve non-convex objectives, resulting
in local optima (or even non-convergence).

We consider the problem of inference in distributions over
sets, also known as point processes. Formally, we have
some finite ground set V and a measure P that assigns
some probability P (A) to every subset A ⊆ V . We would
like to point out that we can equivalently see such distribu-
tions as being defined over |V | Bernoulli random variables
Xi ∈ {0, 1}, one for every element in the ground set i ∈ V
indicating if element i has been selected. As a concrete ex-
ample showing this equivalence consider the task of image
segmentation in computer vision, where one wants to sepa-
rate the foreground from the background pixels. Tradition-
ally, one defines one random variable Xp ∈ {0, 1} for each
pixel p indicating if the pixel is in the foreground or the
background. We can also isomorphically treat the distribu-
tion as being defined over subsets of the set of all pixels V .
In this case, for any subset A ⊆ V the quantity P (A) is the
probability of pixels A belonging to the foreground. In the
remaining of the paper we will employ this latter view of
distributions over sets. The additional assumption that we
make is that the distribution is log-supermodular, i.e. can
be written as P (A) = 1

Z exp(−F (A)), where F is some
submodular function.

Related work. Submodular functions are a family of set
functions exhibiting a natural diminishing returns prop-
erty, originating first in the field of combinatorial opti-
mization (Edmonds, 1970). They have been applied to
many problems in machine learning, including cluster-
ing (Narasimhan et al., 2005), variable selection (Krause
& Guestrin, 2005), structured norms (Bach, 2010), dictio-
nary learning (Cevher & Krause, 2011), etc. Submodular
functions have huge implications for the tractability of (ap-
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proximate) optimization, akin to convexity and concavity
in continuous domains. While the major emphasis has con-
sequently been on optimization, submodular functions can
be also employed to define probabilistic models. Special
cases include Ising models used in computer models and
the determinantal point process (DPP) (Kulesza & Taskar,
2012) used for modeling diversity. Alas, submodularity
does not render the inference problem tractable, which re-
mains extremely difficult even for the Ising model (Gold-
berg & Jerrum, 2007; Jerrum & Sinclair, 1993) which has
only pairwise interactions.

The study of approximate Bayesian inference in general
log-supermodular models has been recently initiated by
Djolonga & Krause (2014). They provide a general
variational approach –L-FIELD– that optimizes bounds on
the partition function via the differentials of submodular
functions. While their approach leads to optimization
problems that can be solved exactly in polynomial time for
arbitrary high order interactions, presently the approach is
slow, and impractical for large scale inference tasks such
as those arising in computer vision. Iyer & Bilmes (2015)
study another family of submodular distributions.

Our contributions. We improve over their result in sev-
eral ways. First, by showing an equivalence of L-FIELD
with a classical problem in submodular minimization – the
minimum norm point problem – we obtain access to a large
family of specially crafted algorithms that can handle mod-
els with very large numbers of variables. In the experimen-
tal section we indeed perform inference over images, which
have hundreds of thousands of variables. This insight also
implies, for example, that the approximation agrees on the
mode of the distribution, hence the MAP problem is solved
for free. Secondly, by establishing another important
connection, namely to a specific type of information
divergence, we shed light on the type of approximations
that result from this method. Thirdly, we show how special
structure of many real-world log-supermodular models
(such as those in image segmentation with high-order
potentials) enable a highly efficient parallel message
passing algorithm that converges to the global optimum at
a linear rate. Lastly, we perform extensive experiments on
a challenging image segmentation task, demonstrating that
our approach is scalable, provides more accurate marginals
than existing techniques, and provides evidence on the
effectiveness of models using high-order interactions.

2. Background: Submodularity and
log-supermodular models

Formally, a function F : 2V → R is said to be submodular
if for any pair of sets A ⊆ B and x /∈ B it holds that

F ({x} ∪A)− F (A) ≥ F ({x} ∪B)− F (B).

Figure 1: The original image and two layers of superpixels
to be used for defining attractive higher order potentials.

In other words, the gain of adding any element x decreases
as the context grows, which is the diminishing returns prop-
erty already mentioned. Without any loss of generality we
assume that F is normalized so that F (∅) = 0. We will
consider Gibbs distributions that arise from these models,
i.e. probability measures of the form

P (S) =
1

Z
exp(−F (S)),

for some submodular F : 2V → R. These models are
called log-supermodular or attractive for reasons explained
below.

Examples. A typical example of such models is the reg-
ular Ising model, which can be used for the image segmen-
tation task from the introduction. Continuing with that ex-
ample, we define a set of edges E that connect neighboring
pixels, and for every pair of neighbors {p, p′} we specify
a weight w{p,p′} ≥ 0 that quantifies their similarity. To
model the preference of neighbors to be assigned to the
same segment, we use the cut function

∀A ⊆ V : F (A) =
∑

{p,p′}∈E

1|A∩{p,p′}|=1w{p,p′}.

Hence, if we place two neighboring pixels p and p′ in dif-
ferent segments, we will cut the edge {p, p′} and be “pe-
nalized” by the corresponding weight, which explains the
attractive behavior of the model. We can go one step further
and define regions Pi ⊆ V which we would prefer to be in
the same segment. One strategy to generate the regions,
used by Kohli et al. (2009), is to generate superpixels, as
illustrated on Figure 1. We can then modify the model to
incorporate these higher order potentials by adding terms
of the form φ(|Pi ∩A|/|Pi|) for some concave function φ.
As a concrete example, consider φ(z) = z(1 − z), which
assigns a value of 0 when the pixels in the superpixel are in
the same segment, and assigns a larger penalty otherwise,
which is maximal when the pixels are equally split between
the two segments.
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Modular functions. The simplest family of submodular
functions are modular functions, which can be seen as the
discrete analogue of linear functions. Namely, a function
s : 2V → R is said to be modular if for all A ⊆ V it holds
that s(A) =

∑
i∈A s({i}). The family of distributions that

arise from these functions are exactly the family of com-
pletely factorized distributions1, because

P (S) ∝ exp(−s(S)) =
∏
i∈S

exp(−si).

As evident from their definition, modular functions are
uniquely defined through the quantities s({i}) for all i ∈
V . It is very useful to view modular functions as vectors
s ∈ RV with coordinates si = s({i}).

Submodular polyhedra. There are several polyhedra
that contain some of these modular functions (in their vec-
torial representation) that we will make use of. More
specifically, we are interested in the submodular polyhe-
dron P (F ) and the base polytope B(F ), which are defined
as

P (F ) = {s ∈ RV | ∀A ⊆ V : s(A) ≤ F (A)}, (1)

B(F ) = P (F ) ∩ {s ∈ RV | s(V ) = F (V )}. (2)

In other words, P (F ) is the set of all modular lower bounds
of the function F , while B(F ) adds the further restriction
that the bound must be tight at the ground set V . It can be
shown that these polyhedra are not empty and their geom-
etry is also well understood (Fujishige, 2005; Bach, 2013).
Moreover, what is especially surprising, is that even though
B(F ) is defined with exponentially many inequalities, we
can optimize linear functions over it in O(|V | log |V |) time
with a simple greedy strategy (Edmonds, 1970).

MAP estimation and the minimum norm point. A very
natural question that arises for any probabilistic model
is that of finding a MAP configuration, which for log-
supermodular distribution amounts to minimizing the func-
tion F . This is a problem that has been studied in much de-
tail and has resulted in numerous approaches. The fastest
known combinatorial algorithm due to Orlin (2009) has a
bound of O(n6 + τn5), where τ is the cost of evaluating
the function, and can be prohibitively expensive to run for
larger ground sets. An algorithm that performs better in
practice, but only has a pseudopolynomial running time
guarantee (Chakrabarty et al., 2014), is the Fujishige-Wolfe
algorithm (Fujishige, 1980). This method approaches the
problem by solving the following convex program, known
as the minimum norm problem.

minimize
s∈B(F )

‖s‖2. (3)

1Because we use Gibbs distributions, note that they can not
assign zero probabilities.

One can extract the solution to the submodular minimiza-
tion problem from the solution to the above problem by
thresholding, which is formalized in the following theorem.
Theorem 1 (Fujishige (2005)). If s∗ is the optimal solution
to problem (3), define the following sets

A− = {v | v ∈ V and s∗v < 0}, and

A0 = {v | v ∈ V and s∗v ≤ 0}.

ThenA− andA0 are the unique minimal and maximal min-
imizers of F .

3. Variational inference with L-FIELD

The main barrier to performing inference in log-
supermodular models is the computation of the normaliz-
ing factor Z , also known as the partition function in the
statistical physics literature. We cannot compute it directly
as we have to sum up over all S ⊆ V , so we have to use
approximative techniques. One common approach is to de-
fine an optimization problem over some variational param-
eter q, so that we can compute the quantity of interest by
optimizing this problem.

We now review the variational approximation technique re-
cently introduced by Djolonga & Krause (2014). Their
method relies on two main observations: (i) modular func-
tions have analytical log-partition functions and (ii) sub-
modular functions can be lower-bounded by modular func-
tions. The main idea is the following: if it holds that
∀A ⊆ V : s(A) ≤ F (A), then it will certainly be the case
that

log
∑
A⊆V

e−F (A) ≤ log
∑
A⊆V

e−s(A) =
∑
i∈V

log(1 + e−si).

We thus have a family of variational upper bounds on the
partition function parametrized by the modular functions s,
over which we can optimize to minimize the right hand side
of the inequality. As shown by Djolonga & Krause (2014)
this variational problem can be reduced to the following
convex separable optimization problem over the base poly-
tope

minimize
s∈B(F )

∑
i∈V

log(1 + exp(−si)). (4)

This problem – L-FIELD – can be then solved using the
divide-and-conquer algorithm (Bach, 2013; Jegelka et al.,
2013) by solving at most O(min{|V |, log 1

ε }) MAP prob-
lems, where ε is the tolerated error on the marginals. It can
be also approximately solved using the Frank-Wolfe algo-
rithm at a convergence rate of O(1/k). While these results
establish tractability of the variational approach, in general
solving even one MAP problem requires submodular min-
imization – an expensive task, and repeated solution may
be too costly. Convergence of the Frank-Wolfe method is
empirically slow.
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4. L-FIELD ≡Minimum norm point.
Our first main contribution is the following, perhaps sur-
prising, result:

Theorem 2. Problems (4) and (3) have the same solution.

The proof of this theorem (given in the appendix) crucially
depends on the peculiar characteristics of the base poly-
tope. Similar results have been shown (for other objectives)
by Nagano & Aihara (2012). This theorem has three im-
mediate, extremely important consequences. First, since
the minimum-norm point approach is often the method
of choice for submodular minimization anyway, this in-
sight reduces the cost from solving many MAP problems
to a single minimum norm point problem, which leads to
substantial performance gains – a factor of O(|V |) if we
seek the optimal variational solution! Secondly, given this
equivalence and Theorem 1, we can immediately see that
we can in fact extract the MAP solution by thresholding
the marginals at 1/2.

Corollary 1. We can extract the unique minimal and max-
imal MAP solutions by thresholding the optimal marginal
vector at 1/2.

Thus, the L-FIELD approach results in the exact MAP so-
lution in addition to approximate marginals and an upper
bound on the partition function. Thirdly, since the min-
imum norm point problem is well studied, faster algo-
rithms for important special cases become available. In
particular, in §6, we demonstrate how certain types of log-
supermodular distributions enable extremely efficient par-
allel inference.

5. The divergence minimization perspective
The L-FIELD approach attacks the partition function
directly. One can of course employ the factorized dis-
tribution parametrized by the minimizer s∗ of the upper
bound to obtain approximate marginals. However, it is not
immediately clear what properties the resulting distribu-
tion has, apart from agreeing on the mode (as shown by
Corollary 1). To this end, we turn to the theory of diver-
gence measures as that will enable us to understand the
solutions preferred by the method. Divergence measures
are functions D(P ‖Q) of two probability distributions P
and Q that quantify the degree of dissimilarity between the
arguments. Once we have picked a divergence measure D,
we are interesting in minimizing D(P ‖Q) among some
set of approximative distributions Q ∈ Q. The family
which is of particular interest to us is that of completely
factorized distributions that assign positive probabilities,
which we now formally define.

Definition 1. We define the set Q of completely factorized
positive distributions as

Q = {Q | Q(S) ∝
∏
i∈S

exp(−qi) for some q ∈ RV }.

There are many choices for a divergence measure, the most
prominent examples being the KL-divergence and the fam-
ily of Rényi divergences (Rényi, 1961). Of particular inter-
est for our analysis is the special infinite order of the Rényi
divergence, defined as follows:
Definition 2 (Van Erven & Harremoës (2012)). Define the
Rényi divergence of infinite order between P (S) and Q(S)

D∞(P ‖Q) = log sup
S⊆V

P (S)

Q(S)
. (5)

In the terminology of Minka et al. (2005) we can see that
the D∞ divergence is inclusive, which means that it would
try to “cover” as much as possible from the distribution:
The variational approximation is conservative in the sense
that it attempts to spread mass over all sets that achieve sub-
stantial mass under the true distribution. As we now show,
it turns out that when we minimize this divergence for log-
supermodular distributions we can focus our attention only
on some specific factorized distributions.
Lemma 1. When P is log-supermodular, to solve
minimizeQ∈QD∞(P ‖Q) we have to only optimize over
modular functions q that are global lower bounds of F .

What this lemma essentially says, is that a minimizing dis-
tribution q∗ can be always found in P (F ). This result also
implies the central result of this section, that the variational
approach we have considered essentially minimizes the in-
finite divergence.
Theorem 3. When P is log-supermodular, the problem
minimizeQ∈QD∞(P ‖Q) is equivalent to problem (4).

This theorem has the following immediate consequence:
Corollary 2. For log-supermodular models, problem
minimizeQ∈QD∞(P ‖Q) is polynomial-time tractable
via O(|V |) MAP (submodular minimization) problems.

Hence, any log-supermodular distribution has the prop-
erty that we can find the closest factorized distribution to
it w.r.t. this specific divergence in polynomial time, irre-
spective of whether the distribution factorizes into smaller
factors or not. We would like to point out that the above
criterion does not necessarily hold in general for non-log-
supermodular distributions, which we formally show.
Lemma 2. Lemma 1 does not hold for general point pro-
cesses. Specifically, there exists a log-submodular counter
example.

The proofs of all claims are provided in the supplemental
material.
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6. Parallel inference for decomposable models
Very often the submodular functionF has structure that one
can exploit to procure faster inference algorithms. In par-
ticular, the function often decomposes, i.e., can be written
as a sum of (simpler) functions as

F (S) =

R∑
i=1

Fi(S ∩ Vi),

where Fi : 2Vi → R are submodular functions with ground
sets Vi. This setting has been considered, e.g., by Stobbe
& Krause (2010) and Jegelka et al. (2013). The decompo-
sition implies that the corresponding distribution factorizes
as follows

P (S) ∝
R∏
i=1

exp(−Fi(S ∩ Vi)). (6)

In fact, the examples we discussed in §2 both have this
form, factorizing either into pairwise potentials, or into the
potentials defined by the superpixels. Such models can be
naturally represented via a factor graph G that has as nodes
the union of the ground sets Vi, and the factors F1, . . . , FR.
We then add edges E in a bipartite way by connecting each
factor Fi to the elements Vi that participate in it (e.g. Fi is
connected to v iff v ∈ Vi). For any node w in the graph (ei-
ther a factor, or variable node), we will denote its neighbors
by δ(w).

When the function enjoys such a decomposition, the base
polytope can be written as the Minkowski sum of the base
polytopes of the summands, or formally 2

B(F ) =

R∑
i=1

B(Fi).

Hence, the minimum norm problem (3) that we are inter-
ested in can be rewritten as the following problem.

minimize
qi∈B(Fi)

∑
v∈V

(
∑

Fi∈δ(v)

qi,v)
2.

In the following, we discuss two natural message passing
algorithms exploiting this structure.

Expectation propagation. A very natural approach
would be to perform block coordinate descent one factor
at a time. If we look through the lens of divergence mea-
sures, as introduced in §5, we can make a clear connec-
tion to (a variant of) expectation propagation3, the mes-
sage passing approach of Minka et al. (2005) specialized

2If v /∈ Vi, then the elements from B(Fi) are treated as having
a zero for that coordinate.

3Typically, expectation propagation is defined w.r.t. the KL-
divergence.

to minimizing the divergence D∞(P ‖Q), which we now
briefly describe. The main idea is to approximate each fac-
tor exp(−Fi(S∩Vi)) with a completely factorized distribu-
tionQi(S) ∝ exp(−qi(S)), such that the product

∏R
i=1Qi

is a good approximation to the true distribution in terms of
the given divergence. Then, we optimize iteratively using
the following procedure.

1. Pick a factor Fi.

2. Replace the other factors Fj for j 6= i with their ap-
proximations Qj and minimize

D∞(
1

Zi
exp(−Fi(S))

∏
j 6=i

Qj ‖
R∏
j=1

Qj)

over the factorized approximation Qi.

In other words, we choose a factor and minimize the infi-
nite divergence for that factor, but instead of using the true
factors exp(−Fj(S)) for j 6= i, we replace them with their
current modular approximations Qj .

A parallel approach. One downside of the approach pre-
sented above is that it has to be applied sequentially, i.e.,
one factor has to be updated at a time to ensure con-
vergence. An alternative is to apply an approach used
by Jegelka et al. (2013), which allows to perform message
passing in parallel without losing the convergence guaran-
tees. Jegelka et al. (2013) assume that all factors depend on
all variables (i.e. Vi = V ). In the following, we generalize
their setting in order to allow Vi 6= V . By changing the dual
problem they consider (shown in detail in the appendix) we
arrive at a form that is more natural to our setting and can be
seen as performing message passing in the factor graph. To
describe the messages, we have to define the following pair
of norms that arise from the structure of the factor graph.

Definition 3. For any xS ∈ RS , where S ⊆ V , we define
the following pair of norms.

‖xS‖2G =
∑
v∈S

1

|δ(v)|
x2
v, and ‖xS‖2G∗ =

∑
v∈S
|δ(v)|x2

v.

The messages from variables to factors are simple sums,
similar to those in standard belief propagation

µt+1
v→Fi

=
1

|δ(v)|
∑

Fj∈δ(v)

µtFj→v.

The factors always keep some vector on their base polyhe-
dron, which at iteration t will be denoted by qti ∈ B(Fi).
Then, based on the incoming messages, they update this
vector by solving a convex problem, which is much cheaper
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than the exhaustive computation one has to do for belief
propagation (which is exponential in the factor size). We
will denote the message sent from node u to node w at
iteration t by µtu→w. If mt

i ∈ RVi is the vector of mes-
sages received at iteration t at node Fi (one message from
each v ∈ Vi), then the factor solves a projection problem
parametrized by (mt

i,x
t
i), whose solution is assigned to

xt+1
i . Written formally, we have

qt+1
i = argmin

qi∈B(Fi)

‖qi − (qti −mt
i)‖2G∗.

As this is a convex separable problem on the base polytope,
it can be solved for example using the divide-and-conquer
algorithm (Bach, 2013). Having solved this problem, the
factor sends the following messages to its neighbours

µt+1
Fi→v = qt+1

v .

Stated differently, it will send to every variable node v
the coordinate of the stored vector corresponding to that
variable. At every iteration t we can extract the current
factorized approximation to the full distribution by simply
considering the incoming messages at the variable nodes.
Specifically, the approximation qt at time step has in the
v-th coordinate the sum of incoming messages at the node
v, or formally

qtv =
∑

Fi∈δ(Fj)

µtFi→v.

Because the algorithm can be seen as performing block
coordinate descent on a specific problem (discussed in the
appendix), the message passing algorithm described above
possesses strong convergence guarantees that depend on
the structure of the factor graph. These guarantees even
hold if all messages from nodes to factors, and all messages
from factors to nodes are each computed in parallel. An
important quantity that appears in the convergence rate is
the maximal variable connectivity ∆V = maxv∈V |δ(v)|.
Based on recent new results by Nishihara et al. (2014)
on block coordinate descent for a similar dual (assuming
that all factors depend on all variables, as considered
by Jegelka et al. (2013)), we extend their analysis to obtain
a linear convergence rate for our message passing scheme.

Theorem 4 (Extension of Nishihara et al. (2014)). If the
graph is ∆V -regular, s.t. every variable appears in exactly
∆V factors, then the message passing algorithm converges
linearly with rate (1− 1

|V |∆V
)
2
. More specifically

‖qt − q∗‖ ≤ 2‖q0 − q∗‖∞
√

∆V E(1− 1

|V |2∆2
V

)t,

where q∗ is the optimal point, q0 is the initial point and E
is the number of edges in the factor graph.

7. Experiments
We now report experimental results 4 on applying our par-
allel variational inference scheme to a challenging image
segmentation problem as motivated in §2. The goal of our
experiments is to test the scalability of our approach to
large problems, and to evaluate the quality of the marginals
both qualitatively and quantitatively. We used the data
from Jegelka & Bilmes (2011), which contains a total of 36
images, each with a highly detailed (pixel-level precision)
ground truth segmentation. Due to intractability, we can-
not compute the exact marginals against which we would
ideally wish to compare. As a proxy for measuring the
quality of the approximations, we use the area under the
ROC curve (AUC) as compared to the ground truth seg-
mentation. We classify each pixel independently as fore- or
background by comparing its approximate marginal against
a threshold, which we vary to obtain the ROC curve. We
have used the following model, which contains both pair-
wise and higher-order interactions.

F (A) = αm(A) + βFcut(A) + γ
∑
Pi∈P

|Pi|φ
(
|A ∩ Pi|
|Pi|

)
,

where

• the unary potentials m(·) were learned from labeled
data using a 5 component GMM;

• the pairwise potentials Fcut connect neighboring pix-
els x and x′ with weights w(x,x′) = exp(−θ‖x −
x‖2), where x and x′ are the RGB values of the pixels;

• the higher order potentials were generated using the
mean-shift algorithm of Comaniciu & Meer (2002).
We have used two overlapping layers of superpixels,
each layer with different granularity. The concave
function was defined as φ(z) = z0.6(1− z)0.6.

We compared the following inference techniques. The
reported typical running times are for an image of size
427x640 pixels on a quad core machine and we report the
wall clock time of the inference code (without setting up
the factor graph or generating the superpixels).

• Unary potentials only with independent predictions,
i.e., β = γ = 0.

• Belief propagation (BP) and mean-field (MF) for the
pairwise model (i.e. γ = 0). We have used the im-
plementation from libDAI (Mooij, 2010). The max-
imum number of iterations was set to 70. We note
that this code is not parallelized. When we observe

4The code will be made available at http://people.
inf.ethz.ch/josipd/.

http://people.inf.ethz.ch/josipd/
http://people.inf.ethz.ch/josipd/
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(a) Original image. (b) BP (1, 10). (c) BP (0.1, 1). (d) BP (1, 1). (e) BP (0.1, 0.1). (f) HOP (1, 10).

(g) Ground truth. (h) DR (1, 10). (i) DR (0.1, 1). (j) DR (1, 1). (k) DR (0.1, 0.1). (l) HOP (1, 1).

Figure 2: Example marginals from the different approximation procedures for the original image (a) with ground truth
segmentation (g). For the results comparing BP and DR (b-e,h-k) we have used the same pairwise weights and weights.
The numbers in the parenthesis correspond to the constants by which the unaries and the prior are multiplied (i.e. to (α, β)
for the pairwise models and (α, γ) for the higher-order model). Note how BP is overconfident, whereas our methods offer
marginals with much higher dynamic range.

fast convergence, for example BP can converge in 3
iterations, it takes about 45 seconds. Even though we
have set a relatively low number of iterations, the run-
ning times can be extremely slow if the methods do
not converge. For example, running mean-field for 70
iterations can take more than 9 minutes.

• Our approach using only pairwise potentials (γ = 0),
solved using the total variation Douglas-Rachford
(DR) code from (Barbero & Sra, 2011; 2014; Jegelka
et al., 2013). We ran for at most 100 iterations. The
inference takes typically less than a second.

• Our approach with higher order potentials (HOP) only
(β = 0). The inference takes less than 13 seconds.

For every method we tested several variants using different
combinations for α, β, γ and θ (exact numbers provided in
the appendix). Then, we performed a leave-one-out cross-
validation for estimating the average AUC. We have also
generated a sequence of 10 trimaps by growing the bound-
ary around the true foreground to estimate accuracy over
the hardest pixels, namely those at the boundary.

Accuracy. We first wish to quantitatively compare the ac-
curacy of the approximate marginals. We report the aggre-
gate results in Figure 3, and the ROC curves in Figure 4.

Method Avg. AUC Std. Dev. Avg. AUCT Std. Dev.

HOP 0.9670 0.0549 0.9600 0.0608
DR 0.9568 0.0663 0.9465 0.0707
BP 0.9500 0.0636 0.9414 0.0791
MF 0.9500 0.0635 0.9441 0.0731
UNARY 0.9484 0.0658 0.9436 0.0736

Figure 3: Average scores of the methods estimated using
leave-one-out cross validation. The Avg. AUC column is
the average area under the ROC curve. The Avg. AUCT
column reports the average of the mean AUC over the 10
trimaps. The second and the fourth columns are the stan-
dard deviation of the preceding columns.

We can clearly see that our approach outperforms the tra-
ditional inference methods for both objectives — the AUC
over the whole image and over the challenging boundary
(trimaps). Sometimes we see very poor behavior of the al-
ternative methods, which can be attributed to either their
over-confidence (as verified below), or the fact that they
optimize non-convex objectives and can fail to converge
within the given number of iterations. Lastly, capturing
high-order interactions leads to higher accuracy (in partic-
ular around the boundary) than pairwise potentials only.
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Figure 4: Comparison of inference methods in terms of their accuracy. For each method we optimize the parameters via
grid-search, and report leave-one-out cross-validation results. (a) ROC curves for classifying pixels as fore- or background
by independently thresholding marginals, averaged over the whole image. (b) Results over the trimaps (blurred boundaries
around the ground truth segmentation), focusing on “difficult” pixels. For every algorithm and every of the 10 trimap sizes
we report the average area under the curve.

Properties of marginals. We would also like to un-
derstand the qualitative characteristics of the resulting
marginals of our methods when compared with the tra-
ditional techniques. From the discussion on the diver-
gence minimization in §5, we would expect the approx-
imate marginals to avoid assigning low probabilities and
rather prefer to err conservatively, i.e., on the side of caus-
ing false positives. On the other hand, it is known that the
results of belief propagation are often over-confident. For
this purpose, we provide a visual comparison in Figure 2.
Namely, each of the four BP/DR pairs are results using the
respective algorithms for the same parameters of the model.
We observe exactly what the theory predicts — the distri-
bution obtained via L-FIELD is less concentrated around
the object and mass is spread around more. The contrast
is starkest on Figures 2 (b) and (h), where we use a very
strong pairwise prior (high β). On Figures 2 (e) and (k)
we have used a very weak pairwise prior (low β), and as
expected the resulting marginals are mainly determined by
the unary part and the choice of inference procedure does
not make a difference. The results in the last column are
from the higher order model, with two different values of γ
(the strength of the higher order potential). We can see that
the resulting probabilities better preserve the boundaries of
the object and the fine details, which is one of the main
benefits of using these models.

8. Conclusion
We have addressed the problem of variational inference in
log-supermodular distributions. In particular, building on
the L-FIELD approach of Djolonga & Krause (2014), we
established two natural, important interpretations of their
method. First, we showed how L-FIELD can be reduced
to solving the well-studied minimum norm point problem,
making a wealth of tools from submodular optimization
suddenly available for approximate Bayesian inference.
Secondly, we showed that the factorized distributions
returned by L-FIELD minimize a particular type of infor-
mation divergence. Both of these theoretical connections
are immediately algorithmically useful. In particular,
for the common case of decomposable models, both
connections lead to efficient message passing algorithms.
Exploiting the minimum norm connection, we proved
strong convergence rates for a natural parallel approach,
with convergence rates dependent on the factor graph struc-
ture. Lastly, we demonstrate our approach on a challenging
image segmentation task. Our results demonstrate the
accuracy of our marginals (in terms of AUC score) com-
pared to those produced by classical techniques like belief
propagation, mean field and variants, on models where
these can be applied. We also show that performance can
be further improved by moving to high-order potentials,
leading to models where classical marginal inference tech-
niques become intractable. We believe our results provide
an important step towards practical, efficient inference in
models with complex, high-order variable interactions.
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