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Abstract

Submodular maximization problems appear in several areas of machine learning
and data science, as many useful modelling concepts such as diversity and coverage
satisfy this natural diminishing returns property. Because the data defining these
functions, as well as the decisions made with the computed solutions, are subject to
statistical noise and randomness, it is arguably necessary to go beyond computing a
single approximate optimum and quantify its inherent uncertainty. To this end, we
define a rich class of probabilistic models associated with constrained submodular
maximization problems. These capture log-submodular dependencies of arbitrary
order between the variables, but also satisfy hard combinatorial constraints. Namely,
the variables are assumed to take on one of — possibly exponentially many — set
of states, which form the bases of a matroid. To perform inference in these models
we design novel variational inference algorithms, which carefully leverage the
combinatorial and probabilistic properties of these objects. In addition to providing
completely tractable and well-understood variational approximations, our approach
results in the minimization of a convex upper bound on the log-partition function.
The bound can be efficiently evaluated using greedy algorithms and optimized using
any first-order method. Moreover, for the case of facility location and weighted
coverage functions, we prove the first constant factor guarantee in this setting — an
efficiently certifiable e/(e− 1) approximation of the log-partition function. Finally,
we empirically demonstrate the effectiveness of our approach on several instances.

1 Introduction

Many real-world tasks can be modeled as distributions over combinatorial objects such as trees,
assignments or selections. As an illustrative example, let us consider the following scenario inspired
by the recent work of Celis et al. [1]. Assume that we are building a news aggregator and are faced
with the task of populating the limited number of slots on the front page with articles originating from
various news outlets. We furthermore assume that we have a function that, given a news article and a
slot, estimates how good of a match they are. Hence, if we decide that a certain subset of the articles
should be shown, we can compute their optimal assignment using a maximal bipartite matching.
Furthermore, to make sure that a diverse set of points of views are represented, we want the chosen
articles to not only have a high matching value, but to also come from different sources. This can
be enforced using a hard selection constraint — for example, we can require that each source j has
exactly kj articles on the front page. While the optimization problem has been well-studied as it is
that of submodular maximization, taking a probabilistic approach seems very challenging. Not only
the random variables have to satisfy complicated combinatorial requirements, but the utility function
is only implicitly defined via optimal matchings and is very challenging for many approximate
inference techniques. Nevertheless, by exploiting the submodular properties of the objective and
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the combinatorial and probabilistic properties of matroids we will develop a method that can easily
handle such models with combinatorial constraints and complex long-ranging variable interactions.

Another family of constraints that often appears is that of (directed) spanning trees. Namely, we are
only interested in subsets of edges of a graph that form a spanning tree. Such constraints can model
information cascades in network inference [2], or non-projective dependency parse trees in natural
language processing [3, 4]. Moreover, the 1-of-K encoding typically used for multi-label inference
tasks is perhaps the simplest and most frequent case of a hard combinatorial assignment constraint.

What all these applications have in common is that they give rise to joint distributions over a set of
dependent random variables, each of which is itself a combinatorial object (a spanning tree in network
inference and dependency parsing; a discrete selection in multi-label inference and slot allocation).
Inference in such combinatorial models is complex due to two sources of dependencies. First, the
distribution may express pairwise or higher-order dependencies between elements (in our previous
example, the value of the optimal matching). Second, we have strict combinatorial constraints on the
support of the distribution (e.g., only trees are allowed) that implicitly induce further interactions.

In this work, we undertake a variational inference approach and approximate these rich distribu-
tions with simpler ones that respect the combinatorial constraints but are fully tractable. These
approximations posses very strong negative association properties, which we utilize in our theory.
To find the optimal approximation we minimize a Rényi divergence over these distributions, which
results in efficiently minimizable convex upper bounds on the partition function. While variational
inference methods rarely provide any approximation guarantees, our approach yields provably good
approximations for certain model families. In summary, this paper makes the following contributions.

• Fast variational convex algorithms for a large family of probabilistic models with submodular
dependencies of arbitrarily high order in combination with hard combinatorial constraints.

• By combining results from approximate inference and submodular maximization, we prove
the first constant factor approximation on the log-partition function for facility location and
weighted coverage functions under a family of matroid constraints. We specifically show
that our upper bound does not exceed the true value by more than a factor of (1− 1/e).

• An empirical evaluation of the proposed techniques on several problem instances.

Related work. Bouchard-Côté and Jordan [5] introduce a class of variational techniques over
combinatorial spaces, but they make a different set of assumptions — they assume a product space
and models that are tractable when retaining only one of the constraints. There has also been interest
in applying belief propagation (BP) to structured problems such as dependency parsing [3]. Our
approach makes a different set of factorization assumptions, and in contrast to BP, provides a bound on
the partition function and is guaranteed to converge without any damping heuristics. Other methods
that provide upper bounds make factorization assumptions not satisfied by the models we consider
[6, 7, 8], or have to repeatedly solve hard optimization problems [9, 10]. MCMC sampling methods
for distributions over more general combinatorial objects have been addressed in a rich literature
[11]. Li et al. [12] consider distributions over partition and uniform matroids that also allow for
non-linear dependencies between the variables and develop Gibbs samplers whose mixing time grows
exponentially with the non-linearity of the model. In the unconstrained case, the mixing time as a
function of non-submodularity has been analyzed in [13, 14].

Variational inference in unconstrained probabilistic submodular models was considered by Djolonga
and Krause [15], whose inference method for log-supermodular models was shown to be equivalent
to the minimization of the inclusive Rényi divergence [16], which we also use as the variational
objective in this paper. The minimization of this divergence for decomposable unconstrained models
has been studied in Djolonga et al. [17], who also utilize the M \-concavity of the terms. Inference
in multi-label log-supermodular models has been considered by Zhang et al. [18]. The tractable
distributions used in our variational framework have been already studied [19, 20, 21]. Some of them
are determinantal point processes (DPPs), which have been already used in machine learning [22].
Risteski [23] has proved a constant factor approximation for the log-partition function of certain Ising
models using a variational approach, and is also leveraging the mean-field bound in the proof.
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2 Background — submodularity, matroids and continuous extensions

Submodularity [24, 25] formalizes the concept of diminishing returns — the benefit of adding an
element decreases with the growth of the context in which it is being included. Formally, a set
function F : 2V → [0,∞) is said to be submodular if for all X ⊆ Y ⊆ V and i ∈ V \ Y it holds
that F (i | X) ≥ F (i | Y ), where the marginal gain F (i | X) is defined as F ({i} ∪X)− F (X). To
keep the notation as simple as possible , we will w.l.o.g. assume that V = {1, 2, . . . , n}.
A classical family of submodular functions are set cover functions. If we associate to each i ∈ V a
set Ui ⊆ U of elements from some finite universe U , the function is given as the size of the union of
the chosen sets, i.e., F (X) = | ∪i∈X Ui|. Another well-known function class are facility location
functions, defined as F (X) =

∑m
j=1 maxi∈X wi,j for some non-negative weights wi,j ≥ 0. The

name stems from the following scenario: a set of facilities V serve m customers such that customer j
receives a utility of wi,j from facility i ∈ V , and F (X) measures the total utility from the facilities X
if each customer can be served by exactly one facility. Moreover, many problems, such as exemplar
clustering, which we use in the experimental section, can be modelled using this function class.

Maximization. As both examples above model utilities, a natural problem that arises is that of
finding a configuration X ⊆ V that maximizes F — cover as much as possible from U , or serve
as many customers as possible from the opened facilities. Note that the above functions are not
only submodular, but also monotone — adding an item can never decrease the value. Moreover, we
typically want to find the maximal X subject to some constraints. A classical problem is that of
maximizing over all sets of cardinality at most k. In this case, Nemhauser et al. [26] have proven that
a simple greedy algorithm results in a provably good solution. Specifically, we start with X0 = ∅,
and construct the set Xj+1 as the union of Xj and any element in argmaxi∈V \Xj

F (i | Xj). Then,
the guarantee is that F (Xk) ≥ (1− 1/e)maxX : |X|≤k F (X), which is also optimal unless P = NP.

M \-concavity. There exists a subclass of submodular functions for which the above algorithm
exactly maximizes the function even when it is not monotone, if we stop once we see a negative
gain. These functions, known as M \-concave [27, §4], are defined as follows: for all X,Y ⊆ V and
i ∈ X \ Y either (i) F (X) +F (Y ) ≤ F (X \ {i}) +F (Y ∪ {i}), or (ii) there exist some j ∈ Y \X
such that F (X) + F (Y ) ≤ F (X \ {i} ∪ {j}) + F (Y \ {j} ∪ {i}). Moreover, it also holds that
Xk = argmaxX : |X|=k F (X) [28, Lem. 6.3, 29, 30]. This family contains (see e.g. [31, §3.6]) the
maximum function maxi∈X wi,j , weighted matroid rank functions, the value of the optimal bipartite
matching used in the introduction, as well as functions of the form F (X) =

∑m
j=1 φj(|X ∩ Bj |)

for any concave φj : R → R and laminar {Bj}mj=1. While not M \-concave themselves, many
submodular functions, such as facility location, can be written as sums of M \-concave terms — a
fact that we will exploit later on in this paper.

Matroids. Submodular maximization has been studied not only under cardinality constraints, but
also under a broader set of structures that have particularly nice mathematical properties: matroids.
Definition 1 (Oxley [32]). A matroid M consists of a ground set V = {1, 2, . . . , n} and a collection
I ⊆ 2V of subsets of V (called independent) that satisfy:

(i) ∅ ∈ I.
(ii) If X ∈ I and Y ⊆ X then Y ∈ I.

(iii) If X ∈ I and Y ∈ I and |X| < |Y | then there exists some y ∈ Y \X such that X ∪ {y} ∈ I.

A set X ∈ I is maximal if for all e ∈ V \ X , we have that X ∪ {e} /∈ I. We will focus on the
case whenM is the collection of all maximal sets in I. These maximal sets are the bases of the
matroid. This framework encompasses for instance both the cardinality constraints and spanning
trees. Namely, the set I = {X ⊆ V | |X| ≤ k} is known as the uniform matroid and its bases are all
subsets of cardinality exactly k, while the set of spanning trees form the bases of the graphic matroid,
defined as the collection of edge subsets that are cycle-free. This latter example belongs to the family
of regular matroids that are defined as follows. Let

U = [ u1 u2 · · · un ] ∈ {0,±1}r×n

be a totally unimodular (TU) matrix, meaning that every square submatrix of U has a determinant in
{0,±1}. A subset X ⊆ V is said to be independent if the columns of U indexed by X are linearly
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independent. The bases of this matroid are the subsets of the columns of U that form a basis of the
column space of U . We can think of the i-th column ui as the representation of element i. As a
concrete example, the graphic matroid of a graph G = (V, E) is generated by the (arbitrarily oriented)
edge-vertex incidence matrix U ∈ {0,±1}(|V|−1)×|E| of G after removing an arbitrary vertex.

3 The problem and our approach

Formally, we have a random variable X that takes values in a set of combinatorial objectsM. For
example, X could be a random tree drawn from the collectionM of all trees in some graph G. We can
think of the members ofM as being the valid configurations among all possible sets in 2V , so that
any configuration not inM should get a probability of zero. Specifically, we consider distributions
over the configurationsM of the general form

P(X = X)=
JX ∈MK
Z

exp
(
F (X)

)
, (1)

where F : 2V → R is the objective function and J·K is the Iverson bracket. Note that the problem of
computing the MAP configuration reduces to maxX∈M F (X), which is can be approximated within
a factor of a (1− 1/e) [33] when F is monotone submodular andM are matroid bases. We make the
following additional assumptions about F and the setM constituting the support of the distribution.

(i) It holds that F =
∑m
j=1 Fj for some monotone M \-concave functions Fj : 2V → [0,∞).

(ii) The setM consists of the bases of a matroid, which is a direct sum of uniform and totally
unimodular matroids, which we will call normalizable.

We would like to point out that the model class is closed under conditioning, asM \-concave functions
are closed under restrictions, and both uniform and TU matroids are closed under taking minors. The
MAP problem under (i) has been studied in [34]. Note that, unlike many inference methods, we make
no assumption about the number of variables that each Fj depends on, also known as its order.

We will pay special attention to the case when F is a facility location, or equivalently, a weighted
coverage, i.e., of the form F (X) =

∑
i∈U wiJi ∈ ∪i∈XUiK, where Ui and U are defined as in the

unweighted case, and wi ≥ 0 are arbitrary weights. As a specific instantiation, let us consider
the FLID model of Tschiatschek et al. [35], which has been successfully applied to the problem
of item set recommendation. Specifically, we have a set of items V = {1, 2, . . . , n} that we want
to recommend to the user. Moreover, we assume that there are a total of m traits, and item i
expresses a level of wi,j ≥ 0 for trait j ∈ {1, 2, . . . ,m}. Then, the idea is that the function
F (X) =

∑m
j=1 maxi∈X wi,j +

∑
i∈X ui captures the classical notion of substitutes — once we

select an item that has a high expression level of some item, those items similar to it will be less likely
to be included. In addition, there is the modular function

∑
i∈X ui to model the quality of individual

items. Similarly to the example in the introduction, we can explicitly enforce the user to see a diverse
set of offers by for example presenting them with a fixed number of items from each brand — if items
Xp are produced by producer p, then we can useM = {X ⊆ V | ∀p : |Xp ∩X| ≤ kp}, also called
a partition matroid, which as a direct sum of uniform matroids, satisfies our modelling assumptions.

The central problem of interest in this paper is to compute marginal probabilities P(Y ⊆ X) for
any set Y ⊆ V . In its general form, this problem is hard, owing to the presence of the intractable
normalizer Z , whose computation is also important for the computation of likelihoods and model
selection. We therefore revert to approximate techniques for computing the marginal probabilities
and the partition function Z . Specifically, we will undertake a divergence minimization approach,
which will yield both an estimate of logZ and approximate marginals. Namely, we will first define a
set of approximate distributions Q that are rich enough to capture some of the properties of the target
distribution P, but are computationally tractable. Then, we will find the distribution Q inQ that is the
closest to P, as measured by some measure of distributional discrepancy, also called a divergence.

4 “Simple” distributions over matroid bases

We begin with a characterization of the distributions Q that will serve as approximations. These
distributions correspond to modular objective functions, so that for some θ ∈ Rn they are given as
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F (X) =
∑
e∈X θe = θ>1X , where 1X ∈ {0, 1}n is the characteristic vector of X with ones only

at coordinates X . Formally, they belong to the exponential family and can be written as

Qθ(X = X) = exp(θ>1X −A(θ))JX ∈MK. (2)

Here, A(θ) = log
∑
X∈C exp(θ

>
1X) is the normalizing log-partition function, andM is the set of

bases of the considered matroid classes. Because of the constraint JX ∈MK, the distribution is not a
product distribution, and the elements i ∈ V are not independent. Even though computing A(θ) can
be challenging for arbitrary constraints, it can be efficiently done for the considered classes. In what
follows we will assume that we have a single normalizable matroid, as the result for their direct sums
easily follows. In the uniform matroid case, (2) is known as a cardinality potential, and both A(θ)
and the unary marginals can be computed in O(nk) using the algorithm of Tarlow et al. [19]. IfM is
a regular matroid, the model can be efficiently normalized via the celebrated matrix-tree theorem.
Theorem 1 (Maurer [36]). For regular matroids, it holds that A(θ) = log det

∑n
i=1 e

θiuiu
>
i .

Lyons [20] showed that the distribution (2) is a determinantal point process (DPP) with the scaled rep-
resentation Uθ = (Udiag(exp(θ))U>)−1/2Udiag(exp(θ/2)), and can be marginalized as follows.
Theorem 2 ([20, Remark 5.6]). The marginal probability of any Y ⊆ V is equal to

P (Y ⊆ X) = detKY , (3)

where K = U>θ Uθ ∈ Rn×n and KY is the submatrix formed by the rows and columns indexed by Y .

For example, the first and second order moments are given by

P (e ∈ X) = ‖uθe‖2, and P ({e, e′} ⊆ X) = ‖uθe‖2‖uθe′‖2 − 〈uθe,uθe′〉2, (4)

which implies that the elements e, e′ are negatively correlated: their joint probability is smaller than if
they were independent. Moreover, an even stronger condition can be stated — both cases are strongly
Rayleigh [37, Coro. 4.18, Prop. 3.5], so that for any Q ∈ Q we have that EA∼Q[G(A)H(A)] ≤
EA∼Q[G(A)]EA∼Q[H(A)] for any monotone functionsG andH that depend on disjoint coordinates1.

As Q is an exponential family, it has many remarkable properties (for proofs see e.g. [38]), some of
which we now present. The marginals, i.e., the vector µ ∈ [0, 1]n with entries µi = EX∼Qθ

[Ji ∈ XK],
can be easily computed from the log-partition function as µ = ∇A(θ). An important object
associated withQ is the marginal polytope, the set of all realizable unary marginals by any distribution
overM. In our case, it is equal to the convex hull of the bases, i.e., M = conv{1A | A ∈ M}.
Remarkably, Q is rich enough to represent any marginal vector in relintM, i.e., ∀µ ∈ relintM there
exists some θ(µ) ∈ Rn such that Ex∼Qθ(µ)

[x] = µ. Furthermore, the convex conjugate A∗(µ) of
the log-partition function A evaluates to∞ if µ /∈ M, and to −H[Qθ(µ)] otherwise, where H[·] is
Shannon’s entropy function. Moreover, we can optimize linear functions over M using Edmonds’
[25] celebrated algorithm in O(n log n). Namely, to solve maxµ∈M µ>θ, first sort θ in descending
order θσ(1) ≥ θσ(1) ≥ . . . ≥ θσ(n), and define the chain

X0 = ∅, and Xi =

{
Xi−1 ∪ {σ(i)} if Xi−1 ∪ {σ(i)} ∈ I
Xi−1 otherwise

.

Then, it can be shown that 1Xn
is a maximizer. For spanning trees, this is exactly Kruskal’s algorithm.

5 Inference using the inclusive infinite Rényi divergence

Having fixed the approximation family, we turn to the choice of the function that will quantify the
distance between the distributions, and the analysis of resulting optimization problem. In this paper
we will use the inclusive Rényi∞-divergence [39, 40], defined as

D∞(P ‖Q) = log max
X∈M

P(X)/Q(X). (5)

In other words, it evaluates to the worst-case log-ratio between P and Q. In the terminology of Minka
[41], it is an inclusive (zero-avoiding) divergence — it prefers more conservative distributions that do

1The caseM = {X | |X| ≤ k} can be also normalized and Q is again strongly Rayleigh [37, Cor. 4.18].
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not assign event probabilities close to zero or one. To better understand the optimization problem
that results from minimizing D∞, let us first define for F : 2V → R and anyM⊆ 2V the function
f̂?(y | M) = infx∈M y>1X − F (X), which is easily seen to be concave. Then, by expanding the
divergence and minimizing with respect to Qθ ∈ Q we obtain the following upper bound2

logZ ≤ inf
θ∈Rn

A(θ)− f̂?(θ | M) = sup
µ∈M

f̂(µ | M)−A∗(µ), (6)

where f̂(µ | M) = f̂??(µ | M) = infy∈Rn µ>y − f̂(y | M) is the concave conjugate of
f̂?(y | M), and the equality follows from Fenchel’s duality. Unfortunately, we can not evaluate the
above bound as we do not know how to compute f̂?(µ | M), which requires the maximization of a
non-monotone function overM. We do, however, know that F decomposes as a sum of M \-concave
functions, which we can leverage to obtain a more tractable bound using dual decomposition [42, 43].
Proposition 1. By applying dual decomposition to (6) we arrive at the following bound

logZ ≤ inf
{θj}mj=1

A(

m∑
j=1

θj)−
m∑
j=1

f̂?j (θj | M)︸ ︷︷ ︸
R(θ1,...,θm|M)

= sup
µ∈M

m∑
j=1

f̂j(µ | M)−A∗(µ). (7)

Now, instead of maximizing F overM, we only have to maximize only each component Fj . Because
we have assumed that each Fj isM \-concave, ifM is a uniform matroid remember that we can easily
solve the resulting problem max|X|=k F (X)− y>1X using the greedy strategy. Even though the
general case seems much harder, it can be solved using Murota’s duality theorem [27, Thm. 8.21(i)]
by introducing a set of m auxiliary variables {λj ∈ Rn}mj=1 over which we also have to minimize.

Proposition 2. For any set of parameters {θj ∈ Rn}mj=1 it holds that

A(

m∑
j=1

θj)−
m∑
j=1

f̂?j (θj | M) = inf
{λj}mj=1

A(

m∑
j=1

θj)−
m∑
j=1

f̂?j (λj | V )+

m∑
j=1

sup
µ∈M

µ>(λj−θj). (8)

Note that it is easy to both evaluate this bound and compute a subgradient. Namely, we can compute
both the log-partition function and its derivatives using the methods from Section 4. The computation
of both f̂? and the linear maximization over M can be done using greedy algorithms, and the
computed maxima are members of the corresponding subdifferentials. Hence, we can easily employ
first-order convex methods to optimize this bound to arbitrary precision in polynomial time.

The facility location case. We will now prove a strong theoretical guarantee for the quality of the
computed approximation for this important class. Specifically, we will show that the obtained upper
bound is no greater than (1 − 1/e)−1 logZ ≈ 1.582 logZ . To this end, we first construct a lower
bound on logZ , and then show that the lower and upper bounds are within a multiplicative constant of
each other. Moreover, this lower bound can be easily evaluated, so that we can at any point return not
only a bound, but also a corresponding certificate. We begin by introducing the multi-linear extension
f̃ : [0, 1]n → R [33] of F , defined as f̃(µ) = Exi∼Bernoulli(µi)[F (x)]. It can be evaluated within any
accuracy using Monte-Carlo sampling, and also analytically for several cases such as facility location
functions (see e.g. [44]). To derive the bound, we start from the mean-field bound [38] (details in
appendix) EX∼Q[F (X)] +H[Q] ≤ logZ , which holds for any distribution Q absolutely continuous
with respect to P. Then, we use a result by Chekuri et al. [45, Lem. VI.1], which states that if F is a
weighted sum of coverage functions and Q is negatively associated with unary marginals µ ∈ [0, 1]n

— both conditions satisfied for our model — then EX∼Q[F (X)] ≥ f̃(µ).
Proposition 3. If F is a facility location function, then for any θ ∈ Rn it holds that

L(θ) = f̃(∇A(θ)) +H[Qθ] = f̃(∇A(θ)) +A(θ)−∇A(θ)>θ ≤ logZ. (9)

We will actually prove a stronger result that holds not only for (7), but also if we relax the bound and
replace f̂?j (y | M) by f̂?j (y | V ), i.e., we ignore the constraints when we maximize. In other words,

2We defer the proofs of all results in this section to the appendix.
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we will show that the bound

inf
{θj}mj=1

A(

m∑
j=1

θj)−
m∑
j=1

f?j (θj)︸ ︷︷ ︸
R(θ1,...,θj)

= sup
µ∈M

m∑
j=1

f̂j(µ)−A∗(µ), (10)

is within a multiplicative constant of L evaluated at any optimizer of (10). Even though perhaps not
immediately clear from their definitions, both f̂(µ | V ) and f̃(µ) are extensions of F — if we see
F as being defined over {0, 1}n instead of 2V using the natural bijection, then both of them agree
with F for binary vectors and continuously fill in the rest of the unit cube. Moreover, they are closely
related via the following result known as the correlation gap inequality.
Theorem 3 ([46, Lem. 3.8, 47]). If F : 2V → R is monotone submodular with F (∅) = 0, then

∀µ ∈ [0, 1]n : (1− 1/e)f̂(µ | V ) ≤ f̃(µ) ≤ f̂(µ | V ).

By combining these two results, we can finally prove the approximation result claimed above.
Theorem 4. If F is a facility location function and {θ∗j }mj=1 minimizes (7) or (10), then

L(
m∑
j=1

θ∗j ) ≤ logZ ≤ R(θ∗1 , . . . ,θ∗m) ≤ (1− 1/e)−1L(
m∑
j=1

θ∗j ) ≤ (1− 1/e)−1 logZ. (11)

Furthermore, at any point during the optimization we can easily certify our approximation quality
by computing C(θ1, . . . ,θm) = R(θ1, . . . ,θm)/L(

∑m
j=1 θ

∗
j ), as the true approximation factor

R(θ1, . . . ,θm)/ logZ is guaranteed to be upper bounded by it.

6 Experiments

We perform numerical experiments to better understand the practical performance of the proposed
methods, namely how good is the approximation when compared to the theoretical e/(e− 1) factor
and how well are the marginals estimated. Moreover, we showcase the scalability of our approach
by performing inference on large real-world instances. The implementation was done in Python
using PyTorch, and we optimize the bound using subgradient descent. The computation of the
log-partition function and its gradients (building on the code from [48]), as well as the greedy oracle
were implemented in C++. We provide all details in the appendix.

6.1 Synthetic experiments

We begin by comparing the accuracy of the methods on a set of synthetic experiments. We consider
facility location models with objectives of the form F (X) =

∑20
j=1 maxi∈X wi,j , where we sample

wi,j ∼ Uniform[0, α]. We vary the inverse temperature parameter α and show the results in Figure 1.
We first used a uniform matroid constraint |X| = 5 over a ground set of size n = 40. For the same
models we then considered partition constraints by partitioning V into three sets V1, V2 and V3 of sizes
10, 10, and 20 respectively and definingM = {X ⊆ V | |X∩V1| = 2, |X∩V2| = 2, |X∩V3| = 4}.
Because the number of configurations is in the millions, we were able to compute the exact marginals
and log-partition functions. From the plots we can see that the approximation is much better than the
theoretical factor (≈ 1.582), and close to exact in the small and high temperature regimes. Moreover,
even though the divergence we are optimizing does not necessarily target the marginals, we can see
that they are also approximated within a small error.

6.2 Real data

We consider two problems from data mining that can be written as facility location maximization
problems under cardinality constraints. For each function F (A) we perform inference in models with
objectives αF (A) for varying α ≥ 0. Moreover, to obtain statistical estimates on the approximation
factors, we repeat the experiments several times by taking random subsets of the data.

Exemplar clustering. Given a datasetX = {x1,x2, . . . ,xn} of n points in Rd, we want to find a small
subset of size k = 10 that is a good summary ofX by minimizingG(A) =

∑n
i=1 minxj∈A ‖xi−xj‖.
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(a) Inference on synthetic models under a uniform matroid constraint |X| = 6.
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(b) Inference on synthetic models under a partition matroid constraint with 3 blocks of sizes 10, 10 and 15.

Figure 1: Results on synthetic facility location models on a ground set of size n = 40. The parameters are
sampled from UNIFORM(0, α), and there are m = 10 components. The ordinates on plots in the first column
have been centered so that zero corresponds to the true partition function. In the last column we plot both the
certified approximation factor (the ratio of the upper bound and the certificate) and the exact one (when dividing
by the exact partition function). The error bars indicate three standard deviations from 20 repetitions.
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(a) Sensor placement under uniform (left) and partition (right) matroids.
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(b) Exemplar clustering (CIFAR10).

Figure 2: Results on large real-world datasets (full explanation in §6.2). The error bars indicate three standard
deviations from 20 repetitions. Note that the certificate is significantly lower than the theoretical factor of 1.582.

While −G is not submodular, it can be shown [49] that F (A) = G({x0}) − G(A ∪ {x0}) is
monotone submodular for carefully chosen x0, typically taken to be the origin. We show our results
in Figure 2(b), on n = 1500 points from the CIFAR10 [50] dataset normalized as in [44].

Sensor placement. The second problem is that of placing sensors at pipe junctions in order to
effectively detect water contaminations. Namely, there a total of n locations where we can place
our sensors, and a set of m possible contamination scenarios. For each scenario j and sensor i
there is some utility wi,j ≥ 0 if i detects contamination j, computed e.g. as a function of the the
detection time, and the total utility is naturally captured using F (A) =

∑m
j=1 maxi∈A wi,j . We

use a subset of the data from [51], and show the results in Figure 2(a). We consider two scenarios
— (i) n = 5000,m = 300 under a cardinality constraint M = {X ⊆ V | |X| = 50}, and (ii)
n = 1500,m = 100 under a partition matroid, constructed by splitting V into 3 blocks of equal size,
and consider only distributions that pick exactly 5, 10 and 5 points from each block respectively.

Despite the fact that these models have a much larger number of variables and components in the
objective, in Figure 2 we see a behaviour similar to that of the synthetic instances — the certificate
of the approximation factor is close to one under high and low temperatures (large and small α
respectively), while remaining always significantly smaller than the theoretical guarantee.
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7 Conclusion

We explored a new, rich class of probabilistic models, whose variables realize bases of a sum of
normalizable matroids. These models allow to capture high-order submodular dependencies between
complex combinatorial objects. We presented efficient, convergent convex variational inference
algorithms that yield upper bounds on the partition function. Moreover, we proved the first constant
factor approximation on the log-partition function of facility location and weighted models under
constraints. We also numerically showcased the quality of the estimated partition function and
the marginals. Our models and methods provide important steps towards exploiting combinatorial
structure for principled modeling and reasoning about complex real-world phenomena.

Acknowledgements. The research was partially supported by ERC StG 307036, Google European
PhD Fellowship, and NSF CAREER award 1553284.
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A Proofs

To simplify the notation we use f̂(µ) = f̂(µ | V ) and f̂∗(y | V ) = f̂∗(y), and also treat the set
functions as being defined over the boolean lattice.

Lemma 1. From the inclusive infinite Rényi divergence we have the following bound

logZ ≤ A(θ)− f̂?(θ | M).

Proof.

0 ≤ D∞(P ‖Qθ) = log sup
X∈M

P(A)/Qθ(A)

= log sup
X∈M

exp(F (X)− logZ)/ exp(θ>1X −A(θ))

= sup
X∈M

log exp(F (X)− logZ)/ exp(θ>1X −A(θ))

= sup
X∈M

F (X)− logZ − θ>1X +A(θ))

= A(θ)− logZ + sup
X∈M

F (X)− θ>1X

= A(θ)− logZ − infX ∈Mθ>1X − F (X)

= A(θ)− logZ − f̂?(θ | M).

Proof of Proposition 1.

logZ ≤ A(θ)− f∗(θ | M)

= A(θ)− inf
x∈M

x>θ −
m∑
j=1

Fj(x)

= A(θ)− inf
xj∈M,x∈Rn

s.t.x=xj

x>θ −
m∑
j=1

Fj(xj)

= A(θ)− inf
xj∈M

inf
x∈Rn

sup
θj

m∑
j=1

θ>j (x− xj) + x>θ −
m∑
j=1

Fj(xj)

≤ A(θ)− sup
θj

inf
xj∈M

inf
x∈Rn

m∑
j=1

θ>j (xj − x) + x>θ −
m∑
j=1

Fj(xj)

= A(θ)− sup
θj

inf
xj∈M

s.t.
∑

j θj=θ

m∑
j=1

θ>j xj −
m∑
j=1

Fj(xj)

= inf
θj

A(

m∑
j=1

θj) +

m∑
j=1

f̂?j (θ |M).

The equality is immediately applied from Fenchel’s theorem, which holds because A is continuous
everywhere.

Proof of Proposition 2. Note that

f̂?(θ | M) = inf
x∈M

y>x− F (x) = inf
x∈Rn

IM(x) + y>x− F (x),

where IM is the indicator on M, i.e, evaluating to 0 on M and ∞ elsewhere. Because of the
matroid basis exchange property, we have that IM is M \-convex as −IM satisfies condition (ii) of
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the definition. This implies that IM(x) + y>x is also M \-convex, so by applying [27, Theorem
8.21(i)] we have that

inf
x∈Rn

IM(x) + θ>x− F (x) = sup
λ∈Rn

f̂?(λ)− (IM(x) + θ>x)∗(λ).

Now, because (IM(x) + θ>x)∗(λ) = I∗M(λ− θ), we finally arrive at

−f̂?(θ | M) = − inf
x∈Rn

IM(x)+θ>x−F (x) = − sup
λ∈Rn

f̂?(λ)−I∗M(λ−θ) = inf
λ∈Rn

I∗M(λ−θ)−f̂?(λ),

which is exactly what we had to show as I∗M(z) = supX∈M z>1X = supµ∈M z>µ.

Proof of Proposition 3. Because each Q ∈ Q has the same support as P, by expanding the KL
divergence we obtain the following classic bound

0 ≤ DKL(Q ‖P) =
∑
A∈M

Q(A) log[Q(A)/P(A)] = logZ − EA∼Q[F (A)]−H[Q]. (12)

If we re-arrange the terms we can see that minimizing the KL divergence is equivalent to the
maximization of EA∼Qθ

[F (A)]+H[Qθ] ≤ logZ . Then, because the variables are strongly Rayleigh
under Q, we can apply Chekuri et al. [45, Lemma VI.1], which implies that EA∼Qθ

[F (A)] ≥
f̃(∇A(θ)). Hence, it is indeed true that L(θ) = f̃(∇A(θ)) + H[Qθ] ≤ EA∼Qθ

[F (A)] ≤ logZ .
We would like to note that Chekuri et al. [45, Lemma VI.1] is stated for coverage functions and easily
extended for weighted coverages, but also holds for facility locations as they can be written as sums
of weighted coverages (see e.g. [44, Lemma 5]). Finally, the relationship −A∗(∇A(θ)) = A(θ) is a
direct result of the classical relationship between θ and µ, but can be also easily seen directly as

H[Qθ] = −EQθ
[logQθ(x)] = −EQθ

[θ>1X −A(θ)] = A(θ)− EQθ
[θ>1X ] = A(θ)− θ>∇A(θ).

Proof of Theorem 4. Let µ∗ ∈M be the variable that achieves the maximum, and let θ∗ =
∑m
j=1 θ

∗
j

be the optimal primal parameters, so that µ∗ holds the marginals of Qθ∗ .

Note that for each j ∈ {1, 2, . . . ,m} it holds that f̂∗j (µ | M) ≥ f̂∗j (µ) as the latter is defined over a
strictly larger set, which implies the reverse relationship between the conjugates f̂j(µ | M) ≤ f̂j(µ).

logZ ≤ A(
m∑
j=1

θ∗j )−
m∑
j=1

f?j (θj | M)

=

m∑
j=

fj(µ
∗ | M)−A∗(µ∗) (Fenchel duality)

≤
m∑
j=

f̂j(µ
∗)−A∗(µ∗) (Argument above)

≤ (1− 1/e)−1
m∑
j=1

f̃j(µ
∗)−A∗(µ∗) (Theorem 3)

≤ (1− 1/e)−1(

m∑
j=

f̃j(µ
∗)−A∗(µ∗)) (−A∗ = H ≥ 0)

= (1− 1/e)−1L(θ∗)
≤ (1− 1/e)−1 logZ (Proposition 3).
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B Experimental details

Before multiplying by α the facility location functions were normalized so that maxi,j wi,j = 1.

Figure 1(a) α .1 1 10 100 1000
γ .1 .1 .5 2 4
θ 1 1 1 1 1
t 3000 3000 3000 3000 3000

Figure 1(b) α .1 1 10 100 1000
γ .1 .1 .5 2 4
θ 1 1 1 1 1
λ 1 1 1 1 1
t 3000 3000 3000 3000 3000

Figure 2(a) (left) α .1 1 10 100 1000
γ 1 1 1 1 1
θ 1 1 1 1 1
t 4000 4000 4000 4000 4000

Figure 2(a) (right) α .1 1 10 100 1000
γ .5 .5 .5 .5 2
θ 1 1 1 1 1
λ 1 1 1 1 1
t 2000 2000 2000 2000 2000

Figure 2(b) α .1 1 10 100 1000
γ .01 1 2 4 8
θ .01 1 1 1 1
t 2000 2000 2000 2000 2000

Table 1: We used gradient descent with an initial rate of γ and halved it every tenth of the number of
iterations t. We initialized the parameters as θj ∼ Uniform(0, θ) and λj ∼ Uniform(0, γ).
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