
A Fresh Perspective: Learning to Sparsify for Detection in
Massive Noisy Sensor Networks

Matthew Faulkner
Computer Science

Caltech
mfaulk@caltech.edu

Annie H. Liu
Computer Science

Caltech
aliu@cms.caltech.edu

Andreas Krause
Computer Science

ETH Zurich
krausea@ethz.ch

ABSTRACT
Can one trade sensor quality for quantity? While larger net-
works with greater sensor density promise to allow us to use
noisier sensors yet measure subtler phenomena, aggregating
data and designing decision rules is challenging. Motivated
by dense, participatory seismic networks, we seek efficient
aggregation methods for event detection. We propose to
perform aggregation by sparsification: roughly, a sparsify-
ing basis is a linear transformation that aggregates mea-
surements from groups of sensors that tend to co-activate,
and each event is observed by only a few groups of sensors.
We show how a simple class of sparsifying bases provably
improves detection with noisy binary sensors, even when
only qualitative information about the network is available.
We then describe how detection can be further improved
by learning a better sparsifying basis from network obser-
vations or simulations. Learning can be done offline, and
makes use of powerful off-the-shelf optimization packages.
Our approach outperforms state of the art detectors on real
measurements from seismic networks with hundreds of sen-
sors, and on simulated epidemics in the Gnutella P2P com-
munication network.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; G.3 [Probability and Statis-
tics]: Experimental Design; I.2.6 [AI]: Learning

General Terms
Algorithms, Experimentation, Theory

Keywords
Sparsifying transformation, basis learning, sensor networks,
community sensing, event detection, ICA, SLSA
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(a) CSN Participants (b)

Figure 1: (a) CSN sensors; (b) Peak amplitude
of Compton M3.4 quake measured by 4089 sensors.
Note the complex spatial correlation.

1. INTRODUCTION
In recent years, millions of accelerometers have appeared

across cities around the world. Most of these sensors are in
privately owned, Internet-enabled devices like smartphones
and laptops. Several participatory sensing projects, includ-
ing the Community Seismic Network (CSN)1, the Quake
Catcher Network (QCN)2, and iShake3 are working to unify
these numerous but noisy devices to measure and detect
strong earthquakes.

Quake detection in community networks requires finding
a complex spatio-temporal pattern in a large set of noisy
sensor measurements. The start of a quake may only affect
a small fraction of the network, so the event can easily be
concealed in both single-sensor measurements and network-
wide statistics. Data from recent high-density seismic stud-
ies, Fig. 1(b), show that localized variations in ground struc-
ture significantly impact the magnitude of shaking at loca-
tions only a few kilometers apart. Consequently, effective
quake detection requires algorithms that can learn subtle
dependencies among sensor data, and detect changes within
groups of dependent sensors. In this sense, quake detection
is prototypical of many challenging real-time detection prob-
lems, including detecting epidemic outbreaks [22], intrusions
in networks [27], and sudden changes in traffic patterns [9].

Particularly challenging in massive networks is dealing
with the flood of data. By utilizing even a small fraction
of the millions of existing internet-enabled consumer sen-
sor devices, community sensor networks can reach scales
where regularly transmitting even summary statistics would

1http://csn.caltech.edu
2http://qcn.stanford.edu/
3http://ishakeberkeley.appspot.com/
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be prohibitive. Instead, we adopt a decentralized approach,
where sensors individually detect events and only transmit
“pick” messages indicating a detection. These individual de-
tections typically will be very noisy, including many false
alarms and missed detections. This reduces the server-side
problem to one of detecting event signals in a (noisy) binary
activation pattern. Event detection may be the primary
task, or serve as a precursor for additional data collection
and processing.

Standard approaches in decentralized detection [24] as-
sume that the sensors provide i.i.d. measurements condi-
tioned on the occurrence or non-occurrence of an event. In
this case, the fusion center would declare a detection if a
sufficiently large number of sensors report picks. However,
in many practical applications, the particular spatial con-
figuration of the sensors matters, and the i.i.d. assumption
is violated. Here, the natural question arises of how (quali-
tative) knowledge about the nature of the event can be ex-
ploited in order to improve detection performance. In this
work, we propose to use sparsification to optimize detection.
In particular, we linearly represent the network-wide noisy,
binary activation patterns in a suitable basis, which is care-
fully chosen so that “typical” activations (associated with
the events of interest) are sparsely represented in the basis.
This effectively concentrates the signal energy along a small
number of basis coordinates. Natural questions, addressed
in this work, are thus: When can we expect sparse represen-
tations to aid detection? And, which bases are appropriate
for this purpose?

As our first major contribution, we consider a wavelet
basis that emerges naturally when sensors are clustered hi-
erarchically. We prove theoretically that when the wavelet
basis sparsifies the received picks, decentralized detection
becomes possible in a noise regime that cannot be handled
by a simple network-wide average. We derive strong bounds
on the detection rate when events are drawn from a recently
proposed latent tree model that produce strong localized de-
pendencies and weaker long-range dependencies.

One of the strengths of the wavelet basis is that it can be
constructed using as little information as a matrix of pair-
wise similarity between sensors. However, additional infor-
mation such as event simulations or measurements of events
in the network are often available. Incorporating this in-
formation should improve detection. As our second major
contribution, we show how modern results from dictionary
learning can be used to directly learn sparsifying bases from
simulated or measured training data.

As third main contribution, we perform extensive empir-
ical studies of detection using measurements of 1795 earth-
quakes following the Japanese Tohuku M9.0 quake, quake
measurements from the Signal Hill dense seismic study, from
the Community Seismic Network as well as simulated virus
outbreaks in the Gnutella P2P network.

In summary, our main contributions are:

• New theoretical guarantees about decentralized detec-
tion of sparsifiable events,

• A framework for learning sparsifying bases from simu-
lated or measured data, and

• Extensive experiments on real data from three seismic
networks, and simulated epidemics in P2P networks.

2. PROBLEM STATEMENT
We are interested in the problem of detecting whether or

not some phenomenon (say an earthquake with magnitude
above some threshold, or an epidemic) is present at any loca-
tions monitored by a massive network of noisy sensors. We
model the presence of the phenomenon at locations 1, . . . , p
as a binary vector x = [x1, . . . , xp] ∈ {0, 1}p that is observed
by noisy sensors. The Gaussian noise model is a natural
choice for sensor observations, where sensor i observes

yi = xi + εi,

where εi ∼ N (0, σ2). In our seismic detection application,
the variables yi may refer to accelerometer readings of a sen-
sor deployed at location i. This continuous noise model cap-
tures how a subset of sensors in areas experiencing shaking
observe a shift in the mean of their accelerometer measure-
ments, while the rest of the network observes i.i.d. noise.

The decentralized setting. In many domains, collecting
the raw sensor measurements of all sensors would require
prohibitive bandwidth to transmit (e.g. the accelerometers
in one million smartphones produce ≈ 30 Terabytes of data
each day). A natural way to circumvent this bottleneck is
to use decentralized detection [24] where sensors individu-
ally test their measurements and report the occurrence of
a possible event. As an example, the CSN system employs
a hierarchical anomaly detection approach [8] that allows
each sensor to transmit only the results of a local anomaly
detection computation (known as a picking algorithm) to
the fusion center. We can model the resulting picks using a
binary symmetric channel noise model, where

yi =

{
xi with prob. 1− π
1− xi with prob. π,

for some error rate 0 < π ≤ 1
2
. The goal of the detection

problem is to distinguish the null hypothesis H0, xi = 0 for
all i (i.e., no earthquake present) from the alternate hypoth-
esis H1, where xi = 1 for one or more i (i.e., the earth is
shaking at least at one location i).

Decentralized linear detection. While (decentralized)
hypothesis testing in general has been studied extensively,
here we focus on the particularly challenging, and not well
understood, setting where the patterns x are sparse and
have strong noise. This is exactly the case for our motivating
example of community seismic networks, where we wish to
detect the event as early as possible (i.e., few sensors have
been reached yet), and each sensor is very noisy. Formally,
we quantify the sparsity of a vector x as the number of
non-zero elements xi 6= 0, denoted by the `0-norm ||x||0.
Generally, we will be interested in quantifying the detection
performance as the network grows. We say x is sparse if
||x||0 grows as p1−α for some 1/2 < α < 1, where a larger
α means a sparser signal. Thus, as the number p of sensors
grows, the ratio of sensors reached by the event ||x||0/p =
p−α vanishes as p→∞.

We focus on hypothesis tests of linear functions of the ob-
servations, i.e. for some matrix B with columns b1, . . . ,bn,
we consider hypothesis tests of the form

max
i

bTi y Q τ

for some threshold τ . As we will show in this paper, proper



choice of the basis B can lead to dramatically improved de-
tection performance, i.e., with the same false positive rate
much sparser signals (or much higher noise) can be tolerated.

3. DETECTING SPARSIFIABLE EVENTS
Detecting sparse signals in the decentralized setting is

fundamentally challenging. Suppose the expected number
of errors in the network is pγ for some 0 < γ < 1, and
the per-sensor error rate π = pγ/p. Could we use the
observed number of picks ||y||0 to detect a pattern with
||x||0 = p1−α < p0.5 non-zero entries?

Under both H0 and H1, the variance of ||y||0 grows as
pγ . Consider the variable ||y||0/

√
pγ : it has variance con-

verging to 1 under both H0 and H1. Under H0, its mean is
p0.5γ , and under H1 its mean is p1−α−0.5γ(1 − 2π) + p0.5γ .
For γ > 2(1 − α), the distributions of ||y||0 under H0 and
H1 converge, while for γ < 2(1 − α) < 1 the distributions
are asymptotically separable. The statistic ||y||0 (classically
used in decentralized detection) can only provide reliable de-
tection if the per-sensor error rate decreases (π = pγ/p→ 0)
as the network size p grows. That is, as the network grows,
the sensors must have vanishing error rate for H0 and H1 to
be separable in the case of sparse signals.

Fortunately, data is rarely unstructured. Even when the
network-wide activation pattern is sparse, the activation pat-
tern within some groups may be dense and thus more eas-
ily detectable. Hierarchical clustering is useful for finding
meaningful clusters at a range of scales, and is compati-
ble with efficient data aggregation systems [19] for sensor
networks. Recently, hierarchical clustering has been used to
define wavelets bases for trees, graphs, and high-dimensional
data [11, 23]. For example, a Haar wavelet basis is defined
by a hierarchical clustering: whenever two clusters cl and cr
are merged into a cluster of coarser scale, a unit vector is
created,

bi ∝
(

1

|cl|
1cl −

1

|cr|
1cr

)
(1)

where 1c indicates the support of cluster c. The cluster-
ing algorithm performs p − 1 merges; the p − 1 vectors
b1, . . . ,bp−1 along with the constant vector 1√

p
1p form the

columns of an orthonormal matrix B. Multiplying the net-
work observations y by B is a projection onto a new basis,
where each coordinate bi corresponds to the difference be-
tween the relative number of activations in a pair of merged
clusters. Fig. 3(a) illustrates the basis functions of the trans-
formation. The transform B has the property that each
element bi corresponds to local averages over sets of re-
lated nodes cl and cr. Under the assumption that many
sets usually activate (or do not activate) jointly, events may
be clearly apparent as strong signal along a small number of
basis elements. More formally, patterns in x supported on
the clusters used to define B will tend to be concentrated
in a few elements bi, and so ||BTx||0 � ||x||0. Fig. 2 shows
that sparsifiable data is inherently structured.

A basis for detection. Just as a Fourier transform maps
an acoustic signal into a coordinate frame that yields insight
about the frequency content of the signal, multiplying net-
work activations x by the basis B maps the sensor data onto
a new coordinate system defined by the hierarchical cluster-
ing, and can expose correlated activations. In the following,
we prove that with the Haar wavelet basis, the “sparsifica-

(a) ||x||0=p.9, ||BTx||0=p.25 (b) ||x||0=p.7, ||BTx||0=p.25

Figure 2: Sparsification ||BTx||0 � ||x||0 exploits spa-
tially coherent activation patterns, while small ||x||0
produces fewer activations. The data are drawn
from a quad-tree of height 5.
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(b) Latent Tree Model

Figure 3: Illustration of the transform (a), constant
b0 not shown. (b) Latent Tree Model for d = 2
and p = 4. The sensors y measure the pattern
x = [x1, . . . , x4] up to some noise. The pattern is
structured hierarchically; variables zi represent the
variables of the latent tree.

tion ratio” ||x||0
||BT x||0

plays a central role in achievable error

rates. In particular, the following new theorem (with proof
outline in the appendix) shows the power of a sparsifying
transform to concentrate the signal along at least one new
coordinate without concentrating the random noise.

Theorem 1. Let B be a Haar basis that sparsifies a sig-
nal x, i.e. ||BTx||0 = p1−β, ||x||0 = p1−α, 0 < α < β <
1. Let y be the signal observed through a binary symmet-
ric channel, with error rate π bounded away from 1/2 (i.e.
for some ε > 0, π < 1/2 − ε). Then applying the test

|bTy| > (1−2π)
2

√
||x||0
||BT x||0

to each of the p− 1 non-constant

basis elements b ∈ B gives false negative rate (FNR) and
false positive rate (FPR) bounded as

FNR ≤ 2p exp

(
− (1− 2π)2

2

||x||0
||BTx||0

)
→ 0 as p→∞,

FPR ≤ 2p exp

(
− (1− 2π)2

2

||x||0
||BTx||0

)
→ 0 as p→∞.

This theorem states that for any constant error rate π,
as the network size p grows, the probability of a missed
detection (FNR) and the probability of false alarm (FPR)
are driven to 0 by the decision rule that declares “event”



when |bTy| exceeds the specified threshold, for any of the p−
1 non-constant basis elements b. For comparison, recall that
reliable detection using the network-wide pick count ||y||0
(the standard statistic for decentralized detection) requires
the error rate π to rapidly decay to zero as p grows.

The sparsifying basis B thus enables reliable detection in a
broad noise regime that cannot be detected by the network-
wide average. This insight shows that indeed quality of sen-
sors can be traded against quantity. Of course, this strong
result assumes that the event signal x is sufficiently spar-
sifiable by the basis B. In this paper, we show that this
assumption holds both in a natural theoretical model, as
well as on real sensor data.

Modeling sparsifiable events. When is sensor data
sparsifiable? Let us consider again the natural hierarchical
basis B, defined according to Eq. 1 as introduced at the
beginning of this section. Singh [23] shows that for this
particular basis, the assumption ||BTx||0 � ||x||0 ≤

√
p is

fulfilled when the pattern x is drawn from an intuitive class
of generative models. For completeness, the model is pre-
sented here. In this model, dependencies among sensors are
modeled via a tree of regular degree d: the leaves correspond
to the event occurrence xi at each sensor, and internal nodes
correspond to the occurrence or non-occurrence of an event
at a particular region and scale. Let ` = 0, 1, . . . L denote
the level in the tree, where the activations {xi}, i = 1, . . . , p
are leaves at level L = logd p, and the root is at ` = 0. The
internal (non-leaf) nodes in the tree capture multi-scale de-
pendencies among the leaves. Let z denote all nodes in the
tree. The joint distribution of z factorizes as

p(z) = p(z0)

L∏
`=1

∏
i∈V`

p(zi|zparent(i)) (2)

where Vl denotes the vertices at layer l. The probability that
a node equals its parent is specified by γ` = `β log d. This
coupling is weaker near the root and stronger near the leaves,
producing multi-scale dependencies. Sufficiently weak de-
pendencies are considered negligible, and so the latent vari-
ables zi ∈ `0 at some initial level `0 are drawn independently
from their parents: p(zi = 1|zparent(i)) = p(zi = 1) ∝ eγ`0 .
This approximates distant regions of the network as inde-
pendent. The conditional probability of a node zi at ` > `o is

p(zi|zparent(i)) ∝

e
γ` if zi = zparent(i),

1 if zi 6= zparent(i).

Patterns drawn from this model are localized and multi-
scale, as illustrated with a quad-tree in Fig. 2.

Bounds for finite networks. When the event x is drawn
via Eq. (2), Singh [23] showed that as the number of sen-
sors goes to infinity, the assumption ||BTx||0 � ||x||0 ≤

√
p

holds with high probability. However, these results do not
clearly indicate whether the bounds are effective for large
(e.g. hundreds to tens of thousands of sensors) but finite
networks. Next, we provide a stronger bound on the sparsi-
fication ratio obtained by the wavelet transform, and explain
how Theorem 1 can be strengthened to provide bounds on
FNR and FPR for fixed network size.

Theorem 2. Let x be a pattern drawn at random from
the latent tree model with uniform degree d and depth L =

logd p. Let `0 = α
β

and γ` = `β log d for ` ≥ `0, where
0 ≤ α ≤ β ≤ 1. Then for 0 < ε < 1,

P
[
||x||0
||BTx||0

>
κ(ε)

logd p
· p

1−α

p1−β

]
≥ 1− 2 exp

(
−cε

2

2
p
α( 1
β
−1)

)
where c =

(
1
4

)( 1
α
− 1
β
+0.5)

and κ(ε) = (1−ε)
(1+ε)

c
d2

are constant

with respect to p.

This result shows that the crucial sparsification ratio ||x||0
||BT x||0

in Theorem 1 grows at (within a log factor of) the desired
rate p1−α/p1−β , with probability that increases exponen-
tially with network size p. This theorem can be used to
derive bounds on FNR and FPR for a specified network size
p and model parameters α, β, degree d: the bound is sub-

stituted for ||x||0
||BT x||0

in Theorem 1, and the probability that

the above bound does not hold can be added to the resulting
FNR and FPR.

4. SPARSIFYING BASIS LEARNING
Sec. 3 shows that if an event is “sparsifiable” we can better

separateH0 andH1 by projecting (multiplying by a basis B)
the observations y onto a different coordinate system where
the signal is concentrated into fewer components (a “sparser
representation” of the signal). The Haar wavelet basis is an
example of a basis that improves detection of signals with
certain structured (hierarchical) dependencies. In general,
can we construct or learn a sparsifying basis without assum-
ing such dependencies?

Let B be an orthonormal matrix and x a vector of uncor-
rupted binary activations, Theorem 1 states that the sparsi-

fication ratio ||x||0
||BT x||0

directly impacts the amount of sepa-

ration between H0 and H1. In fact, given that ||x||0 is fixed,
the two hypotheses are maximally separated when ||BTx||0
is minimized. In other words, we can construct the optimal
basis by solving the following optimization problem:

arg min
B

||BTX||0, subject to BBT = I (3)

where X is a matrix that contains binary observations as its
columns and || · ||0 is the sum of non-zero elements in the
matrix. The constraint BBT = I ensures that B remains
orthonormal.

However, direct minimization of ||BTX||0 is NP-hard in
general [7]. In practice, the `0-norm is often replaced by the
convex and “sparsity-promoting” `1-norm [4]. This suggests
the following relaxation heuristic for (3):

arg min
B

||BTX||1, subject to BBT = I, (4)

where || · ||1 is the maximum absolute column sum of the
matrix.

Direct approximation. For large problems, we are inter-
ested in efficiently computable heuristics for Eq. (4). Inde-
pendent Component Analysis (ICA) is one such approxima-
tion, and solves the following optimization problem:

arg min
B

G(BTX), subject to BBT = I, (5)

where G is a nonlinear convex smooth approximation to the
`1 penalty function, e.g. log cosh(x), − exp(−x2/2), and x4

[13]. Fig. 4 illustrates these functions in relation to the linear
penalty function.
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Figure 4: Smooth `1 approximation functions used
in ICA with the linear `1 penalty function plotted in
blue solid line.

Eq. (5) can be solved with stochastic gradient algorithm
by taking the derivative ofG. However this approach is often
slow and requires fine tuning; this leads to the development
of “FastICA”, an efficient fixed-point algorithm. Implemen-
tation details of FastICA and in-depth analysis can be found
in [13].

Let g = G′, the one unit algorithm for FastICA is given
below for completeness.

b← random unit vector
while b not converged do

b← E
[
xg(bTx)

]
− E

[
g′(bTx)

]
x;

b← b/ ‖b‖;
Algorithm 1: ICA one-unit solution

Noise-tolerant relaxed approximation. Ideally we
want to learn from noise-free observations X. However,
training data constructed from real-world measurements will
contain noise or outliers, and instead we are forced to train
with Y, which is the observation matrix X corrupted with
noise.

Consequently, we may not be able to obtain the “best” ba-
sis by optimizing BTY as in ICA. Instead, we may wish to
find a basis that sparsely represents “most of” the observa-
tions. More formally, we introduce a latent matrix Z, which
can be thought of as the “cause”, in the transform domain,
of the noise-free signal X. In other words X = BZ. We
desire Z to be sparse, and BZ to be close to the observed
signal Y. This motivates the next optimization:

arg min
B,Z

‖Y −BZ‖2F + λ‖Z‖1, subject to BBT = I (6)

where || · ||F is the matrix Frobenius norm, and λ > 0 is a
free parameter. Eq. (6) essentially balances the difference
between Y and X with the sparsity of Z: increasing λ more
strongly penalizes choices of Z that are not sparse.

Although Eq. (6) is non-convex, fixing either B or Z makes
the objective function with respect to the other convex. The
objective can then be solved in an iterative two-step con-
vex optimization process — Orthogonal Procrustes [12] and
LASSO with orthonormal design [3]. The two-step proce-
dure is given below.

Step 1: Orthogonal Procrustes
Fix Z, solve minB ||Y −BZ||2F , : BBT = I
M ← YZT ;
M = UΣV T ;
B← UV ;

Step 2: LASSO with orthonormal design
Fix B, solve minZ ‖Y −BZ‖2F + λ‖Z‖1
K ← ZTY;
Z← sign(K)×max(|K| − λ);

Algorithm 2: SLSA two-step convex optimization pro-
cedure

The formulation of Eq. (6) and solution in Alg. 2 is equiv-
alent to Sparse Latent Semantic Analysis (SLSA) [5], which
was introduced for applications involving topic models for
text data. Here we adopt the name for consistency.

We note that both Eq. (5) and Eq. (6) should be viewed as
efficiently computable heuristics for Eq. (3), which is a non-
convex optimization over the Stiefel manifold of all size-p
orthonormal matrices. As such, they are practical expedi-
ents towards the goal of obtaining a sparsifying basis.

5. IMPLEMENTATION IN WSN
In this section, we describe practical issues necessary for

using a sparsifying basis for event detection in real-world
sensor networks. We highlight how the previous problem
formulation can be separated into two computational steps:

• Offline training of basis learning and detection thresh-
old selection;

• Online detection via decentralized detection or in-network
data aggregation.

5.1 Offline Training
The three sparsifying bases (haar wavelet, ICA, SLSA) con-

sidered in this paper can be easily implemented and are
available in many off-the-shelf optimization packages. Basis
learning in small networks (p < 100) is very fast in gen-
eral (within seconds) and can be done online. For larger
networks (p > 500), offline training may be more suitable.

Basis learning. Learning a basis for p sensors requires
at least p measurements of the network. If this is not avail-
able (e.g. a seismic network with 1000 sensors may not yet
have observed 1000 earthquakes), then simulations provide
a practical way to supplement real data. One advantage of
using simulations in this way is that while simulations may
be slow and compute-intensive, the learned basis produces
a fast and efficient detection rule. In Sec. 6, we empirically
assess the amount of data required to train a good basis
and present two case studies using only data generated from
simulations.

Selecting the detection threshold. An event is re-
ported whenever |bTi y| ≥ τ for any non-constant bi ∈ B.
The threshold τ is typically chosen as a value that satisfies
constraints on the false positive rate during cross validation
with historical data of event observations. This approach
does not rely on positive training examples, and so a thresh-
old τ can be learned using only the noise profile of each sen-
sor. Suppose sensors i = 1, 2, . . . , p have binary error rates



π1, . . . , πp, we have E
[
|bTy|

]
=
∑p
i biπi. Given that the ba-

sis is orthonormal, under H0, Hoeffding’s Inequality states
that

P
[
|bTy| > τ

]
≤ exp

(
−2
(
τ − E

[
|bTy|

])2)
.

By setting the right hand side to a false positive rate con-
straint, we can easily derive a threshold that satisfies the
system requirement. In particular, in order to ensure that
|bTy| ≤ τ for all b ∈ B (i.e., no false alarm happens) with
probability at least 1− δ, it suffices to choose

τ = max
b∈B

E
[
|bTy|

]
+

√
1

2
log

p

δ
.

This approach is similar in flavor to the threshold selection
method in [8].

5.2 Online Detection
At runtime, the fusion center collects information from the

sensors and applies the threshold τ to the statistics |BTy|.
Depending on the network structure, this aggregation can
be done in-network.

Decentralized Detection. The proposed sparsifying
bases are suitable for both measurements from binary or
other real-valued sensors. However, in large sensor networks
such as the ones mentioned in Sec. 1, it is infeasible to con-
stantly stream raw measurements to the fusion center. In-
stead, it may be desirable to offload the computation from
the fusion center to each sensor locally so that only a small
amount of information (e.g. a single message) is communi-
cated infrequently when a significant signal is detected. For
example, sensors in the Community Seismic Network per-
form local anomaly detection and communicate “abnormal”
accelerations (using hypothesis testing) as a binary signal
[8].

In-network Aggregation. If the learned basis exhibits
hierarchical structure such as the haar wavelets inherently
do, then it may be possible to adopt in-network aggregation
to reduce transmission cost. This takes advantages of the
resemblance of network communication topology and basis
hierarchy. For example, by using the number of hops needed
to communicate between a pair of nodes as a measure of the
dissimilarity of two sensors, hierarchical clustering produces
the transforms B supported over groups of communication-
efficient clusters. These clusters may compute the transform
BTy in a bottom-up fashion while simultaneously testing for
detection.

For bases that lack obvious spatial hierarchy, it is possible
to adaptively build a routing tree to minimize the commu-
nication distance between groups of sensors that tend to
co-activate in a sparse sensor setting [10].

6. EXPERIMENTS
We empirically evaluate the detection performance of the

three sparsifying bases: SLSA, ICA, and hierarchical wavelets
(haar) trained and tested on both simulated and real mea-
surements in different domains. The experimental setup is
summarized here.

Baseline algorithms. In keeping with our focus of very
large community sensor networks, we compare against base-

lines that could potentially be computed for real-time detec-
tion on tens of thousands of sensors, and that are naturally
suited to the client-server communication model of internet-
enabled sensors.

• avg: network-wide average, 1/p
∑p
i yi;

• max: single sensor maximum, maxi yi;

• SS-k: scan statistics that aggregates the k-nearest neigh-
bors for each sensor [20];

• SS-r: scan statistics that aggregates all sensors within
a radius r for each sensor [20].

Evaluation data sets. The data sets include

• Synthetic data from latent tree model, 1296 nodes;

• Gnutella P2P network: 1769 nodes;

• Japan seismic network: 721 nodes;

• CSN seismic network: 128 nodes;

• Long Beach seismic network: 1,000 nodes.

Evaluation metrics and goals. We adopt two metrics
in the evaluation of detection performance:

• AUCf : measures the area-under-curve (AUC) in the
Receiver Operating Characteristic (ROC) curve only
for false positive rates between 0 and f, f ≤ 1. The
integral AUCf takes values in [0, f ] and is normalized
to 1 for simplicity. E.g. AUC0.05 = 0.8 indicates that
the detection performance reaches 80% of the optimal
performance under the false positive constraint of 5
false alarms every 100 tests.

• Detection time: the time it takes for the test statis-
tics to exceed a threshold that is selected to satisfy a
certain system false positive requirement. Rapid and
reliable detection is a key requirement for many time
sensitive applications. For example, in earthquake re-
sponse (sub-)seconds improvement in detection time
can allow utility companies to shut down large trans-
formers that are responsible for long and costly recov-
ering period after occurrence of a major earthquake.

6.1 Synthetic Data
We generate samples from the latent tree model for net-

work activation as described in Sec. 3. The tree contains
p = 1296 leaf nodes with degree d = 6 and depth L = 4. We
choose the sparsifying parameters α = 0.5 and β = 0.95 so
that that the expected number of total activations ||x||0 <√
p is sparse. Of the three bases, haar is constructed from

the known tree model whereas ICA and SLSA are trained
with 20,000 samples drawn from the model. The bases are
tested on 20,000 separate samples corrupted with Gaussian
or binary channel noise. For the Gaussian noise case, the
range of σ is chosen to satisfy the weak signal constraint,
i.e. σ > 1√

2 log p
= 0.2641.

Fig. 5 shows that all three bases outperform the naive
baselines under both Gaussian and binary noise. Note that,
perhaps surprisingly, both the learned ICA and SLSA outper-
form haar even though the latter is constructed from the
known latent tree model.
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Figure 5: Comparing the three bases — SLSA, ICA, haar to baselines — global average (and single max in (a))
on a synthetic data set generated from the latent tree model. Figures (b) and (c) evaluate two different false
positive constraints. The learned bases significantly outperform the baselines under strong noise.
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Figure 6: Detection performance as a function of network size p = [36, 72, 108, 216, 432, 648, 864, 1080, 1296] using
all 20,000 training samples. The learned bases show more than 5x performance improvement compared to
the baselines in (a) and (b).

Next we study how the network size and the number of
training samples affect the quality of learned basis and de-
tection performance.

Increasing network size. We perform basis learning
with subsets of the network, using p = [36, 72, 108, 216,
432, 648, 864, 1080, 1296] sensors and n = 20, 000 training
samples. Fig. 6 shows that the detection performance of the
learned bases grows more than 5x faster than the baseline.
Note that haar is now learned from data; this accounts for
the slight inferior performance compared to that in Fig. 5.

Increasing number of training samples. With the
network size fixed, we evaluate bases learned from increas-
ing numbers of training samples n = [20, 100, 200, 1000,
2000, 4000, 10000, 15000]. Fig. 7 shows that haar outper-
forms at smaller training size since it assumes a simple hi-
erarchical structure. It also shows that it takes only 2,000
samples for ICA and SLSA to achieve the same detection per-
formance as using all 20,000 samples.

6.2 Gnutella P2P network data
Our next set of experiments simulate virus outbreaks on a

peer-to-peer network. We obtain a snapshot of the Gnutella
P2P file sharing network4 through the Stanford Network

Analysis Project (SNAP). 1,769 nodes of the highest degree
of connectivity were selected from this network for the ex-
periment. Fig. 8(a) visualizes part of this sub network. We
simulate 40,000 outbreak events – “cascades” – that mimic
virus outbreaks on this directed network. We adopt the in-
dependent cascade model, where a starting node is picked
at random, and whenever a node r is infected, a connected
node w is infected with decreasing probability as a function
of distance to r.

Here, haar is constructed as spanning tree wavelet basis,
using the known network structure [14] and Wilson’s uni-
form spanning tree (UST) sampling method on a directed
graph via random walk [26]. We also apply the subset scan
baseline SS-k [20] for reference. The parameter k is “opti-
mally”selected based on the prior knowledge that on average
between 10 and 30 nodes are activated in each event in the
cascade model.

Fig. 8(b) and Fig. 8(c) compare the detection performance
evaluated on 40,000 testing samples. Both SLSA and ICA

demonstrate superior detection performance compared to
the state of the art algorithms that use additional prior
knowledge of the network.

4http://snap.stanford.edu/data/p2p-Gnutella05.html

http://snap.stanford.edu/data/p2p-Gnutella05.html
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Figure 7: Detection performance as a function of of training data size. (a)(b) shows it only takes approx-
imately 2,000 samples for both ICA and SLSA to achieve the same performance as using all 20,000 samples.
SLSA is 10 times faster to train than ICA as shown in (c).
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Figure 8: Experiment with Gnutella-P2P network. (a) visualizes ∼ 1/10 of the total network with a sample
activation pattern colored. Blue: first infected node, Red: nodes subsequently infected through the cascade.
(b)(c) shows that the learned bases achieve and exceed the state of the art algorithms that use additional
prior knowledge of the network.

6.3 Japan seismic network data
Next we turn to perhaps one of the most robust and long-

running sensor networks in the world – the Japan seismic
network. We obtain 48-hour, 150 GB of recordings from 721
Hi-net NIED seismometers for the dates March 18 and 19,
2011, just one week after the Tohoku M9.0 earthquake on
March 11, 2011. On both days, 1,000+ events ranging from
M1.0 - M6.0 were recorded in the the Japan Meteorology
Agency catalog5. Many events triggered clustered activa-
tions as observed in Fig. 9(b).

For all 1795 events recorded on March 18, 2011, 10 snap-
shots of network activations at a two-second period were
taken after the first detection at each event to construct the
training data set of [p x n] = [721 x 17950]. The learned
bases are tested on the first one-second data of the 1324
events recorded on March 19, 2011. We added binary noise
of different error rate to control the problem complexity.

For the comparison with the SS-r baseline, the aggrega-
tion distance r is selected to be 20km which is roughly the
distance covered by the seismic waves in a 2-second period.
Fig. 9(d) presents the performance in detecting within two
seconds of event arrival under a very small false positive

5http://www.hinet.bosai.go.jp/REGS/JMA/?LANG=en

constraint of 0.001. Of the three learned bases, both ICA

and SLSA show significant gain in detection power, whereas
haar has no improvement over the avg baseline. Perhaps
surprisingly SS-r20 performs very poorly in comparison. An
explanation is that most of the events during this period
originated from the ocean and affects an array of stations
along the coast. However, this pattern is not captured by
the fixed radius subset scan construction. This explanation
is supported by the plot of four prominent basis elements
from ICA in Fig. 9(c). This example demonstrates the lim-
ited detection capability of subset scan for unknown patterns
and the power of learning-based detection algorithms such
as ICA and SLSA.

6.4 Dense and participatory seismic networks
Lastly, we return to the dense participatory sensor net-

works that served as a motivating example in Sec. 1. We
consider two dense, real-world seismic networks in South-
ern California. We show that good bases can be learned
without historical sensor data: instead, we simply use ba-
sic earthquake simulators to generate the binary activation
patterns for training, as discussed in Sec. 5.1. In the short-
age of testing data – only a small number of events have

http://www.hinet.bosai.go.jp/REGS/JMA/?LANG=en
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Figure 9: Japan’s seismic network. The 721 Hi-net stations in (a) frequently exhibit localized activation
patterns as circled in (b), which plots raw accelerations (red: large shaking, blue: no shaking). The learned
bases are able to capture these nonuniform patterns with basis elements such as the ones in (c) and show 2x
better detection performance compared to the baselines (d), while algorithms with hard-coded patterns such
as SS-r20 fail to perform well in this scenario.

Figure 10: Southern California quakes since 1973

been recorded by these networks, not enough to reliably
compute AUC scores – the detection performance is eval-
uated in terms of detection time with detection thresholds
computed as described in Sec. 5.1. This measure of time is
critical in many applications; seconds or sub-second savings
may enable automated responses that prevent huge loss of
capital and lives.

Generating training data. We generate training data
using a basic earthquake simulator in the following two steps.
First we randomly sample an earthquake from a prior distri-
bution of seismic events in Southern California that is con-
structed from a list of historic earthquakes (Fig. 10) available
in the USGS database6.

Then time sequences of sensor activations are generated
from an earthquake model that computes the expected wave
arrival time with the encoded speed of seismic waves and
distance to the hypocenter. This model is simplistic com-
pared to many state-of-the-art earthquake simulators, yet
captures qualitative spatio-temporal dependencies. An acti-
vation probability similar to that in [18] is used to simulate
signal attenuation for unreliable noisy sensors.

Community Seismic Network. We simulate 1,000 net-
work activation snapshots for 128 Community Seismic Net-
work [6] sensors as described above. After training, each

6http://earthquake.usgs.gov/earthquakes/
eqarchives/epic/

algorithm is then evaluated on its ability to detect four re-
cent events using real measurements recorded by the net-
work. Fig. 11(a) shows the spatial layout of the network
and the hypocenters of the four events. Fig. 11(b) summa-
rizes detection performance: the bases learned from simple
simulations in general achieve faster detection than other
algorithms, e.g. 8 seconds faster in detecting the Beverly
Hills event. Note that ICA performs better than SLSA, as
simulations are noise-free.

Long Beach Array. The Long Beach network consists of
approximately 5,000 sensors covering an area of 5 x 7 km.
The network was deployed for 6 months during the first half
of 2011 to provide detailed images of the Signal Hill Oil Field
in Long Beach, California. During the deployment period, a
total number of 5 detectable earthquakes were recorded by
the network (Fig. 12(a)). Fig. 1 is a visualization of one of
the events.

We take a subset of 1,000 sensors and train the sparsifying
bases with 2,000 simulated events. The results in Fig. 12(b)
show that the learned bases detect on average 0.1 second
faster, especially for the more difficult events that are smaller
and further away. This improvement in detection time is
significant considering that it only takes about one second
for the quake to travel through the entire network.

7. RELATED WORK

Sparse detection. Detecting a sparse signal in the pres-
ence of strong noise is challenging without placing some as-
sumptions on the class of signals. [23], [11], and [17] pro-
pose multi-scale bases for signals with tree structure. [14]
further extends the analysis to graph structured network de-
fined over spanning trees. The work of Singh et. al [23] is
particularly relevant, as they identify the asymptotic lim-
its of detectability for the orthonormal basis and generative
models that we consider here in the centralized setting un-
der Gaussian noise. In contrast, we focus on the decentral-
ized case with binary channel noise, and provide theoreti-
cal guarantees that hold even in the non-asymptotic regime.
[2] describes detecting sparse binary patterns with a vari-
ety of combinatoric structures under Gaussian noise. Lower
bounds on minimax detection rates are given, and it is shown

http://earthquake.usgs.gov/earthquakes/eqarchives/epic/
http://earthquake.usgs.gov/earthquakes/eqarchives/epic/
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Figure 11: CSN network. (a) plots the layout of 128 sensors and epicenter of 4 recorded events. (b) The
learned bases detect on average several seconds faster than the baselines under the constraint of at most one
false alarm a year.
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(b) Detection time comparison

Figure 12: Long Beach array. (a) shows the layout of 1,000 stations and 5 recorded events. (b) Under the
constraint of at most one false alarm a year, the learned bases detect on average 0.1 seconds faster than the
baselines, which is significant considering it only takes 1 second for the seismic wave to travel through the
network and only 0.5 seconds for the network to be saturated with signals.

that forms of the scan statistic achieve within a log factor of
these rates. However, these results are asymptotic and ap-
pear computationally intractable for large sensor networks.

Scan statistics. Spatial and space-time scan statistics
were first developed to monitor health data and disease out-
breaks [15]. The main idea is to evaluate all subsets of the
data for possible events. Of course, enumerating all possible
O (2n) subsets is infeasible for even moderately sized prob-
lems, so later refinements test only certain subsets of distinct
sizes and shapes [21, 20]. This approach reduces the com-
plexity to O

(
n2
)

(and to O (n) in [20]) but may also impair
the detection performance if important signals are not well
captured by tested subsets.

Basis Learning. Learning a sparsifying basis is intimately
related to dictionary learning and topic models. Dictio-
nary learning [1] attempts to find an overcomplete dictio-
nary D ∈ Rn,K , K > n that can sparsely encode signals in
Rn. Similarly, topic models [25] represent text data as a lin-
ear combination of a “topics”, e.g. vectors of word frequen-

cies. Topic models seek topics that sparsely approximate
the documents, though the number of topics is significantly
less than the number of words (i.e. the topic matrix is un-
dercomplete).

ICA is a transformation method developed to recover non-
gaussian, statistically independent components z from their
linear combination x [13], assuming that the linear trans-
formation matrix B is orthonormal and x = Bz. The non-
gaussianity is required because the orthogonal transforma-
tion of any number of Gaussian distributions is inseparable.
Strongly nongaussian data (i.e., having a very different dis-
tribution from Gaussian) is often sparse, and so nongaus-
sianity is yet another measure of sparsity. ICA has enjoyed
most success in signal separation and unsupervised feature
learning. Recent work has extended it for overcomplete dic-
tionary learning [16].

8. CONCLUSIONS
Motivated by quake detection in large community seismic

networks, we proposed learning a sparsifying basis to en-



able detection of sparse event patterns in the decentralized
setting. We obtain theoretical bounds on the power of spar-
sification using a haar wavelet basis and obtained strong
bounds on error rates for events produced by the latent tree
model that can be evaluated for any network size. These
results strengthen and complement previous work on the
limits of detectability of sparse patterns in Gaussian noise.

We then extended the intuition for the wavelet transform’s
success - its ability to concentrate signals with a small num-
ber of basis elements - and obtained a general framework to
learn sparsifying bases for detection. We considered two op-
timizations, ICA and SLSA, for learning a basis that approx-
imately maximizes sparsification, and explain how it can be
implemented in sensor networks using real or simulated data
in the absence of sufficient training data.

Finally, we thoroughly evaluate the detection performance
of the sparsifying bases on several problem domains: simu-
lated virus outbreaks on the Gnutella P2P network; detect-
ing quakes following the Tohuku M9.0 event in the Japan
seismic network with bases learned from network measure-
ments; and detecting quakes recorded by the dense Long
Beach and Community Seismic Network sensors using sim-
ulated measurements for training. In all domains, learned
bases outperform previous state-of-the-art algorithms. We
believe that our insights are an important step towards solv-
ing challenging detection problems using large-scale, noisy,
participatory sensor networks.
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APPENDIX

Proof of Theorem 1. Let k be the size of clusters merged

by a non-constant basis element b. Let τ = (1−2π)
2

√
||x||0
||BT x||0

.

UnderH0, E
[
|bTy|

]
= 0, and is the sum of 2k terms (k from

each cluster) taking values {− 1√
2k
, 0, 1√

2k
}. Hoeffding’s in-

equality gives P
[
|bTy| ≥ τ

]
≤ 2 exp

(
−τ2

)
→ 0. Taking

the union bound, FPR ≤ 2p exp
(
−τ2

)
→ 0. Under H1,

for some b, E
[
|bTy|

]
≥
√

||x||0
||BT x||0

(1 − 2π). As under H0,

Hoeffding’s inequality bounds the probability of deviation
by τ from the mean (conveniently, E

[
|bTy|

]
− τ > τ):

P
[
|b(k)y| ≤ τ

]
≤ 2 exp

(
τ2
)
→ 0. Taking the union bound

over p basis elements, FNR ≤ 2p exp
(
−τ2

)
→ 0.

Proof of Theorem 2. Let X
(i)
T denote the leaves in the

ith subtree rooted at level `0. In the latent tree model, the
nodes at level `0 are independent, and so the numbers of

active leaves in each subtree ‖X(i)
T ‖0, i = 1, . . . , d`0 are i.i.d.

Lemma 1. E
[
‖X(i)

T ‖
]
≥ c · p1−αp−

α
β where

c =
(
1
4

)( 1
α
− 1
β
+0.5)

is constant with respect to p.

Let W
(i)
T =

‖X(i)
T
‖0

p
1−α

β
, and W =

∑
iW

(i)
T . There are p

1−α
β

leaves in each X
(i)
T , so W

(i)
T ∈ [0, 1]. There are p

α
β subtrees,

so by Lemma 1, cp−αp
α
β < E [W ]. Hoeffding’s inequality

gives, for 0 < ε < 1,

P
[
‖X‖0 < (1− ε)cp1−α

]
≤ exp

(
cε2

2
p
α( 1
β
−1)

)
Next, we will say an edge flip occurs at level ` when a node
at level ` does not equal its parent. The number of non-zero
coefficients is bounded as ||BTx||0 ≤ dL · F , where F is the
number of edge flips in the tree. An edge at level ` flips with
probability q` = 1/(1 + dβ`) < d−β`, so we find that

E [F ] =
d(1−β)(L+1) − d1−β

d(1−β) − 1
< d · dL(1−β)

Let µ̄ = d · dL(1−β) For 0 < ε < 1, the Hoeffding inequality
gives

P
[∥∥∥BTx

∥∥∥
0
> (1 + ε)d2 logd p · p

(1−β)
]
≤ exp

(
− ε

2

3
d · p(1−β)

)
.
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