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Abstract

We tune one of the most common heating, venti-
lation, and air conditioning (HVAC) control loops,
namely the temperature control of a room. For eco-
nomical and environmental reasons, it is of prime
importance to optimize the performance of this
system. Buildings account from 20 to 40% of a
country energy consumption, and almost 50% of it
comes from HVAC systems. Scenario projections
predict a 30% decrease in heating consumption by
2050 due to efficiency increase. Advanced con-
trol techniques can improve performance; however,
the proportional-integral-derivative (PID) control is
typically used due to its simplicity and overall per-
formance. We use Safe Contextual Bayesian Op-
timization to optimize the PID parameters without
human intervention. We reduce costs by 32% com-
pared to the current PID controller setting while as-
suring safety and comfort to people in the room.
The results of this work have an immediate im-
pact on the room control loop performances and
its related commissioning costs. Furthermore, this
successful attempt paves the way for further use at
different levels of HVAC systems, with promising
energy, operational, and commissioning costs sav-
ings, and it is a practical demonstration of the pos-
itive effects that Artificial Intelligence can have on
environmental sustainability.

1 Introduction
Many countries have introduced policies to increase energy
savings. Heating, ventilation, and air conditioning (HVAC)
systems are the major components of Building energy con-
sumption, which in turn constitute between 20% to 40%
yearly energy costs1 [Pérez-Lombard et al., 2008]. Room
temperature control loops are one of the most common
control loops in heating, ventilation, and air conditioning
(HVAC) systems. In these loops, the heater is a hot water
radiator or a floor heating system, and the room temperature
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is controlled to satisfy operational constraints, such as pleas-
ant temperature and low energy consumption. Adaptive con-
trol techniques are a promising path to achieve these goals
and increase energy savings as proven by the DeepMind Data
Center cooling project [Evans and Gao, 2016].

The proportional-integral-derivative (PID) controller dom-
inates the market; over 97 % of controllers in industrial ap-
plications have the PID architecture [Desborough and Miller,
2002]. Its low cost, ease of use, and proven performance
makes it the predominant choice for industrial control loops.
Despite its advantages, this architecture often produces sub-
optimal performance. Tuning is an expensive, labor-intensive
trial-and-error task. Thus, only a few of real-life loops are
tuned to achieve optimal performance [O’Dwyer, 2006].

A prominent PID tuning technique is the Step Response
Ziegler-Nichols’ rule [Ziegler and Nichols, 1942], in which
an engineer applies an open loop input step and according to
the measured response, the PID gains are selected to optimize
a performance criterion. This method is entirely model-free
but assumes that the system is linear. The performance crite-
ria are disturbance rejection, rising time, or overshoot. If the
engineer has a low-order linear model of the system, she can
skip the initial phase as she can calculate the parameters in
closed form. However, the models are never exact, and the ad
hoc tuning is trial-and-error around the initial guess.

The main drawbacks of HVAC PID control with manual
tuning are human effort and related commissioning costs.
Further, this controller has no adaptation capabilities for
changes in buildings. To overcome these limitations, the con-
trol community developed linear quadratic regulators (LQR)
in the 70s [Kwakernaak and Sivan, 1972], optimal designH2

or H∞ [Zhou et al., 1996], and more recently model pre-
dictive control (MPC) [Garcia et al., 1989]. These meth-
ods are model-based, and HVAC system models are very
complex and not well understood [Oldewurtel et al., 2010;
Afram and Janabi-Sharifi, 2014]. Thus, it is not clear how to
apply such advanced control strategies.

Room temperature control exhibits both complex dynam-
ics and disturbances, and optimizing performance is critical
for economic and environmental reasons. Sometimes, an en-
gineer may be sent in situ to tune the controller before it gets
deployed. Often, however, off-the-shelf controller settings
are used that give adequate performance for the typical range
of room temperature control loops but are far from optimal.



In this work, we use Safe Contextual Bayesian Optimiza-
tion to learn the best PID parameters, while provably keeping
safe conditions during the optimization procedure for differ-
ent outside air temperature scenarios. For the reasons exposed
before, this method is of prime industrial interest. As time
constants are slow, a typical interaction with the system takes
one day. Therefore, other data-intensive techniques based on
Deep Learning may struggle in such systems. Bayesian Op-
timization, on the other hand, is data efficient as it actively
queries points to trade-off exploration and exploitation, with-
out the need to learn an explicit model of the plant dynamics.

2 Related Work
In a recent review of HVAC systems control, Afram and
Janabi-Sharifi [2014] summarize the documented control
strategies and show that the most prominent in the industry
are PID, while in research are MPC. In this review, they com-
pare data-driven methods such as artificial neural networks
controllers, but state that “industry is usually reluctant to
adopt and use a black-box approach.” The authors do include
two data-driven approaches used in real life [Seem, 1998;
Bi et al., 2000]. These use model-based approaches: the al-
gorithm fits a first-order model with a delay from data, and
with this idealized model, it uses the Ziegler-Nichols rule to
select optimal gains. The review paper thus focuses on con-
ventional control strategies and points out MPC as the one
strategy that performs best as it can adapt to different oper-
ating conditions through weather forecasts, such as in [Old-
ewurtel et al., 2010], and it can use learning strategies for the
model online, such as in [Lixing et al., 2010]. Nevertheless,
the MPC algorithm has to solve an optimization problem that
is a surrogate of the real criteria and adapts to the data by
the receding horizon approach, i.e., it proposes a new control
input when the current state does not match the prediction.
Furthermore, tuning MPC controllers is harder than tuning
PID in HVAC systems as it heavily relies on a model, which
makes the industry reluctant to adopt this technology.

Bayesian Optimization is an active learning approach to
learn and optimize directly from data a cost function [Snoek
et al., 2012]. In this work, we use GP-LCB as the acqui-
sition function criterion [Srinivas et al., 2009], in which the
cost function is learned using a Gaussian Process (GP), and
the next point is selected in order to maximize the cost lower
confidence bound (LCB). Krause and Ong [2011] included
context by augmenting the GP kernel with an extra variable,
while Sui et al. [2015] and Berkenkamp et al. [2016] in-
cluded safety constraints which restrict the exploration phase.
Safety is critical for deployment when people interact with
the system. However, the exploration phase with this method
might be slow. Another approach that includes safe explo-
ration was presented by Gelbart et al. [2014]. They use an
indicator function in the acquisition function to force explo-
ration only in the safe regions. The latter method is faster
than the former, but it can get trapped in local optima.

Even though Bayesian Optimization has not been explic-
itly used in building control, it has many success stories
in controller tuning. For example, Calandra et al. [2014]
used Bayesian Optimization to tune the gait parameters of

a Bipedal walker, showing that GP-LCB outperforms all the
other acquisition function approaches. Marco et al. [2017]
used Bayesian Optimization to tune process and measurement
noise covariances jointly and, through an LQR approach, they
learn the gains of a state feedback controller. Berkenkamp
et al. [2016] optimized the PD parameters of a quadrotor
controller and tested it on the vehicle for reference position
and circular trajectories tracking. Finally, Abdelrahman et al.
[2016] maximized the energy generated over time by a pho-
tovoltaic power plant by optimizing the operating voltages.
Our contributions. In this work, we optimize the PID pa-
rameters of a temperature control loop and obtain a 32%
cost reduction compared to the current PID parameters over a
heating season. The main contribution of our work is that we
explicitly include the performance indexes that the engineer
is interested in this application as opposed to quadratic surro-
gates that allow closed-form solutions. Furthermore, we can
find the optimal controller parameters through safe-active ex-
ploration, without any human intervention, and with minimal
modification of the existing controller configurations.

3 Dynamical System Model
In room temperature control, a controller regulates with a
valve the amount of hot water that passes through a radia-
tor in order to keep the temperature close to a user-defined
set-point. The controller parameters are selected to trade-off
the energy consumption, the expected lifetime of a valve, the
time it takes for the room to reach the desired temperature,
and minimize the temperature variations after that.

Figure 1: Simplified plant schematic. The controller measures the
room temperature and moves a valve that limits the flow of hot wa-
ter towards the room. The room is equipped with a radiator that
transfers the heat from the water to the room.

Figure 1 depicts the piping along with the most important
blocks in the loop. To design controllers, usually, a first-
order model is used to model the room as follows [Deng et
al., 2009]:

Tk+1 = −aTk + buuk + bddk, (1)

where Tk is the temperature at time k, uk is the controlled in-
put, dk is the disturbance, and a > 0, bu > 0 and bd > 0 are
parameters of the plant. Despite using this extremely sim-
plified model, the resulting controller successfully controls
the temperature to the desired set-point but it typically under-
performs. Furthermore, even if the model in Eq. 1 was cor-
rect, different buildings have different parameters (a, bu, bd).



A robust control design will optimize the performance for the
worst case combination of parameters and disturbances, but
this is usually too conservative. Finally, the model is too sim-
plistic to be correct. A non-exhaustive list of phenomena that
this model does not address is:

1. Detailed modeling of the thermal masses dynamics;
2. Delays due to water transport and valve time constant;
3. Solar radiation variations;
4. Outside air temperature;
5. Thermal gains due to people and equipment;
6. Interactions with other rooms and control loops;
7. Disturbances such as open windows and doors.

The effects of the outside air temperature require special at-
tention since it can be easily measured and used to adapt the
controller parameters with gain scheduling. In the first place,
the heat loss to the environment is inversely proportional to
the outside air temperature [Bergman et al., 2011]. Second,
the heating generation systems use automatic weather com-
pensation to lower fuel consumption. Heating systems’ ca-
pacity is designed for the lowest possible outside air tem-
perature at the building site. Since this is a lower bound for
the actual temperature, automatic weather compensation low-
ers the boiler temperature to save energy without decreasing
comfort. Consequently, the pumped water temperature fluc-
tuates with outside air temperature, which in turns lowers the
actuation power. These two competing effects make an a pri-
ori gain-scheduling technique unfit for this application. In-
stead, we include the outside air temperature as a context in
the Bayesian Optimization algorithm, so it learns from data
the effect that this variable has on the control loop.

The other disturbances are hard or expensive to measure, so
we will model their combined effect as zero-mean Gaussian
noise with unknown variance but bounded magnitude.

4 Problem Statement
The goal of room temperature control is to (1) drive the tem-
perature of a room to a desired set-point as fast as possible, (2)
reduce the room temperature variations thereafter and main-
taining comfort, (3) maximize the expected lifetime of the ac-
tuators, and (4) use the minimum amount of possible energy.
We express these performance criteria as:

J =

4∑
i=1

wiJi, (2)

where J1 is the 10-90 % rise time, J2 is the temperature over-
shoot, J3 is the l-2 norm of the controller output derivative,
and J4 is the l-2 norm of the controller output. The 2-norm
of the output derivative cost reduces the valve oscillations,
increases its lifetime, and prevents large inputs steps to oc-
cur that may result in unpleasant room temperatures. The 2-
norm of the controller output measures the energy consump-
tion as a larger norm indicates more hot water passing through
the radiator, hence higher heating costs. The cost function
in Eq. 2 trades-off the different criteria with user-specified
weights wi > 0.

The optimization variables are the proportional and the in-
tegral gains, indicated by a ∈ A ⊂ R2. Usually, the deriva-
tive gain is set to zero in this application as the system is
inherently stable, and this gain amplifies noise leading to bad
performance. The cost J is a function of these parameters,
and the goal is to find the parameters that minimize it.

There are also operational constraints that must be satisfied
at all times to ensure safety and feasibility. These constraints
are modeled with inequality constraints such as Ji(a) ≤ ci.
In this work, we use the following constraints. (1), the 10-
90 % rise time has to be smaller than a maximum allowed
time to ensure that the temperature reaches the comfort zone
when people enter the building, i.e., if this constraint is met
and the system is turned on at least this time before people
enter the building, the temperature constraints will be satis-
fied. (2), the overshoot has to be smaller than a maximum
temperature deviation to ensure that the temperature stays in
a comfortable range. And (3), the l-2 norm of the derivative
of controller output has to be smaller than a maximum norm.
This last constraint serves two purposes: first, it controls the
life expectancy of the valve actuators; second, it limits the
oscillation frequency around the temperature set-point which
affects the comfort of people inside the building. We will
provide specific parameters in the experimental section.

Finally, we also include the outside air temperature as a
context for the optimization problem z ∈ Z ⊂ R. This con-
text modifies the cost and constraint functions but does not
modify the weights used to trade-off the different costs nor
the inequality parameters. Furthermore, the context is not an
optimization variable.

With all these into account, the optimization problem to
solve for each z ∈ Z is:

minimize
a∈A

J(a; z)

subject to Ji(a; z) ≤ ci, ∀i ∈ {1, 2, 3}
(3)

5 Optimization Algorithm
To solve the optimization algorithm in Eq. 3 we use a vari-
ation of the GP-LCB algorithm [Srinivas et al., 2009], that
uses contextual information as in CGP-LCB [Krause and
Ong, 2011], and adds multiple constraints [Berkenkamp et
al., 2016], yielding our Safe Contextual GP-LCB. In order
to do this, we place a Gaussian Processes (GP) prior to each
cost function Ji. As a first step, we introduce GP regression.
Then, we present the Safe Contextual GP-LCB algorithm.

5.1 Gaussian Process Regression
Gaussian Processes (GPs) are a common non-parametric re-
gression technique in machine learning. The goal is to ap-
proximate a non-linear map f(a) : A → R. The main as-
sumption is that the values of f(·) at different locations of a
are random variables that have a joint Gaussian distribution.
The GP is completely defined through a prior mean function
µ(a) and a covariance function k(a, a′). The choice of the
covariance function, also known as the kernel, is crucial for
performance. It defines the regularity in the correlation of the
marginal distributions of f(a) and f(a′) and it is a measure
of the similarity between the points a and a′.



The GP framework can be used to learn the mapping
from controller parameters and outside air temperature to cost
function values. Assume we have a set of t observations of
the cost function at different controller parameters and con-
texts, denoted by ã = (a, z), i.e., yt = [Ĵi(ã1), . . . , Ĵi(ãt)].
The observations are assumed to be corrupted with zero mean
Gaussian noise, Ĵi(ãn) = Ji(ãn)+ωn, with ωn ∼ N (0, σ2

ω).
Conditioned on these observations, the GP estimates the func-
tion Ji(·) at a new location (a; z) with a Gaussian distribution
with mean and variance:

µt(ã; Ji) = kt(ã)(Kt + Itσ
2
ω)
−1yt (4)

σ2
t (ã; Ji) = k(ã, ã)− kt(ã)(Kt + Itσ

2
ω)
−1kTt (ã) (5)

where It ∈ Rt×t is the identity matrix, kt(a; z) =
[k(ã, ã1), . . . , k(ã, ãt)] ∈ Rt, and Kt ∈ Rt×t is the kernel
matrix with entries [Kt](m,n) = k(ãm, ãn),m, n ∈ 1, . . . , t.

The cost function J defined in Eq. (2) is also a GP as it is a
linear combination of GPs and we use closed-form formulas
for its mean and variance [Rasmussen, 2004].

5.2 Safe Contextual GP-LCB
To optimize the problem defined in Eq. 3, we will use Safe
Contextual GP-LCB as defined in Algorithm 1. The algo-
rithm proceeds in rounds: At the beginning of each round,
it observes a context. With it, it constructs a safe set of con-
troller parameters (for this context) and chooses an action that
minimizes the lower bound of the estimated cost constrained
to the safe set. After interacting with the environment, it ob-
serves the realization of each of the cost and updates their
respective GP models.

The algorithm has two main differences compared to the
original GP-LCB algorithm [Srinivas et al., 2009]. First it in-
cludes a context as in CGP-LCB [Krause and Ong, 2011]. In
our setting, the context is the outside air temperature at the be-
ginning of a heating day, which affects the water temperature
in the heater and the heat transfer to the environment system-
atically. This allows factoring in this exogenous disturbance
in our model without including it as an optimization variable.
In the experimental section, we will discuss the effect of this
modeling choice in the performance of our algorithm. The
other difference is the inclusion of a safe set. This is also
done for single constraints in [Sui et al., 2015] and multiple-
constraints [Berkenkamp et al., 2016].

The main theoretical difference between these papers is
that we use a different acquisition function to make the explo-
ration faster. Although their acquisition function has regret
guarantees for finite-time algorithms, we use the acquisition
function of contextual GP-LCB constrained to the safe set. In
SafeOPT, the exploration explicitly selects the most uncertain
point over all possible optimizers and potential expanders of
the safe set. We found that the exploratory phase was too
long in our experimental setting and, after a heating season,
we had poor performances. The argument for their acquisi-
tion function is that it expands the safe set, while Safe-LCB
does not. There are pathological situations in which Safe-
LCB might be arbitrarily suboptimal. In our experimental
setting, we found that this was not one of these situations. In-
stead, we demonstrate experimentally that we expand the safe
set and quickly find good optimizers.

Algorithm 1: Safe contextual GP-LCB.
Input: Domain A
GP prior k(·, ·)
Initial, safe controller parameters a0
Exploration parameter βt
Risk parameter ε
Initialize GP with a0, Ĵ(a0, ·) and a0, Ĵi(a0, ·)
for n = 1, . . . do

Observe context zn; Define ã ≡ (a, zn) ;
Sn ← {a ∈ A|Pr(Ji(ã) ≤ ci) ≥ 1− ε ∀i} ;
an ← argmina∈Sn µn−1(ã; J)− βnσn−1(ã; J) ;
Define ãn ≡ (an, zn) ;
Observe Ĵi(ãn)← Ji(ãn) + ωi,n ;
Update GP models with (ãn; Ĵi(ãn)) ;

end

6 Experimental Setup
6.1 Real Data Simulation
In this work, we use a simulator based on Gao et al. [2007]
provided by Siemens Building Technology Division.2. The
model handles thermal gains due to solar radiation, people
presence and equipment heating. The heat exchange with the
environment varies according to the outside air temperature.
The room control loop regulates the amount of radiator inlet
water. The water temperature control loop uses the automatic
weather compensation system, which determines the water
temperature according to the outside air temperature. Our
goal is to optimize the room control loop without knowledge
of the water temperature nor its set-point.

The building model ensures a realistic simulation of the
thermal dynamics based on solar radiation, heat transfer
through airflow, and heat transfer through walls and windows
using real measurements, taken in the city of Zug, Switzer-
land, from the 21st of October 2016 to the 14th of March
2017. The obtained results derive from the simulation of a
25m2 room with 4m2 of windows area.

6.2 Cost and Constraint Function Details
The algorithm exploratory parameter is fixed to β = 2 as
it proved to have the best performance in our simulations.
The costs are all normalized so that in 95% of the historical
data, they are between 0 and 1. In this work, we select all the
weights equal to 0.25 to normalize the total cost between 0
and 1. Similarly, we set the parameters ci so that 97.5% of
each of the historical costs are considered safe.

6.3 Gaussian Process Regression Details
Mean Functions. Normally, GP models have zero mean.
To enhance performance, we use Explicit Basis Functions
[Rasmussen, 2004] to predict the mean of the cost function
and then use a zero-mean GP on the residual as:

Ji(·) = GP (0, k(·, ·)) + 1>α,

2https://new.siemens.com/global/en/products/buildings.html



where 1 is a vector of all ones and α are coefficients learned
via maximum likelihood, and it is a stochastic mean function.
Although this is useful for performance, it might be detrimen-
tal for safety, as it might consider safe regions not explored
yet due to extrapolation of the mean. To this end, we model
the cost and constraint with different GPs and use the explicit
basis functions on the cost models only.

Kernel Selection. We use the same kernel family for each
cost and constraint model as we expect similar smoothness
properties for different models. Although the kernels are the
same, the hyperparameters are optimized separately. The
GP model predicts each cost as a function of the PID pa-
rameters a ∈ A, and the outside air temperature z ∈ Z .
We chose the multiplication of kernels kX = kA ⊗ kZ =
kA(a, a

′) · kZ(z, z′), where kA(a, a′) : A × A → R mea-
sures how the cost changes when the PID parameters change,
and kZ(z, z′) : Z × Z → R measures how the cost change
when the context changes. The intuition behind the multipli-
cation of kernels is that we expect the cost to be similar if
both PID parameters and the outside air temperature are sim-
ilar. For the PID parameters, we use the Matérn 5/2 kernel
to model similarities across the parameters’ space and for the
context the squared exponential kernel. We base this choice
on prior knowledge about the smoothness of the costs func-
tion for both PID parameters and temperature. By using the
Matérn 5/2 kernel, we encode functions which are twice dif-
ferentiable, and by using the squared exponential kernel, we
model smooth (infinitely differentiable) functions.

Kernel Hyperparameters. In GP regression, the kernel
hyperparameters are usually estimated with a maximum like-
lihood estimation over the data. However, when data is ac-
tively acquired using the learned functions, optimizing the
hyperparameters on these data leads to poor results [Bull,
2011]. When this is done, the GP confidence interval is not
guaranteed to contain the true function, and the optimization
gets stuck in poor local optima. Thus, we first learn the hyper-
parameters via maximum likelihood by applying random safe
inputs to the input spaceAwhile observing different contexts.
During the optimization, we do not adapt the kernel hyperpa-
rameters with data but treat the hyperparameters as fixed, and
the kernel defines fixed priors over functions.

6.4 Comparison Baselines

We use the following baselines to assess our algorithm per-
formance. (1) The robust parameters originally used for PI
room temperature control, which are currently deployed by
Siemens Buildings Technology. (2) A Bayesian Optimiza-
tion algorithm with no context nor safety constraints. (3) A
Bayesian Optimization algorithm with outside air tempera-
ture as context, but no safety constraints. And (4) a model
based variant where the parameters of Eq. 1 are learned from
data and optimal parameters are found using Ziegler-Nichols
tuning rules for this idealized system, such as in [Seem,
1998]. Furthermore, the model based version adapts the gains
online, while the Bayesian Optimization based rules only
change the gains once a day. We test all the benchmarks with
the same real-life disturbance realizations as our algorithm.

7 Experimental Results
We use the simulator to evaluate the performance of the algo-
rithm as if it was to be applied to the real room during a whole
heating season. At the beginning of each day, we measure the
outside air temperature, and we set the controller parameters
according to Algorithm 1. At the end of each day, we evaluate
the cost function in Eq. 2.

7.1 Comparison Baselines
In Fig. 2, we plot the cumulative average cost for each day
of the heating season. We initialize each algorithm with five
different random seeds. We plot the median average cost with
filled markers and the pointwise minimum and maximum av-
erage costs with asymmetric error bars. The reader can see
that our algorithm, in green with SCBO legend, outperforms
all the benchmarks, and we show the exact median values in
Table 1. Constructively, we can see that the Bayesian Opti-
mization variant already outperforms the fixed PID structure
after half of the heating season (see the yellow line with leg-
end BO). This is expected as it can freely optimize the gains.
The next step is to add context to the Bayesian Optimization.
This also outperforms the variant without context after half
of the heating season (see the purple line with legend CBO).
Nevertheless, this comes at the cost of large exploration peaks
in the first iterations. The increase in the domain size requires
more samples to learn the function. To limit the exploration
to regions where the performance is not worse than the origi-
nal controller, we introduce the safety constraints. In the first
few iterations, our method performs as the fixed PID and, af-
ter ten days, it already outperforms all the benchmarks (see
the green line with legend SCBO). As a final benchmark, we
have the model based variant. This adaptation rule varies the
controller online. Thus, after the first day, it performs better
than all the other methods that start with the fixed PID gains
(see the red line with legend ADAp). Nevertheless, the sys-
tem is not exactly first-order, and the Ziegler-Nichols rule is
thus inaccurate, leading to worse performances.

Figure 2: Cumulative average cost of the different algorithms. For
each optimization algorithm, we plot the median of the average cost
with filled markers, and the pointwise minimum and maximum with
asymmetric error bars for five different random seeds. The Fixed
PI is the robust PI controller, ADAp is the adaptive model-based
baseline, BO is the vanilla Bayesian Optimization baseline, CBO is
the Contextual Bayesian Optimization algorithm, and SCBO is the
Safe Contextual Bayesian Optimization.



Tuning Method Median
Improvement

Model Based Opt. (ADAp) 13%
Bayesian Opt. (BO) 24%

Contextual Bayesian Opt. (CBO) 28%
Safe-Contextual Bayesian Opt. (SCBO) 32%

Table 1: Median of the average cost reduction of the different algo-
rithms after a heating season with respect to the fixed PI controller.

7.2 Safe Set Expansion
In Fig. 3, we plot the safe set in light blue at different times
and contexts, while in white, we show the unsafe region. Ini-
tially, in the top-left subfigure, only a small set around the ini-
tial parameters is considered safe. As shown in the top row of
Fig. 3, the safe set expands with the following mechanism: as
the algorithm queries points in the boundary, its uncertainty
in the neighborhood of these points decreases. As it becomes
more confident of points with high performance, it includes
these points in the set Sn. For example, the optimal point is
outside the initial safe set but, after the 25th iteration, is con-
tained in the safe set. Finally, even if our algorithm does not
expand the safe set explicitly with the acquisition function as
does SafeOPT [Sui et al., 2015], we hypothesize that this is
generated by the landscape of the optimization problem.

If the Contextual Bayesian Optimization (CBO) without
safety variant were to be used, the exploration would have
covered the whole PI space to learn that a big part of the do-
main performs worse than the fixed PI. This is shown in the
exploratory peaks at the first iterations of the CBO plot in
Fig. 2. Nevertheless, the global optimum is inside the safe
region. Hence, CBO and SCBO find the same optimizers.
This explains why the performance curve in Fig. 2 tends to
the Safe Contextual Bayesian Optimization algorithm.

In the bottom row of Fig. 3, we show how the safe set
changes with context at the end of the heating season. This
shows that context affects the underlying process and, if not
included, it could lead to unsafe exploration. For example,
imagine that the learning is done only during T = +5◦

because of an environmental scenario with a Safe Bayesian
Optimization algorithm without context. If the temperature
changes to T = −5◦, then there is no notion of uncertainty at
this new temperature and an unsafe point could be used.

7.3 Minimizers Gain Scheduling
In Fig. 4 we plot how the optimal PI parameters change with
the outside air temperature at the end of the heating season.
This plot can be used after the learning phase as a gain sched-
uler. The significant change at -3 degrees is due to the inter-
action with the automatic weather compensation that changes
the water temperature. Hence, actuation power decreases, and
the gains increase considerably. This proves that including
context and capacity to adapt to it is critical for performance.

Figure 3: Parameters safe set in light blue and unsafe set in white.
The top row shows the safe set when the context is 0◦C and time is
0 and 25 days. The bottom row shows the final safe set for −5◦C
and +5◦C. The initial PI parameters are shown with a black circle
while the final optimized parameters with a black star.

8 Conclusions
In this work, we optimized the PI controller parameters in a
ubiquitous room temperature control loop. The proposed cost
function is very simple and interpretable to the practitioner,
but the exact relationship with the controller parameters are
complex and unknown. We used a Bayesian Optimization
algorithm that explicitly trades-off exploitation and safe ex-
ploration to learn and optimize the cost function simultane-
ously. Furthermore, it includes a context to adapt to varying
environmental conditions. In experiments, we showed that
our algorithm outperforms the baselines and paves the way to
optimizing other control loops in HVAC systems.

Figure 4: Optimal controller parameters as a function of the outside
temperature. In full lines, we plot the optimal proportional and inte-
gral gains and in dashed lines, the initial controller parameters. This
plot can be used as a gain scheduler after the learning phase.
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