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Abstract
Minimal peer prediction mechanisms truthfully elicit pri-
vate information (e.g., opinions or experiences) from rational
agents without the requirement that ground truth is eventu-
ally revealed. In this paper, we use a geometric perspective to
prove that minimal peer prediction mechanisms are equiva-
lent to power diagrams, a type of weighted Voronoi diagram.
Using this characterization and results from computational
geometry, we show that many of the mechanisms in the lit-
erature are unique up to affine transformations, and introduce
a general method to construct new truthful mechanisms.

1 Introduction
User-generated content is essential to the effective function-
ing of many social computing and e-commerce platforms. A
prominent example is eliciting information through crowd-
sourcing platforms, such as Amazon Mechanical Turk,
where workers are paid small rewards to do so-called hu-
man computation tasks, which are easy for humans to solve
but difficult for computers. For example, humans easily rec-
ognize celebrities in images, whereas even state-of-the-art
computer vision algorithms perform significantly worse.

While statistical techniques can adjust for biases or iden-
tify noisy users, they are appropriate only in settings with
repeated participation by the same user, and when user in-
puts are informative in the first place. But what if providing
accurate information is costly for users, or if users have in-
centives to lie? Consider an image annotation task (e.g. for
search engine indexing), where workers may wish to save
effort by annotating with random words, or words that are
too generic (e.g. “animal”). Or consider a public health pro-
gram that requires participants to report whether they have
ever used illegal drugs, and where participants may lie about
their drug use due to shame or eligibility concerns.

Peer prediction mechanisms address these incentive prob-
lems. They are designed to elicit truthful private informa-
tion from self-interested participants, such as answers to the
question “Have you ever used illegal drugs?” Crucially, peer
prediction mechanisms cannot use ground truth. In the pub-
lic health example this means the program cannot verify
whether a participant has or has not ever used illegal drugs;
it can only use the participants’ voluntary reports.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The classical peer prediction method (Miller, Resnick,
and Zeckhauser 2005) addresses this challenge by compar-
ing the reported information of a participant with that of
another participant, and computing a payment rule which
ensures that truth revelation is a strategic equilibrium.
The major shortcoming of the classical peer prediction
method with regard to practical applications is that it re-
quires too much common knowledge. Bayesian Truth Serum
mechanisms (Prelec 2004; Witkowski and Parkes 2012a;
Radanovic and Faltings 2013) relax these common knowl-
edge assumptions but require participants to report a proba-
bility distribution in addition to the actual information that is
to be elicited. That is, they are not minimal. The 1/p mech-
anism (Jurca and Faltings 2008; 2011) and the Shadowing
Method (Witkowski and Parkes 2012a; Witkowski 2014) re-
lax the common knowledge assumptions of classical peer
prediction to some degree while still being minimal.

Our Results. In this paper, we provide a complete char-
acterization of the mechanism design space of minimal
peer prediction, which includes the classical peer predic-
tion method, output agreement, the 1/p mechanism, and the
Shadowing Method as special cases. While it was known
that every minimal mechanism requires some constraint on
the agents’ belief models (Jurca and Faltings 2011), it was
unknown which constraints allow for truthful mechanism
and how the constraints of different truthful mechanisms
relate to one another. We answer these questions in Sec-
tion 3 by adapting techniques from property elicitation, al-
lowing us to prove the equivalence of minimal peer predic-
tion mechanisms and power diagrams, a type of weighted
Voronoi diagram. In Section 4, we then use this and results
from computational geometry to show that all aforemen-
tioned mechanisms are unique with respect to their belief
model constraints up to positive-affine transformation. One
important corollary of this is that maximizing effort incen-
tives for any of these mechanisms reduces to computing the
effort-optimal positive-affine transformation. In Section 5,
we exemplify how to construct new truthful mechanisms for
new conditions. In Section 6, we revisit the classical peer
prediction method and show how to compute a mechanism
that is maximally-robust with respect to deviations between
the mechanism’s and the agents’ belief models. We conclude
with useful directions for future work in Section 7.



2 Preliminaries
In this section, we introduce the model, and review concepts
in peer prediction and computational geometry.

2.1 Model
There is a group of n ≥ 2 rational, risk-neutral and self-
interested agents. When interacting with the environment,
each agent i observes a signal Si,1 which is a random vari-
able with values [m] := {1, . . . ,m} and m ≥ 2. The signal
represents an agent’s experience or opinion. The objective in
peer prediction is to elicit an agent’s signal in an incentive
compatible way, i.e. to compute payments such that agents
maximize their expected payment by reporting their signal
to the mechanism (center) truthfully.

To achieve this, all peer prediction mechanisms require
that agent i’s signal observation tells her something about
the signal observed by another peer agent j 6= i. For exam-
ple, this could be agent j = i + 1 (modulo n), so that the
agents form a “ring,” where every agent is scored using the
“following” agent. (Our results hold for any choice of peer
agent.) Let then

pi(sj |si) = Pr
i

(Sj = sj | Si = si) (1)

denote agent i’s signal posterior belief that agent j receives
signal sj given agent i’s signal si. We refer to pi(·|·) as
agent i’s belief model. A crucial assumption for the exis-
tence of strictly incentive compatible peer prediction mech-
anisms is that every agent’s belief model satisfies stochastic
relevance (Johnson, Pratt, and Zeckhauser 1990).
Definition 1. Random variable Si is stochastically relevant
for random variable Sj if and only if the distribution of Sj
conditional on Si is different for all possible values of Si.
That is, stochastic relevance holds if and only if pi(·|si) 6=
pi(·|s′i) for all i ∈ [n] := {1, . . . , n} and all s′i 6= si. Intu-
itively, one can think of stochastic relevance as correlation
between different agents’ signal observations.

Similar to the signal posteriors, we denote agent i’s signal
prior belief about signal sj by pi(sj) = Pri(Sj = sj). Note
that for the prior and the posteriors it holds that pi(sj) =∑m
k=1 pi(sj |k) · pi(k). Moreover, going forward, it is as-

sumed that pi(s) > 0 for all s ∈ [m] and i ∈ [n].

2.2 Peer Prediction Mechanisms
We are now ready to define peer prediction mechanisms.
Definition 2. A (minimal) peer prediction mechanism is a
functionM : [m]× [m]→ R, whereM(xi, xj) specifies the
payment to agent i when she reports signal xi and her peer
agent j reports signal xj .

We use ex post subjective equilibrium (Witkowski and
Parkes 2012b), which is the most general solution concept
for which truthful peer prediction mechanisms are known.
Definition 3. Mechanism M is truthful if we have

si = argmax
xi

E
Sj

[
M
(
xi, Sj

) ∣∣ Si = si

]
,

for all i ∈ [n] and all si ∈ [m].
1We will drop the subscript to denote a generic signal.

The equilibrium is subjective because it allows for each
agent to have a distinct belief model, and ex post because it
allows for (but doesn’t require) knowledge of other agents’
belief models. Ex post subjective equilibrium is strictly more
general than Bayes-Nash equilibrium (BNE) as it coincides
with BNE when all agents share the same belief model, i.e.
if pi(·|·) = pj(·|·) for all i, j ∈ [n].

Definition 4. A mechanism M ′ is a positive-affine trans-
formation of mechanism M if there exists f : [m] → R
and α > 0 such that for all xi, xj ∈ [m], M ′(xi, xj) =
αM(xi, xj) + f(xj).

The importance of Definition 4 lies in the fact that if M is
truthful, then M ′ is truthful as well. As we will see, in cer-
tain cases these are the only possible truthful mechanisms.2

Lemma 1. LetM ′ be a positive-affine transformation ofM .
Then M ′ is truthful if and only if M is truthful.

2.3 Effort Incentives
Peer prediction mechanisms are especially useful for incen-
tivizing effort, i.e. the costly acquisition of signals. Our mod-
eling of effort follows Witkowski (2014).

Definition 5. Given that agent j invests effort and reports
truthfully, the effort incentive ei(M) that is implemented for
agent i by peer prediction mechanism M is the difference
in expected utility of investing effort followed by truthful re-
porting and not investing effort, i.e.

ei(M) = E
Si,Sj

[
M(Si, Sj)

]
− max
xi∈[m]

E
Sj

[
M(xi, Sj)

]
,

where xi is agent i’s signal report that maximizes her ex-
pected utility according to the signal prior, and where the
expectation is using agent i’s subjective belief model pi(·|·).

An important observation is that positive-affine transfor-
mations of a mechanism simply scale its effort incentives;
we will use this fact in Section 5 to optimize effort.

Lemma 2. For any mechanism M , and any positive-affine
transformationM ′ = αM+f , we have ei(M ′) = αei(M).

2.4 The Probability Simplex
The intuition for our main results can be provided form = 3
signals already, and so we give such examples throughout
the paper. For probability distributions over only 3 signals,
there is a convenient graphical representation of the proba-
bility simplex ∆m as an equilateral triangle, where the three
corners represent the signals (see Figure 1L). The closer a
point is to a corner (the distance from the corner’s opposing
side), the more probability mass of that corner’s signal is on
that point.3 The triangular shape ensures that for any point
on the triangle the values of the three dimensions sum up
to 1. For example, the point y(a, b, c) = (1/2, 1/3, 1/6) in
Figure 1L is at height 1/6 (since the top corner represents

2See the appendix of the full version for all omitted proofs:
http://www.cs.colorado.edu/˜raf/media/papers/geometry.pdf

3This representation is equivalent to the natural embedding into
R3 and viewing in the direction (−1,−1,−1).



signal c), and one half away from the right side of the tri-
angle (because the left corner represents signal a). Observe
that with three signals, there are only two degrees of freedom
since the entries have to sum up to 1. Therefore, by fixing the
point’s position with respect to a and c, the value for signal
b is fixed as well. (Confirm that y is one third away from the
left side.)

2.5 Power Diagrams
Our results rely on a concept from computational geome-
try known as a power diagram, which is a type of weighted
Voronoi diagram (Aurenhammer 1987a).

Definition 6. A power diagram is a partitioning of ∆m into
sets called cells, defined by a collection of points {vs ∈
Rm : s ∈ [m]} called sites with associated weights w(s) ∈
R, given by

cell(vs) =

{
u ∈ Rm : s = argmin

x∈[m]

{‖u− vx‖2− w(x)}

}
.

We call ‖u−vx‖2−w(x) the power distance from u to site
vx; thus, for every point u in cell(vs), it holds that vs is
closer to u in power distance than any other site vx.

We have defined power diagrams for the special case of
the probability simplex, which is the case we need in this
paper. The more general definition allows for a different
number of sites than dimensions.4 The usual definition of
a Voronoi diagram follows by setting all weights w(s) to 0.

3 Mechanisms and Power Diagrams
As with previous work, we would like to make state-
ments of the form, “As long as the belief models satisfy
certain constraints, the mechanism is truthful.” For exam-
ple, the Shadowing Method (Witkowski and Parkes 2012a;
Witkowski 2014) is truthful if and only if pi(s|s) − y(s) >
pi(s

′|s) − y(s′) for all s, s′ ∈ [m] : s′ 6= s, and some dis-
tribution y(·), which is a parameter of the mechanism (also
see Figure 1L.) When used directly (and not as a building
block for more complex mechanisms), it is often assumed
that there is a known, common signal prior p(·) = pi(·) for
all i ∈ [n], which is then used as y(·) = p(·). As we will see,
both the Shadowing Method and the 1/p mechanism (Jurca
and Faltings 2008; 2011) are actually robust in that they are
truthful even if there is no common signal prior. All that is
required is that the agents’ possible posteriors fall into the
correct regions. While it has been known that the constraints
required by the Shadowing Method and the 1/p mechanism
are incomparable, i.e. there exist belief models for which
the Shadowing Method is truthful but the 1/p mechanism
is not, and vice versa (Witkowski 2014), it was not known
for which constraints there exist truthful mechanisms. In this
section, we answer this question, and characterize all belief
model constraints for which truthful mechanisms exist.

As a first step towards this goal, we formally define these
constraints on belief models that limit which posteriors are
possible following which signal.

4Also, note that we exclude cell boundaries; see Theorem 6.
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Figure 1: (L) Example of the probability simplex with three signals
(a, b, and c) and intersection point y = (1/2, 1/3, 1/6). The re-
gions Ds are those for which the Shadowing Method incentivizes
the agents to report the respective signal s. For example, for any
posterior belief falling into Dc, agent i should report xi = c. To see
that the depicted partitioning is indeed coming from this constraint,
first observe that there is indifference at the intersection point, i.e.
when pi(·|s) = y(·), and that the constraints are linear, so that
the indifference borders are lines. The only remaining piece is then
to determine the points for each pair of signals, where the third
(left out) signal’s weight is 0, and draw a line between that point
and y. For example, the indifference point between signals b and
c, where a has no weight is (0, 7/12, 5/12) ⇔ pi(c|c) − 1/6 =
pi(b|c) − 1/3; pi(a|c) = 0. (R) A non-maximal constraint, with
two consistent power diagrams (red and blue).

Definition 7. A belief model constraint is a collection D =
{Ds ⊆ ∆m : s ∈ [m]} of disjoint sets Ds of distributions.
If additionally we have cl(∪sDs) = ∆m, i.e. if D partitions
the simplex, we say D is maximal.

A belief model constraint D = {D1, . . . , Dm} ensures
that for each agent i, following signal observation Si = si,
her belief about her peer agent’s signal sj is restricted to be
inDsi . It is easy to come up with non-maximal belief model
constraints, such as “∀s p(s|s) > 0.6” (Figure 1R). Note
that under such a constraint, some distributions are not valid
posteriors for any signal. In contrast, a maximal constraint
covers the simplex, partitioning it into m bordering but non-
overlapping regions (Figure 1L).

We can now talk about mechanisms being truthful with
respect to belief model constraints.
Definition 8. A mechanismM(·, ·) is truthful with respect to
belief model constraintD ifM is truthful whenever pi(·|s) ∈
Ds for all agents i ∈ [n] and all signals s ∈ [m].

It directly follows from this perspective that all mini-
mal peer prediction mechanisms require a belief model con-
straint (Jurca and Faltings 2011). Consider, for example, a
posterior belief pi(·|s) = (3/5, 3/20, 1/4). Without any
constraint on the belief model, it is not clear if this is the
posterior following signal 1, 2, or 3. This choice needs to
be made since a given posterior belief can only belong to
one signal (stochastic relevance, Definition 1), and so every
truthful minimal peer prediction mechanism requires a be-
lief model constraint.

One very natural constraint to consider is to take an arbi-
trary mechanism M and restrict to only those belief models
under which M is truthful. It turns out that this set can be



succinctly described by a belief model constraint, which we
call the constraint induced by M . Moreover, the regions of
this induced constraint must take a particular shape, that of
a power diagram, and conversely, every power diagram is an
induced constraint of some mechanism.

3.1 Induced Constraints
We will now observe that for any mechanism M , there is a
belief model constraint DM , which exactly captures the set
of belief models for which M is truthful. In other words, not
only is M truthful with respect to DM , but under any belief
model that does not satisfy DM , M will not be truthful. The
construction of DM is easy: for each signal s, DM

s is the
set of distributions p(·|s) under which xi = s is the unique
optimal report for M . Note that if DM

s is empty for any s,
then M is not truthful for any belief model.

Lemma 3. Let M : [m] × [m] → R be an arbitrary mech-
anism, and let DM be the belief model constraint given by

DM
s =

{
pi(·|s) : s = argmax

xi

E
Sj∼pi(·|s)

M(xi, Sj)

}
.

Then M is truthful with respect to DM , but not truthful for
belief models not satisfyingDM . Moreover, if the rows of M
are all distinct, DM is maximal.

Proof. Suppose pi(·|s) ∈ DM
s for all i ∈ [n], s ∈ [m].

Then by construction of DM
s , an agent i receiving signal

s maximizes expected payoff by reporting s, and hence M
is truthful. By definition then, M is truthful with respect to
DM . Now suppose pi(·|s) /∈ DM

s for some i ∈ [n], s ∈ [m].
Then s 6= argmaxxi

{
ESj∼pi(·|s)M(xi, Sj)

}
, and thus M

cannot be truthful. Finally, consider the convex function
G(p) = maxxESj∼pM(x, Sj). By standard results in con-
vex analysis (c.f. (Frongillo and Kash 2014, Theorem 3))
G has subgradient M(x, ·) whenever x is in the argmax.
As the rows of M are all distinct, multiple elements in
the argmax corresponds to multiple subgradients of G, and
thus G is nondifferentiable5 at the set of indifference points
{p : | argmaxxESj∼pM(x, Sj)| > 1}. As G must be dif-
ferentiable almost everywhere (Aliprantis and Border 2007,
Thm 7.26), these indifference points must have measure 0 in
the probability simplex, and thus DM is maximal.

3.2 Equivalence to Power Diagrams
We have seen that every mechanism M induces some belief
model constraint DM , and that M is truthful with respect to
DM . We now show further thatDM is a power diagram, and
conversely, that every power diagram has a mechanism such
that DM

s = cell(vs) for all s.
The concrete mapping is as follows. Given mechanism

M : [m]× [m]→ R, we construct sites and weights by:

vs = M(s, ·), w(s) = ‖vs‖2 = ‖M(s, ·)‖2 . (2)

5Technically speaking, we should restrict to the first m − 1
coordinates of the distribution, so that G is defined on a full-
dimensional subset of Rm−1; this can easily be done by a linear
transformation without altering the argument.

Conversely, given a power diagram with sites vs and weights
w(s), we construct the mechanism M as follows:

M(xi, xj) = vxi(xj)− 1
2‖v

xi‖2 + 1
2w(xi) , (3)

where vxi(xj) is the xj th entry of vxi . We note that these
formulas are more explicit versions of those appearing in
property elicitation, a domain requiring ground truth; our
results are in cases direct translations from that literature
(Lambert and Shoham 2009; Frongillo and Kash 2014).

With these conversions in hand, we can now show that
they indeed establish a correspondence between minimal
peer prediction mechanisms and power diagrams.

Theorem 4. Given any mechanism M : [m] × [m] → R,
the induced belief model constraintDM is a power diagram.
Conversely, for every power diagram given by sites vs and
weights w(s), there is a mechanismM whose induced belief
model constraint DM satisfies DM

s = cell(vs) for all s.

Proof. Observe that if either relation (2) or (3) holds, we
have the following for all x,p:

−2p · vx + ‖vx‖2 − w(x) = −2 E
Sj∼p

[M(x, Sj)] . (4)

To see this, note that p · M(x, ·) = ESj∼p[M(x, Sj)].
Adding ‖p‖2 to both sides of Eq. 4 gives

‖p− vx‖2 − w(x) = ‖p‖2 − 2 E
Sj∼p

[M(x, Sj)] . (5)

Now applying Eq. 5 to the definitions of a power diagram
and of DM , we have

p ∈ cell(vs) ⇐⇒ s = argmin
x
{‖p− vx‖2 − w(x)}

⇐⇒ s = argmin
x

{
‖p‖2 − 2 E

Sj∼p
[M(x, Sj)]

}
⇐⇒ s = argmax

x
E

Sj∼p(·|s)
M(x, Sj)

⇐⇒ p ∈ DM
s .

Finally, as Eq. 2 defines a power diagram for any mechanism
M , and Eq. 3 defines a mechanism for any power diagram,
we have established our equivalence.

Corollary 5. Let D be a maximal belief model constraint.
Then there exists a mechanism which is truthful with respect
to D if and only if D is a power diagram.

Note that the conversion from mechanisms to power di-
agrams (Eq. 2) and back (Eq. 3) are inverse operations. In
particular, this shows that mechanisms are in one-to-one cor-
respondence with power diagrams on ∆m. In the follow-
ing section, we will leverage this tight connection, and use
results from computational geometry to show that several
well-known mechanisms are unique in the sense that they
are the only mechanisms, up to positive-affine transforma-
tions, that are truthful for their respective belief model con-
straints.



4 Uniqueness
Consider the standard output agreement mechanism
M(xi, xj) = 1 if xj = xi and 0 otherwise. It is easy to
see that the mechanism is truthful as long as each agent as-
signs the highest posterior probability pi(·|si) to their own
signal si, yielding the constraint “p(s|s) > p(s′|s) ∀s′ 6= s.”
The type of question we address in this section is: are there
any other mechanisms than M that are guaranteed to be
truthful as long as posteriors satisfy this condition? We will
show that, up to positive-affine transformations, the answer
is no: output agreement is unique. Moreover, the Shadow-
ing Method and the 1/p mechanism are also unique for their
respective conditions on posteriors.

To get some intuition for this result, let us see why output
agreement is unique for m = 3 signals a, b, c. From Theo-
rem 4, we know that D = DM , the induced belief model
constraint, is a power diagram (which is depicted in Fig-
ure 2L). In general, there may be many sites and weights
that lead to the same power diagram, and these may yield
different mechanisms via Eq. 3. In fact, it is a general result
that any positive scaling of the sites followed by a transla-
tion (i.e. some α > 0 and u ∈ Rm so that v̂s = αvs + u
for all s) will result in the same power diagram for an ap-
propriate choice of weights (Aurenhammer 1987a). As it
turns out, such scalings and translations exactly correspond
to positive-affine transformations when passing to a mech-
anism through Eq. 3. Thus, we only need to show that the
sites for the output agreement power diagram are unique up
to scaling and translation. Here, another useful property of
sites comes into play: the line between sites of two adja-
cent cells must be perpendicular to the boundary between
the cells. Examining Figure 2L, one sees that after fixing
va, the choice of vb is constrained to be along the blue dot-
ted line, and once va and vb are chosen, vc is fixed as the
intersection of the red dotted lines. Thus, we can specify the
sites by choosing va (a translation), and how far away from
va to place vb (a positive scaling). We can then conclude that
output agreement for three signals is unique up to positive-
affine transformations. We now give the general result.

Theorem 6. If there exists a mechanism M that is truthful
for some maximal belief model constraint D, and there is
some y ∈ ∆m with y(s) > 0 ∀s such that ∩scl(Ds) =
{y}, then M is the unique truthful mechanism for D up to
positive-affine transformations.

Proof. As M is truthful with respect to D, we have D =
DM and thusD is a power diagram P . By the assumption of
the theorem, we observe that the only vertex (0-dimensional
face) of P must be y, the intersection of the cl(Ds), as there
are m cells but ∆m has dimension m− 1.6 Thus, by defini-
tion of a simple cell complex,7 as the vertex y is in the rela-
tive interior of ∆m, we see that the extension P̂ ofP onto the

6Throughout the proof we implicitly work in the affine hull A
of ∆m. We may assume without loss of generality that all sites lie
in A, as we may translate any site to A while adjusting its weight
to preserve the diagram and resulting mechanism.

7P is simple if each of P ’s vertices is a vertex of exactly m
cells of P , the minimum possible (Aurenhammer 1987c, p.50).
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Figure 2: (L) Constructing a mechanism that is truthful under the
same conditions as output agreement. (R) The truthful mechanism
with respect to the “complement 1/p” condition in power diagram
form with sites va,vb, and vc. Notice that while the intersection
point y = (1/2, 1/3, 1/6) is the same as in Figure 1L, the be-
lief model constraint as depicted by the dashed partitioning is now
given by the new “complement 1/p” condition.

affine hull of ∆m must also have y as the only vertex. Now
following the proof of (Frongillo and Kash 2014, Theorem
4), we note that (Aurenhammer 1987a, Lemma 1) and (Au-
renhammer 1987c, Lemma 4) together imply the following:
if P̂ is represented by sites {vs}s∈[m] and weightsw(·), then
any other representation of P̂ with sites {v̂s}s∈[m] satisfies
∃α > 0,u ∈ Rm s.t. v̂s = αvs + u for all s ∈ [m].
In other words, all sites must be a translation and scaling
of {vs}. To complete the proof, we observe that different
choices of u and α (with suitable weights) merely yield an
affine transformation of M when passed through Eq. 3, and
as any positive-affine transformation preserves truthfulness,
the result follows.

Corollary 7. The following mechanisms are unique, up to
positive-affine transformations, with respect to the corre-
sponding constraints (each with “∀s′ 6= s” implied):

1. Output Agreement, p(s|s) > p(s′|s)
2. Shadowing Method, p(s|s)− y(s) > p(s′|s)− y(s′)

3. 1/p Mechanism, p(s|s)/y(s) > p(s′|s)/y(s′) .

Proofs. In all three cases, the given mechanism is known
to be truthful for its respective belief model constraint.
Moreover, for all three constraints D, one can check that
∪scl(Ds) = ∆m and ∩scl(Ds) = {y} meaning that y is
the unique distribution bordering every set Ds (for Output
Agreement, y is the uniform distribution). Hence, the mech-
anisms are unique up to positive-affine transformations by
Theorem 6.

To conclude this section, we note that the term “maximal”
is necessary in Theorem 6. If D is not maximal, there may
be many more mechanisms that are truthful with respect to
D. For example, Figure 1R depicts two distinct power dia-
grams yielding mechanisms that are truthful with respect to
the non-maximal constraint “p(s|s) > 0.6”, and thus they
are not merely positive-affine transformations of each other.



5 Optimal Mechanisms for New Conditions
In this section, we exemplify the design of a new mechanism
that is truthful with respect to a new condition. Moreover, we
find the positive-affine transformation that maximizes effort
incentives subject to a budget.8 It then follows directly from
Theorem 6 that the final mechanism’s effort incentives are
globally optimal given this condition. That is, there is no
peer prediction mechanism that is truthful with respect to
the new condition providing better effort incentives.

As intuition for the new condition, imagine the mecha-
nism has an estimate of the agents’ signal priors p(a, b, c) =
(0.01, 0.04, 0.95), which it designates as the intersection
point y(·) = p(·) of the belief model constraint. Consider
now posterior pi(a, b, c|s) = (0.02, 0.01, 0.97), where the
1/p mechanism would pick signal a since its relative increase
from prior (as estimated by the mechanism) to posterior is
highest (it doubles). However, one could also consider the
relative decrease in “error”: in a world without noise, the
posterior would have pi(s|s) = 1 for every s, and so signal
a’s relative decrease from 0.99 = 1−0.01 to 0.98 = 1−0.02
is not as “impressive” as signal c’s decrease in error from
0.05 = 1 − 0.95 to 0.03 = 1 − 0.97 (a reduction of almost
one half). Formalizing this intuition yields the “complement
1/p” condition, 1−y(s)

1−pi(s|s) >
1−y(s′)

1−pi(s′|s) ∀ s
′ 6= s.

Theorem 6 implies that there is a unique mechanism that
is truthful for this new condition, up to positive-affine trans-
formations. We now sketch the construction for the new
“complement 1/p” condition, returning to our running ex-
ample with m = 3 signals and intersection point y =
(1/2, 1/3, 1/6) as depicted in Figure 2R. For the general
procedure, see Appendix B in the full version of this paper.

1. Pick any point for va, say va = (4/5, 1/10, 1/10).9

2. Pick any vb on the blue dotted line, ensuring that the line
between va and vb is perpendicular to the a, b cell bound-
ary. Here we choose vb = (1/10, 81/110, 9/55).

3. For all other signals s, vs is now uniquely determined
by va and vb as the lines between any two sites must
be perpendicular to their cell boundary. Here we only
have one other signal, c, so we take vc to be the unique
point at the intersection of the red dotted lines, which is
vc = (38/275, 111/550, 33/50).

4. Calculate the weights by observing that y must be
equidistant (in the power distance) to all sites simultane-
ously: w(a) = 1, w(b) = 123/100, w(c) = 2423/1875.

5. We obtain the resulting mechanism by applying Eq. 3:

M(·, ·) =
1

1100

[
1067 297 297
437 1137 507
563 633 1137

]
.

6. The mechanism M∗ which optimizes effort incentives
given a budget of 1 among all positive-affine transforma-

8See Appendix C of the full version for the details of this opti-
mization problem.

9For intuition and clarity, we choose va ∈ Da, but it could be
in any other cell, e.g. Dc, or even outside of the simplex.

tions of M is:

M∗(·, ·) =
1

20

[
15 0 0
0 20 5
3 8 20

]
.

This step can be computed as follows: subtract the largest
amount from each column that still preserves nonnegative
payments, and then scale so the largest entry is 1.

We conclude by noting that this example condition admits
a closed form solution: M(s, s′) = 0 if s = s′, and −1

1−y(s)
otherwise. One can check that adding constants to each col-
umn to give non-negative payments recoversM∗. Of course,
our construction applies even when no convenient closed-
form solution exists, such as in Figure 3R.

6 Maximally-Robust Mechanisms
In the classical peer prediction method (Miller, Resnick, and
Zeckhauser 2005), the mechanism is assumed to have full
knowledge of the agents’ belief models. Recent work re-
laxes the method’s knowledge requirements, e.g. using ad-
ditional reports (Prelec 2004; Witkowski and Parkes 2012b;
2012a) or using reports on several items (Dasgupta and
Ghosh 2013; Witkowski and Parkes 2013). An approach
closer to the classical method has been suggested by Jurca
and Faltings (2007), who compute a minimal mechanism as
the solution of a conic optimization problem that ensures
truthfulness as long as the agents’ belief models are close
to the mechanism’s, with respect to Euclidean distance. This
restriction, a form of robustness, is defined as follows.

Definition 9. (Jurca and Faltings 2007) A mechanism M is
ε-robust with respect to belief model p(·|·) if M is truthful
for p∗(·|·) whenever the following holds for all si ∈ [m],∑

sj∈[m]

(p(sj |si)− p∗(sj |si))2 ≤ ε2 . (6)

While Jurca and Faltings fix the robustness ε as a hard
constraint, one may also seek the mechanism that maximizes
this robustness. The achievable robustness is of course lim-
ited by the mechanism’s belief model p(·|·); in particular, the
“robustness areas” around the mechanism’s posteriors can-
not overlap; see Figure 3L. Viewing robustness in geometric
terms, we obtain a closed-form solution.

Theorem 8. Let p(·|·) be the mechanism’s belief model in
classical peer prediction. Then the following mechanism is
maximally robust:

M(xi, xj) = p(xj |xi)−
1

2

m∑
s=1

p(s|xi)2. (7)

Proof. In light of Theorem 4, we may focus instead on
power diagrams. From Eq. 6, for all s we must have
Bε(p(·|s)) ⊆ cell(vs), where Bε(u) is the Euclidean ball
of radius ε about u (restricted to the probability simplex).
Letting d = mins,s′∈[m] ‖p(·|s) − p(·|s′)‖ be the minimum
Euclidean distance between any two posteriors, it becomes
clear that robustness of d/2 or greater cannot be achieved, as



a b

c

p(·|a)
p(·|b)

p(·|c)

(L)

a b

c
(R)

Figure 3: (L) Maximally-robust mechanism with respect to devia-
tions from the mechanism’s belief model. The sites of the power
diagram are vs = p(·|s), and all weights are 0. (R) A mechanism
with maximal robustness with respect to labeled posterior data.

1
2p(·|s)+ 1

2p(·|s
′) ∈ Bd/2(p(·|s))∩Bd/2(p(·|s′)). (See Fig-

ure 3L.) Robustness of any ε < d/2 can be achieved, how-
ever, by taking a Voronoi diagram with sites vs = p(·|s); the
definition of d ensures that Bε(p(·|s)) = Bε(v

s) ⊆ cell(vs)
for all s. One then recovers Eq. 7 via Eq. 3 with vs = p(·|s)
and w(s) = 0 for all s ∈ [m].

Corollary 9. The classical peer prediction method with the
quadratic scoring rule is maximally robust.

One can easily adapt the above to design maximally ro-
bust mechanisms with respect to non-Euclidean distances as
well, so long as that distance can be expressed as a Bregman
divergence. Each such divergence has a corresponding scor-
ing rule, and one simply replaces the quadratic score with
this score (Frongillo and Kash 2014, Appendix F).

7 Conclusion
We introduced a new geometric perspective on minimal peer
prediction mechanisms, and proved that it is without loss of
generality to think of a minimal peer prediction mechanism
as a power diagram. This perspective then allowed us to
prove uniqueness of several well-known mechanisms up to
positive-affine transformations, to construct novel peer pre-
diction mechanisms for new conditions, and to compute the
maximally-robust mechanism with respect to agents’ sub-
jective belief models deviating from the mechanism’s.

We believe the most exciting direction for future work
is to construct mechanisms from real-world data. Suppose
the mechanism designer wants to collect typical data about
the belief models of agents rather than making an educated
guess at likely posteriors. A natural way to do this would
be to use gold standard labels and elicit (signal, posterior)
pairs from agents. Given these data, the designer can then
train a classifier within the class of power diagrams, which
intuitively predicts the signal associated with a new poste-
rior. Finally, this power diagram can then be converted to
a mechanism using Eq. 3. If a max-margin criterion is im-
posed when training, as depicted in Figure 3R, the result-
ing mechanism will be maximally robust with respect to the
training set. When the data are not linearly separable, a soft-
margin solution, such as the one by Borgwardt (2015), may
be appropriate. We explore this approach in ongoing work.
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