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1. INTRODUCTION
User-generated content is essential to the effective functioning of many social comput-
ing and e-commerce platforms. A prominent example is eliciting information through
crowdsourcing platforms, such as Amazon Mechanical Turk, where workers are paid
small rewards to do so-called human computation tasks, which are easy for humans
to solve but difficult for computers. For example, humans easily recognize celebrities,
whereas even state-of-the-art computer vision algorithms perform significantly worse.

While statistical techniques can adjust for biases or identify noisy users, they are
appropriate only in settings with repeated participation by the same user, and when
user inputs are informative in the first place. But what if providing accurate informa-
tion is costly for users, or if users have incentives to lie? Consider an image annotation
task (e.g. for search engine indexing), where workers may wish to save effort by anno-
tating with random words, or words that are too generic (e.g. “animal”). Or consider
a public health program that requires participants to report whether they have ever
used illegal drugs, and where participants may lie about their drug use due to shame
or eligibility concerns.

Peer prediction mechanisms address these incentive problems. They are designed to
elicit truthful private information from self-interested participants, such as answers to
the question “Have you ever used illegal drugs?” Crucially, peer prediction mechanisms
cannot use ground truth. In the public health example this means the program cannot
verify whether a participant has or has not ever used illegal drugs; it can only use the
participants’ voluntary reports.

The classical peer prediction method [Miller et al. 2005] addresses this challenge by
comparing the reported information of a participant (her reported signal) with that of
another participant, and computing a payment rule which ensures that truth revela-
tion is a strategic equilibrium. The major shortcoming of the classical peer prediction
method with regard to practical applications is that its common knowledge assump-
tions are too strict for practical application. In particular, the participants’ possible
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posterior beliefs (their belief model) are assumed to be known and the same for all par-
ticipants. In the public health example, this would mean that every participant using
drugs has the same belief that e.g. 40% of participants use drugs, and every partic-
ipant not using drugs has the same belief that e.g. 20% use drugs. Moreover, these
numbers need to be known by the mechanism in order to compute the payment rule.
Since the assumption of perfectly known belief models is unrealistic in practice, Jurca
and Faltings [2007] apply techniques from robust optimization to the classical peer
prediction method and make it robust against small variations in the commonly-held
belief model. In Section 7, we show how the geometric perspective on peer prediction
can be used to compute maximally-robust mechanisms for a generalized notion of ro-
bustness, which includes the robustness of Jurca and Faltings as a special case.

Bayesian Truth Serum (BTS) mechanisms relax the common knowledge assump-
tions of aforementioned mechanisms in that the belief model is still the same for
all participants but no longer needs to be known to the mechanism (not even ap-
proximately as in Jurca and Faltings [2007]). In addition to the signal that is to be
elicited, BTS mechanisms also require participants to report a probability distribu-
tion regarding the signal reports in the population. That is, they are not minimal.
A shortcoming of the original Bayesian Truth Serum (BTS) [Prelec 2004] is that it
is truthful only for an infinite number of participants. The Robust Bayesian Truth
Serum (RBTS) [Witkowski and Parkes 2012a; Witkowski 2014] achieves truthfulness
for small populations (any number of agents n ≥ 2 with binary signals and any n ≥ 2
for non-binary signals). The 1/p BTS [Radanovic and Faltings 2013] is truthful for non-
binary signals and any number of agents n ≥ 2 but is not robust towards prediction
reports of 0% or 100% and has unbounded ex post payments. It also requires a different
belief model constraint than RBTS (see also Section 4).

All BTS mechanisms still assume that all participants share the same belief model.
Witkowski and Parkes [2012b] relax this assumption and allow participants to have
subjective belief models. (In the public health setting, for example, two participants
using drugs could have different beliefs about the prevalance of drug users in the pop-
ulation.) However, their mechanism requires the ability to elicit relevant information
from an agent both before and after she makes her observation. In particular, their
mechanism is not minimal.

Multi-task mechanisms are applicable to settings where agents respond to several
“similar” questions, i.e. questions for which an agent has the same belief model. This
allows for the design of minimal peer prediction mechanisms that do not require
knowledge of the agents’ belief models. Witkowski and Parkes [2013] score partici-
pants on a given task using signal distributions that were learned from reports on
other tasks. The mechanism due to Dasgupta and Ghosh [2013], as well as its multi-
signal extension [Shnayder et al. 2016], rewards agreement with the peer agent on
overlapping questions and punish agreement on non-overlapping questions.

In the single-task setting, the 1/p Mechanism [Jurca and Faltings 2008; Jurca and
Faltings 2011] and the Shadowing Method [Witkowski and Parkes 2012a; Witkowski
2014] allow for relaxed common knowledge assumptions when compared to the classi-
cal peer prediction method while still being minimal. Instead of assuming knowledge
of the entire belief model, both the 1/p mechanism and the Shadowing Method only
assume knowledge of the signal prior. This is strictly less knowledge than knowing the
belief model: one can compute the signal prior, but not the other way around.

Our Results. In this paper, we provide a complete characterization of the design
space of minimal, subjective, single-task peer prediction mechanisms, which includes
the classical peer prediction method, output agreement, the 1/p mechanism, and the
Shadowing Method as special cases. While it was known that every minimal mecha-
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nism requires some constraint on the agents’ belief models [Jurca and Faltings 2011],
it was unknown which constraints allow for truthful mechanisms and how the con-
straints of different truthful mechanisms relate to one another. We answer these ques-
tions in Section 3 by adapting techniques from property elicitation [Lambert et al.
2008; Lambert and Shoham 2009; Frongillo and Kash 2014], allowing us to prove the
equivalence of minimal peer prediction mechanisms and power diagrams, a type of
weighted Voronoi diagram. In Section 4, we then use this and results from computa-
tional geometry to show that all aforementioned mechanisms are unique with respect
to their belief model constraints up to positive-affine transformation. One important
corollary of this is that maximizing effort incentives for any of these mechanisms re-
duces to computing the effort-optimal positive-affine transformation. In Section 5, we
show how to construct new truthful mechanisms for new conditions, followed by a de-
tailed example of this construction in Section 5.3. Section 6 shows even more structure
to minimal mechanisms, proving that the classical peer prediction method is flexible
enough to cover all possible mechanisms, in most cases even when restricting to the
quadratic scoring rule. In Section 7, we revisit the classical peer prediction method and
show how to compute a mechanism that is maximally-robust with respect to deviations
between the mechanism’s and the agents’ belief models. We conclude in Section 8 with
directions for ongoing and future work.

2. PRELIMINARIES
In this section, we introduce the model, and review concepts in peer prediction and
computational geometry.

2.1. Model
There is a group of n ≥ 2 rational, risk-neutral and self-interested agents. We some-
times use shorthand [n] := {1, . . . , n} to denote the set of agents. When interacting with
the environment, each agent i ∈ [n] observes a signal Si,1 which is a random variable
with values [m] := {1, . . . ,m} and m ≥ 2. The signal represents an agent’s experience
or opinion. The objective in peer prediction is to elicit an agent’s signal in an incentive
compatible way, i.e. to compute payments such that agents maximize their expected
payment by reporting their signal to the mechanism (center) truthfully.

To achieve this, all peer prediction mechanisms require that agent i’s signal obser-
vation tells her something about the signal observed by another peer agent j 6= i. For
example, this could be agent j = i + 1 (modulo n), so that the agents form a “ring,”
where every agent is scored using the “following” agent. (Our results hold for any
choice of peer agent.) Let then

pi(sj |si) = Pri(Sj = sj | Si = si) (1)
denote agent i’s signal posterior belief that agent j receives signal sj given agent i’s
signal si. We refer to pi(·|·) as agent i’s belief model. A crucial assumption for the
existence of strictly incentive compatible peer prediction mechanisms is that every
agent’s belief model satisfies stochastic relevance [Johnson et al. 1990].

Definition 2.1. Random variable Si is stochastically relevant for random variable
Sj if and only if the distribution of Sj conditional on Si is different for all possible
values of Si.

That is, stochastic relevance holds if and only if pi(·|si) 6= pi(·|s′i) for all i ∈ [n] and
all s′i 6= si. Intuitively, one can think of stochastic relevance as correlation between
different agents’ signal observations.

1We will drop the subscript to denote a generic signal.
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2.2. Peer Prediction Mechanisms
We are now ready to define peer prediction mechanisms. For a discussion of possible
extensions to more general mechanisms, see Section 8.

Definition 2.2. A (minimal) peer prediction mechanism is a function M : [m]× [m]→
R, where M(xi, xj) specifies the payment to agent i when she reports signal xi and her
peer agent j reports signal xj .

We use ex post subjective equilibrium [Witkowski and Parkes 2012b], which is
the most general solution concept for which truthful peer prediction mechanisms are
known.

Definition 2.3. Mechanism M is truthful if we have

si = argmax
xi

E
Sj

[
M
(
xi, Sj

) ∣∣ Si = si

]
,

for all i ∈ [n] and all si ∈ [m] with the expectation taken using agent i’s belief model,
i.e. Sj ∼ pi(·|si).

The equilibrium is subjective because it allows for each agent to have a distinct be-
lief model, and ex post because it allows for (but doesn’t require) knowledge of other
agents’ belief models. Agents only need to reason about other agents’ signals, not their
beliefs. One implication of this equilibrium concept is that pi(·|·) can be formulated
after having seen the belief models of other agents. Note that while it may be the case
that repeating this process eventually yields a common prior, ex post subjective equi-
librium explicitly allows agents to “agree to disagree.” Ex post subjective equilibrium
is thus strictly more general than Bayes-Nash equilibrium (BNE) as it coincides with
BNE when all agents share the same belief model, i.e. if pi(·|·) = pj(·|·) for all i, j ∈ [n].

Definition 2.4. A mechanism M ′ is a positive-affine transformation of mechanism
M if there exists f : [m] → R and α > 0 such that for all xi, xj ∈ [m], M ′(xi, xj) =
αM(xi, xj) + f(xj).

The importance of Definition 2.4 lies in the fact that if M is truthful, then M ′ is
truthful as well. We state this as Lemma 2.5, which we prove in Appendix A. As we
will see, in certain cases these are the only possible truthful mechanisms.

LEMMA 2.5. Let M ′ be a positive-affine transformation of M . Then M ′ is truthful if
and only if M is truthful.

We conclude with several examples of peer prediction mechanisms from the liter-
ature to which we refer throughout the paper. The first are the Output Agreement
Mechanism, the 1/p Mechanism and the Shadowing Method, which we now define.
We will use the notation ∆m to refer to the probability simplex, the set of probability
distributions over m outcomes (see the following subsection).

Definition 2.6. Output Agreement is M(xi, xj) = 1 if xj = xi and 0 otherwise.

Definition 2.7. The 1/p Mechanism [Jurca and Faltings 2011] is given by
M(xi, xj) = 1

y(xi)
if xi = xj and 0 otherwise, for some y ∈ ∆m.

Definition 2.8. The Shadowing Method [Witkowski and Parkes 2012a; Witkowski
2014] is M(xi, xj) = Rq(y

′, xj), where y′ =
(
y(1) − δ

m−1 , . . . , y(xi) + δ, . . . , y(m) − δ
m−1

)
for some y ∈ ∆m, δ > 0, and Rq(y′, xj) = 2y′(xj)−

∑m
k=1 y

′(k)2 is the quadratic scoring
rule [Brier 1950].
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THEOREM 2.9. The preceding mechanisms are truthful if and only if the following
conditions are satisfied for all s ∈ [m], s′ 6= s and for all i ∈ [n]:

(1) Output Agreement: pi(s|s) > pi(s
′|s)

(2) 1/p Mechanism: pi(s|s)/y(s) > pi(s
′|s)/y(s′)

(3) Shadowing Method: pi(s|s)− y(s) > pi(s
′|s)− y(s′).

The proofs for each of these statements are in the respective papers cited in each mech-
anism’s definition above.

Finally, we will refer to the Classical Peer Prediction Method in Section 6, which re-
lies on the notion of a proper scoring rule, a tool for eliciting probabilistic beliefs from
agents given a sample from the ground truth. In short, a proper scoring rule is a func-
tion R : ∆m × [m] → R such that Ep[R(p,X)] ≥ Ep[R(q,X)] where X has distribution
p, and q 6= p is a non-truthful report. When the inequality is always strict, we say R is
strictly proper. (One example of a strictly proper scoring rule is the quadratic scoring
rule due to Brier [1950], given in Definition 2.8.) As we note in Section 6, all proper
scoring rules can be given in terms of convex functions; we refer the reader to that
section and to Gneiting and Raftery [2007] for details.

Definition 2.10. The Classical Peer Prediction Method [Miller et al. 2005] is given
by M(xi, xj) = R

(
pi(·|xi), xj

)
, where R(·, xj) is any strictly proper scoring rule.

THEOREM 2.11. The Classical Peer Prediction Method is truthful if and only if pi(·|·)
satisfies stochastic relevance for all i ∈ [n].

2.3. The Probability Simplex
The intuition for our main results can be provided for m = 3 signals already, and so
we give such examples throughout the paper. For probability distributions over only 3
signals, there is a convenient graphical representation of the probability simplex ∆m as
an equilateral triangle, where the three corners represent the signals (see Figure 1L).
The closer a point is to a corner (the distance from the corner’s opposing side), the more
probability mass of that corner’s signal is on that point.2 The triangular shape ensures
that for any point on the triangle the values of the three dimensions sum up to 1. For
example, the point pi(·|b) = (0.2, 0.75, 0.05) in Figure 1L is at height 1/20 (since the
top corner represents signal c), and one fifth away from the right side of the triangle
(because the left corner represents signal a). Observe that with three signals, there are
only two degrees of freedom, and so fixing the point’s position with respect to a and c,
the value for signal b is fixed as well. (Confirm that pi(·|b) is three fourths away from
the left side.)

2.4. Power Diagrams
Our results rely on a concept from computational geometry known as a power diagram,
which is a type of weighted Voronoi diagram [Aurenhammer 1987b].

Definition 2.12. A power diagram is a partitioning of ∆m into sets called cells, de-
fined by a collection of points {vs ∈ Rm : s ∈ [m]} called sites with associated weights
w(s) ∈ R, given by

cell(vs) =

{
u ∈ Rm : {s} = argmin

x∈[m]

{‖u− vx‖2− w(x)}

}
. (2)

2This is equivalent to the natural embedding into R3 and viewing in the direction (−1,−1,−1).
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a b

c

pi(·|a)
pi(·|b)

pi(·|c)

(L)

a b

c

p′i(·|a)
p′i(·|b)

p′i(·|c)

(M)

a b

c

Da Db

Dc

(R)

Fig. 1: Belief models for which OA is not truthful (L) and is truthful (M). The belief models for which OA is
truthful are characterized by the cells Da, Db, Dc, where the posterior following signal s must lie in Ds (R).

We call ‖u − vx‖2 − w(x) the power distance from u to site vx; thus, for every point u
in cell(vs), it holds that vs is closer to u in power distance than any other site vx.

We have defined power diagrams for the special case of the probability simplex,
which is the case we need in this paper. The more general definition allows for a dif-
ferent number of sites than dimensions. Also, note that we exclude cell boundaries
by ensuring that we have a unique minimizer in eq. (2); in the following we drop the
set notation around s and just write s = argmin{. . .} or s = argmax{. . .}. The usual
definition of a Voronoi diagram follows by setting all weights w(s) to 0.

3. MECHANISMS AND POWER DIAGRAMS
As with previous work, we would like to make statements of the form, “As long as the
belief models satisfy certain constraints, the mechanism is truthful.” For example, the
Shadowing Method (Definition 2.8) is truthful if and only if pi(s|s)−y(s) > pi(s

′|s)−y(s′)
for all s, s′ ∈ [m] : s′ 6= s, all i ∈ [n], and some distribution y, which is a parameter of the
mechanism. When used directly, and not as a building block for more complex mecha-
nisms, it is often assumed that there is a known, common signal prior, which is then
used as y. As we will see, both the Shadowing Method and the 1/p mechanism [Ju-
rca and Faltings 2008; Jurca and Faltings 2011] are actually robust in that they are
truthful even if there is no common signal prior. All that is required is that the agents’
possible posteriors fall into the correct regions. While it has been known that the con-
straints required by the Shadowing Method and the 1/p mechanism are incomparable,
i.e. there exist belief models for which the Shadowing Method is truthful but the 1/p
mechanism is not, and vice versa [Witkowski 2014], it was not known for which con-
straints there exist truthful mechanisms. In this section, we answer this question, and
characterize all belief model constraints for which truthful mechanisms exist.

3.1. Belief Model Constraints
To begin, consider the Output Agreement mechanism (OA), with two possible belief
models pi(·|·) and p′i(·|·) as depicted in Figures 1L and 1M, respectively: pi(·|a) =
p′i(·|a) = (0.6, 0.3, 0.1), pi(·|b) = p′i(·|b) = (0.2, 0.75, 0.05), pi(·|c) = (0.2, 0.55, 0.25), and
p′i(·|c) = (0.2, 0.25, 0.55). For which of the belief models pi(·|·), p′i(·|·) is OA truthful?
Upon inspection, one can verify that OA is truthful with respect to p′i(·|·) but not pi(·|·).
The key point is that upon observing signal c, pi(b|c) = 0.55 > pi(c|c), meaning under
pi(·|·), the agent thinks that the peer agent is most likely to have seen (and reported) b,
so signal b will be the optimal report. Clearly then, OA is not truthful with respect to
every belief model, and one may naturally ask, for which belief models is OA truthful?
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As it turns out, one can describe all such belief models using a very simple belief model
constraint, of the form pi(·|s) ∈ Ds for all signals s, for some sets of distributions Ds.
For OA, this constraint is given by the sets Ds = {p | ∀s′ 6= s, p(s) > p(s′)}, as depicted
in Figure 1R. We will revisit this constraint in Section 3.2.

We now formally define these constraints on belief models that limit which posteriors
are possible following which signal.

Definition 3.1. A belief model constraint is a collection D = {Ds ⊆ ∆m : s ∈ [m]}
of disjoint sets Ds of distributions. If additionally we have cl(∪sDs) = ∆m, i.e. if D
partitions the simplex, we say D is maximal.

A belief model constraint D = {D1, . . . , Dm} ensures that for each agent i, following
signal observation Si = si, her belief about her peer agent’s signal sj is restricted
to be in Dsi . It is easy to come up with non-maximal belief model constraints, such
as “∀s p(s|s) > 0.6”.3 Note that under such a constraint, some distributions are not
valid posteriors for any signal. In contrast, a maximal constraint covers the simplex,
partitioning it into m bordering but non-overlapping regions (e.g. Figure 1R).

We can now talk about mechanisms being truthful with respect to a belief model
constraint, which ensures that agents will report honestly as long as their belief model
satisfies the constraint.

Definition 3.2. A mechanism M(·, ·) is truthful with respect to belief model con-
straint D if M is truthful whenever pi(·|s) ∈ Ds for all agents i ∈ [n] and all signals
s ∈ [m].

It directly follows from this perspective that all minimal peer prediction mechanisms
require a belief model constraint.4 Consider, for example, a posterior belief pi(·|s) =
(3/5, 3/20, 1/4). Without any constraint on the belief model, it is not clear if this is the
posterior following signal 1, 2, or 3. This choice needs to be made since a given posterior
belief can only belong to one signal (stochastic relevance, Definition 2.1), and so every
truthful minimal peer prediction mechanism requires a belief model constraint.

One very natural constraint to consider is to take an arbitrary mechanism M and
restrict to only those belief models under which M is truthful. It turns out that this set
can be succinctly described by a belief model constraint, which we call the constraint
induced by M . Moreover, the regions of this induced constraint must take a particular
shape, that of a power diagram, and conversely, every power diagram is an induced
constraint of some mechanism.

We will now observe that for any mechanism M , there is a belief model constraint
DM , which exactly captures the set of belief models for which M is truthful. In other
words, not only is M truthful with respect to DM , but under any belief model that does
not satisfy DM , M will not be truthful. The construction of DM is easy: for each signal
s, DM

s is the set of distributions p(·|s) under which xi = s is the unique optimal report
for M . Note that if DM

s is empty for any s, then M is not truthful for any belief model.

LEMMA 3.3. Let M : [m] × [m] → R be an arbitrary mechanism, and let DM be the
belief model constraint given by

DM
s =

{
pi(·|s) : s = argmax

xi

E
Sj∼pi(·|s)

M(xi, Sj)

}
. (3)

3See Figure 4M for an illustration, as well as the surrounding discussion.
4Jurca and Faltings [2011] were the first to state that no minimal mechanism can be truthful for all stochas-
tically relevant belief models. However, they did not study the type of constraints that need to be imposed
to allow for truthful mechanisms.
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Then M is truthful with respect to DM , but not truthful for belief models not satisfying
DM . Moreover, if the rows of M are all distinct, DM is maximal.

PROOF. Suppose pi(·|s) ∈ DM
s for all i ∈ [n], s ∈ [m]. Then by construction of DM

s ,
an agent i receiving signal s maximizes expected payoff by reporting s, and hence
M is truthful. By definition then, M is truthful with respect to DM . Now suppose
pi(·|s) /∈ DM

s for some i ∈ [n], s ∈ [m]. Then s 6= argmaxxi
ESj∼pi(·|s)M(xi, Sj), and

thus M cannot be truthful. Finally, consider the function G(p) = maxxESj∼pM(x, Sj),
which is convex as a pointwise maximum of linear functions. By standard results in
convex analysis (c.f. [Frongillo and Kash 2014, Theorem 3]) G has subgradient M(x, ·)
whenever x is in the argmax. As the rows of M are all distinct, multiple elements in
the argmax corresponds to multiple subgradients of G, and thus G is nondifferentiable5

at the set of indifference points {p : | argmaxxESj∼pM(x, Sj)| ≥ 2}. As G is convex, it
must be differentiable almost everywhere [Aliprantis and Border 2007, Theorem 7.26],
these indifference points must have measure 0 in the probability simplex, and thusDM
is maximal.

The construction above in Eq. 3 shows even more than the fact that DM is maximal:
the cells DM

s must be convex sets. (One can see this directly by taking two posteriors
for which s is the argmax, and observing that s must be the argmax for any mixture
of the two.) Leveraging a connection to property elicitation in the next subsection, the
following will reveal even more structure: DM must be the cells of a power diagram.

3.2. Relationship to Finite Property Elicitation
Our results rely heavily on a novel connection from minimal peer prediction mecha-
nisms to the literature on property elicitation, where one wishes to extract a particular
function, or property, of an agent’s belief using a scoring rule with access to a single
sample from the true distribution (unlike our setting, where no ground truth is ever
observed). Formally, a scoring rule S(·, ·) elicits a property Γ if for all agent beliefs p,
the expected score Ex∼p[S(r, x)] is maximized by the report r = Γ(p). In particular, we
leverage results from the finite property case, where the reports r are restricted to a
finite set [Lambert and Shoham 2009]. For example, the mode of a distribution over
m possible outcomes, Γmode(p) = argmaxx p(x), has m possible values, and is elicited
by the scoring rule S(r, x) = 1{r = x} where 1{} is the indicator function. (This fol-
lows by writing out the expected score Ex∼p[S(r, x)] = Ex∼p[1{r = x}] = p(r), which is
maximized when r is equal to the mode of p.)

In peer prediction, one can view belief model constraints as a kind of finite property
in the above sense. Let D be a maximal belief model constraint, and let us encode it in
a property ΓD : ∆m → [m] by taking ΓD(p) = s if p ∈ Ds. (Strictly speaking, this does
not describe ΓD everywhere as the cells Ds are open and disjoint; we will ignore this
until the formal treatment in the following section.)

Now let M be a minimal mechanism. If M is truthful for D, then M is truthful
with respect to any belief model satisfying D. In particular, if q(·) is agent i’s posterior
following some signal, then q ∈ Ds for some s (again, ignoring boundaries); thus by the
belief model constraint D, q must be the posterior following s, and by M being truthful
for D, agent i will report s. Summarizing, we have just said that whenever an agent
has belief q, the report maximizing their expected score is the s such that q ∈ Ds,
which is ΓD(q) by definition. Thus, M being truthful for D implies that M , thought of
as a scoring rule, elicits ΓD. The converse follows by exactly the same logic, where now

5Technically, we should restrict to the first m − 1 coordinates of the distribution, or use the approach of
Appendix B, so that G is defined on a full-dimensional subset of Rm−1. Neither alters the argument.
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M eliciting Γ implies that M is truthful for D defined by the constraint Γ(pi(·|s)) = s,
which is exactly the induced constraint DM as one can verify from Eq. 3.

Now that we know minimal mechanisms elicit finite properties, we can ask which
properties are elicited by popular mechanisms in the literature. It follows immediately
from the above discussion that Output Agreement, M(xi, xj) = 1{xi = xj}, elicits the
mode Γmode(p) = argmaxs p(s). Similarly, the Shadowing Method elicits a shifted mode,
Γ(p) = argmaxs p(s)−y(s), that is, the mode of the “distribution” q(s) = p(s)−y(s). (Note
that q may lie outside the simplex ∆m.) Finally, the 1/p mechanism can be thought of
as eliciting a “dampened” mode Γ(p) = argmax p(s)/y(s), which again is the mode of
“distribution” q(s) = p(s)/y(s).

3.3. Equivalence to Power Diagrams
Leveraging the connection to finite properties established above, we can now use re-
sults in the property elicitation literature, which show an equivalence between elic-
itable finite properties and power diagrams [Lambert and Shoham 2009; Frongillo
and Kash 2014], and extend this equivalence to minimal peer prediction mechanisms.
From there, techniques from computational geometry allow us to show further struc-
ture, as we explore in Sections 4 and 6. To simplify exposition, we will show the cor-
respondence to power diagrams directly, without reference to finite properties, though
properties will appear again in the proofs.

We have seen that every mechanism M induces some belief model constraint DM ,
and that M is truthful with respect to DM . We now show further that DM is a power
diagram, and conversely, that every power diagram has a mechanism such that DM

s =
cell(vs) for all s.

The concrete mapping is as follows. Given mechanism M : [m] × [m] → R, we con-
struct sites and weights by:

vs = M(s, ·), w(s) = ‖vs‖2 = ‖M(s, ·)‖2 . (4)

Conversely, given a power diagram with sites vs and weights w(s), we construct the
mechanism M as follows:

M(xi, xj) = vxi(xj)− 1
2‖v

xi‖2 + 1
2w(xi) , (5)

where vxi(xj) is the xjth entry of vxi . We note that these formulas are more explicit
versions of those appearing in property elicitation, as mentioned above.

With these conversions in hand, we can now show that they indeed establish a cor-
respondence between minimal peer prediction mechanisms and power diagrams.

THEOREM 3.4. Given any mechanism M : [m]× [m] → R, the induced belief model
constraint DM is a power diagram. Conversely, for every power diagram given by sites
vs and weights w(s), there is a mechanism M whose induced belief model constraint
DM satisfies DM

s = cell(vs) for all s.

PROOF. Observe that if either relation (4) or (5) holds, we have the following for all
x,p:

−2p · vx + ‖vx‖2 − w(x) = −2 E
Sj∼p

[M(x, Sj)] . (6)

To see this, note that p ·M(x, ·) = ESj∼p[M(x, Sj)]. Adding ‖p‖2 to both sides of Eq. 6
gives

‖p− vx‖2 − w(x) = ‖p‖2 − 2 E
Sj∼p

[M(x, Sj)] . (7)



10 R. Frongillo and J. Witkowski

y

a b

c

Da Db

Dc

(L)

a b

c

Da Db

Dc

(M)

a b

c

Da
Db

Dc

(R)

Fig. 2: (L) The regions Ds are those for which the Shadowing Method incentivizes the agents to report
the respective signal s. For example, for any posterior belief falling into Dc, agent i should report xi =
c. To see that the depicted partitioning is indeed coming from this constraint, first observe that there is
indifference at the intersection point, i.e. when pi(·|s) = y(·), and that the constraints are linear, so that
the indifference borders are lines. The only remaining piece is then to determine the points for each pair of
signals, where the third (left-out) signal’s weight is 0, and draw a line between that point and y. For example,
the indifference point between signals b and c, where a has no weight is (0, 7/12, 5/12) ⇔ pi(c|c) − 1/6 =
pi(b|c) − 1/3; pi(a|c) = 0. (M) A maximal belief model constraint which is not a power diagram and hence
for which there is no truthful mechanism. (R) A non-maximal belief model constraint for which there is still
no truthful mechanism, because there is no power diagram consistent with the constraints.

Now applying Eq. 7 to the definitions of a power diagram and of DM , we have

p ∈ cell(vs) ⇐⇒ s = argmin
x
{‖p− vx‖2 − w(x)}

⇐⇒ s = argmin
x

{
‖p‖2 − 2 E

Sj∼p
[M(x, Sj)]

}
⇐⇒ s = argmax

x
E

Sj∼p(·|s)
M(x, Sj)

⇐⇒ p ∈ DM
s .

Finally, as Eq. 4 defines a power diagram for any mechanism M , and Eq. 5 defines a
mechanism for any power diagram, we have established our equivalence.

COROLLARY 3.5. Let D be a maximal belief model constraint. Then there exists a
mechanism that is truthful with respect to D if and only if D is a power diagram.

Corollary 3.5 gives us considerable power in determining whether or not a belief
model constraint can yield a truthful mechanism. On the positive side, Figure 2L
shows a maximal belief model constraint that is a power diagram, and thus there
must be a truthful mechanism (in this case, the Shadowing Method). On the negative
side, we can leverage known attributes of power diagrams, such as the fact that their
cells are convex, their boundaries are linear/affine, and moreover the boundary be-
tween two cells must be perpendicular to the line segment connecting the correspond-
ing sites. Figure 2M shows a maximal constraint in which the Da cell is nonconvex,
and thus cannot be a power diagram; we conclude there can be no mechanism truthful
with respect to this constraint.6 Finally, Figure 2R shows a constraint which is not
maximal, but which is not consistent with any power diagram (using the linearity of

6It is worth noting that even if the Da was adjusted to be straight (forming a “ T ” intersection with the
c–b boundary), it would still not be a power diagram; even though the Da cell would now be convex, the
diagram would violate the perpendicularity condition (this is not immediately obvious, but becomes clear
with experimentation).
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Fig. 3: Constructing a mechanism that is truthful under the same conditions as output agreement.

cell boundaries), and hence there still cannot be a truthful mechanism. These exam-
ples illustrate the power of this geometric approach in determining whether truthful
mechanisms exist, even for non-maximal constraints.

Finally, it is easy to see that the conversion from mechanisms to power diagrams
(Eq. 4) and back (Eq. 5) are inverse operations. In particular, this shows that mecha-
nisms are in one-to-one correspondence with power diagrams on ∆m. In the following
section, we will leverage this tight connection, and use results from computational ge-
ometry to show that several well-known mechanisms are unique in the sense that they
are the only mechanisms, up to positive-affine transformations, that are truthful for
their respective belief model constraints.

4. UNIQUENESS
Consider again the the standard output agreement mechanism M(xi, xj) = 1 if xj = xi
and 0 otherwise. It is easy to see that the mechanism is truthful as long as each agent
assigns the highest posterior probability pi(·|si) to their own signal si, yielding the con-
straint “p(s|s) > p(s′|s) ∀s′ 6= s.” The type of question we address in this section is: are
there any other mechanisms than M that are guaranteed to be truthful as long as pos-
teriors satisfy this condition? We will show that, up to positive-affine transformations,
the answer is no: output agreement is unique. Moreover, the Shadowing Method and
the 1/p mechanism are also unique for their respective conditions on posteriors. Note
that we identify mechanisms with their matrices, so that uniqueness does not pre-
clude that parameterized mechanisms, such as the 1/p Mechanism and the Shadowing
Method, coincide for particular choices of parameters. In fact, for uniform y, both the
1/p Mechanism and the Shadowing Method coincide with standard output agreement
in the sense that their belief model constraints are identical.

To get some intuition for this result, let us see why output agreement is unique
for m = 3 signals a, b, c. From Theorem 3.4, we know that D = DM , the induced be-
lief model constraint, is a power diagram (which is depicted in Figure 3). In general,
there may be many sites and weights that lead to the same power diagram, and these
may yield different mechanisms via Eq. 5. In fact, it is a general result that any posi-
tive scaling of the sites followed by a translation (i.e. some α > 0 and u ∈ Rm so that
v̂s = αvs+u for all s) will result in the same power diagram for an appropriate choice of
weights [Aurenhammer 1987b]. As it turns out, such scalings and translations exactly
correspond to positive-affine transformations when passing to a mechanism through
Eq. 5. Thus, we only need to show that the sites for the output agreement power dia-
gram are unique up to scaling and translation. Here, another useful property of sites
comes into play: the line between sites of two adjacent cells must be perpendicular to
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the boundary between the cells. Examining Figure 3, one sees that after fixing va, the
choice of vb is constrained to be along the blue dotted line, and once va and vb are
chosen, vc is fixed as the intersection of the red dotted lines. Thus, we can specify the
sites by choosing va (a translation), and how far away from va to place vb (a positive
scaling). We can then conclude that output agreement for three signals is unique up to
positive-affine transformations. We now give the general result.

THEOREM 4.1. If there exists a mechanism M that is truthful for some maximal
belief model constraint D, and there is some y ∈ ∆m with y(s) > 0 ∀s such that
∩scl(Ds) = {y}, then M is the unique truthful mechanism for D up to positive-affine
transformations.

PROOF. As M is truthful with respect to D, we have D = DM and thus D is a power
diagram P from Theorem 3.4. By our assumption, we observe that the only vertex
(also called a 0-dimensional face) of P must be y, the intersection of the cl(Ds), as
there are m cells but ∆m has dimension m − 1. Throughout the proof, as before, we
implicitly work in the affine hull A of ∆m. We may assume without loss of generality
that all sites lie in A, as we may translate any site to A while adjusting its weight to
preserve the diagram and resulting mechanism (see Appendix B). Thus, by definition
of a simple cell complex,7 as the vertex y is in the relative interior of ∆m, we see
that the extension P̂ of P onto the affine hull of ∆m must also have y as the only
vertex. (As a vertex is on the boundary of every cell, and there are m cells in m − 1
dimensions with disjoint interiors, there can be only one such point.) Now following
the proof of Frongillo and Kash [2014, Theorem 4], we note that Aurenhammer [1987b,
Lemma 1] and Aurenhammer [1987a, Lemma 4] together imply the following: if P̂
is represented by sites {vs}s∈[m] and weights w(·), then any other representation of
P̂ with sites {v̂s}s∈[m] satisfies ∃α > 0,u ∈ Rm s.t. v̂s = αvs + u for all s ∈ [m].
In other words, all sites must be a translation and scaling of {vs}. To complete the
proof, we observe that different choices of u and α (with suitable weights) merely yield
an affine transformation of M when passed through Eq. 5, and as any positive-affine
transformation preserves truthfulness, the result follows.

COROLLARY 4.2. The following mechanisms are unique, up to positive-affine trans-
formations, with respect to the corresponding constraints (each with “∀s′ 6= s” and
“∀i ∈ [n]” implied; also compare Definition 2.9):

(1) Output Agreement, pi(s|s) > pi(s
′|s)

(2) 1/p Mechanism, pi(s|s)/y(s) > pi(s
′|s)/y(s′)

(3) Shadowing Method, pi(s|s)− y(s) > pi(s
′|s)− y(s′) .

PROOF. In all three cases, the given mechanism is known to be truthful for its re-
spective belief model constraint. Moreover, for all three constraints D, one can check
that ∪scl(Ds) = ∆m and ∩scl(Ds) = {y} meaning that y is the unique distribution
bordering every set Ds (for Output Agreement, y is the uniform distribution). Hence,
the mechanisms are unique up to positive-affine transformations by Theorem 4.1.

Let us make a few remarks on Theorem 4.1. First, note that the restriction that y
must not touch the boundary of the simplex is necessary, as uniqueness need not (will
not) hold otherwise; see Figure 4L. Similarly, for constraints D that are not maximal,
there may be many more truthful mechanisms; Figure 4M depicts two distinct power

7A cell complex P is simple if each of P ’s vertices is a vertex of exactly m cells of P , the minimum possible
[Aurenhammer 1987a, p.50].
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Fig. 4: Illustrations of the conditions of Theorem 4.1. (L) An example showing why the condition ∀s y(s) >
0 is necessary. In this example, there are two sets of sites and weights that represent the same power
diagram yet are not translations and scalings of each other. Here, all sites remain the same except vb. (M)
A non-maximal constraint, with two consistent power diagrams (red and blue). (R) An example where the
constraint is non-maximal (here the grey region belongs to none of the cells) yet there is a unique truthful
mechanism (in this case, Output Agreement).

diagrams yielding mechanisms that are truthful with respect to the non-maximal con-
straint “p(s|s) > 0.6”, and thus they are not merely positive-affine transformations of
each other. That said, some non-maximal constraints D still yield a unique truthful
mechanism, as illustrated in Figure 4R. In Section 6, we strengthen the results of
this section, showing that under the same conditions as Theorem 4.1, not only is the
mechanism unique up to positive-affine transformations, but it can be expressed as a
positive-affine transformation of a classical peer prediction mechanism with respect
to the quadratic scoring rule. This is done by first showing that in this setting, the
maximal constraint D is not just a power diagram but in fact a Voronoi diagram.

5. CONSTRUCTING MECHANISMS FOR NEW CONDITIONS
In this section, we show how to compute new mechanisms that are truthful with re-
spect to new conditions. Moreover, we find the positive-affine transformation that max-
imizes effort incentives subject to a budget. It then follows directly from Theorem 4.1
that the final mechanism’s effort incentives are globally optimal given this condition.
That is, there is no peer prediction mechanism that is truthful with respect to the new
condition providing better effort incentives.

5.1. Computing Truthful Mechanisms
To construct mechanisms from belief model constraints, we turn to computational ge-
ometry to find sites and weights for the corresponding power diagram. For the class
of constraints satisfying Theorem 4.1, where there is an intersection point y in the
interior of the simplex, which is the most common case in peer prediction, one can rely
on the O(m) time algorithm given by Aurenhammer [1987c].8 We now give a version
of this procedure, specialized for our setting.

The first consideration is the form of the input to the procedure. How should we as-
sume the belief model constraint D is given? One succinct representation is an m×m
matrix representing a truthful mechanism for the constraint, but of course specify-
ing a constraint with a mechanism defeats the whole purpose of the algorithm. To be
useful, we need a representation for the belief model constraint that is closer to the

8This condition is a special case of the so-called simple power diagrams; see footnote 7. For more complicated
cases, one would use [Rybnikov 1999].
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partitioning point of view. Here, we assume that one knows the constraint boundary
between any pair of signals (s, s′). If D is a power diagram (a necessary condition for
the existence of a truthful mechanism by Theorem 3.4) this boundary must be de-
fined by a hyperplane, which in turn can be represented by its defining normal vector
us,s

′
. All that remains is specifying the orientation of us,s

′
so we know which direction

is which cell; here we assume us,s
′

points in the direction away from Ds, so that we
have p ∈ Ds ⇐⇒ us,s

′ · p < 0 for all s′ 6= s. As an example, the shadowing con-
straint is given by us,s

′
= 1s′ − 1s − (y(s′) − y(s))1, where 1s is the standard unit

vector (with 1 in coordinate s and 0 otherwise), and 1 is the all-ones vector. Hence,
us,s

′ ·p < 0 ⇐⇒ p(s′)− p(s)− y(s′) + y(s) < 0, since 1 ·p = 1. We give another example
in Section 5.3.

Thus, given any maximal belief model constraint D, we can represent D by a collec-
tion of vectors {us,s′ ∈ Rm : s, s′ ∈ [m]}. With this representation in hand, the following
algorithm computes a truthful mechanism forD, under the additional assumption that
D satisfies the conditions of Theorem 4.1.

Algorithm 1 Compute Mechanism from Belief Model Constraint

i. Solve for y as the unique solution to us,s
′ · y = 0 ∀s, s′ and y · 1 = 1.

ii. Let ûs,s
′

= us,s
′ − ( 1

mus,s
′ · 1)1 for all s, s′. # Projects us,s

′
onto the affine hull

of the simplex ∆m

1: Choose s ∈ [m] and any vs in the affine hull of ∆m.
2: Choose s′ 6= s and any α > 0, and set vs

′
= vs + αûs,s

′
.

3: For all s′′ /∈ {s, s′}, find the unique positive solution (β, γ) to
αûs,s

′
+ βûs

′,s′′ = γûs,s
′′
, and set vs

′′
= vs + γûs,s

′′
. # See argument below

# The point y must have equal power distance to all sites:
4: Set w(s) = 0 and w(s′′) = ‖y − vs

′′‖2 − ‖y − vs‖2 for all s′′ 6= s.
5: Compute the mechanism by applying Eq. 5.

For the correctness of Algorithm 1, first observe that line i has a unique solution
by the assumption of Theorem 4.1. We must also show uniqueness in line 3. This fol-
lows by the result of Theorem 4.1, which shows that two different collections of sites
representing these constraints must be related by a positive-affine transformation. To
see this, observe that once we have fixed vs and vs

′
, the rest of the sites are uniquely

determined.9 Consider some positive-affine transformation of the sites that keeps vs

and vs
′
. As vs has not moved, the translation must be 0, and as vs

′
also remains the

same, so does the length of the line segment between vs and vs
′′
, so the scaling must

be 1. We have now determined the positive-affine transformation: the identity. Thus
all other sites are uniquely determined by the first two. Finally, one can check that the
projections ûs,s

′
are correctly oriented and remain perpendicular to the boundary of

cells Ds and Ds′ .10

9Note that we are restricting the sites to the affine hull of the simplex, which is simply given by the condition
v · 1 = 1; see Appendix B. Without this, there would be an extra degree of freedom in choosing the sites, but
as that section shows, this is irrelevant.
10Letting p, q ∈ ∆m be distinct points on the boundary of these cells, and letting z = p − q, we have
ûs,s′ · z = us,s′ · z − ( 1

m
us,s′ · 1)1 · z = us,s′ · z as p · 1 = q · 1 = 1, so 1 · z = 0.
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5.2. Optimizing Effort Incentives
From Section 5.1, we know how to compute a mechanism that is truthful with respect
to a given belief model constraint. In this section, we take this one step further and
optimize within the space of truthful mechanisms. As explained in Section 1, peer
prediction mechanisms are especially useful for incentivizing effort, i.e. the costly ac-
quisition of signals, and we will thus address the following optimization problem:

max effort incentives ei(M)
s.t. truthfulness with respect to D

budget constraint M(xi, xj) ≤ B
non-negative payments M(xi, xj) ≥ 0

(8)

Effort can be modeled in many different ways. Following Witkowski [2014], we model
effort as a binary choice: agents either exert effort or not. In contrast to the rest of the
paper, where agent i has observed her signal and reasons about the best report given
that signal, here the choice of whether to invest effort also depends on agent i’s prior
belief about her own signal. In this section, we assume that agents are exchangeable,
so that agent i’s prior belief about her own signal is the same as her prior belief about
agent j’s signal. Let then pi(si) = Pri(Si = si) = pi(sj) denote agent i’s signal prior.
Note that for an agent’s signal prior and belief model, by Bayes’ rule it holds that
pi(sj) =

∑m
k=1 pi(sj |k) · pi(k).

Definition 5.1. Given that agent j invests effort and reports truthfully, the effort
incentive ei(M) that is implemented for agent i by peer prediction mechanism M is the
difference in expected utility of investing effort followed by truthful reporting and not
investing effort, i.e.

ei(M) = E
Si,Sj

[
M(Si, Sj)

]
− max
xi∈[m]

E
Sj

[
M(xi, Sj)

]
,

where xi is agent i’s signal report that maximizes her expected utility according to the
signal prior, and where the expectation is using agent i’s subjective belief model pi(·|·).

Thus, the effort incentive ei(M) is agent i’s expected gain by exerting effort. Natu-
rally, scaling a mechanism should scale the incentives; in fact, this can be generalized
to positive-affine transformations.

LEMMA 5.2. For any mechanism M , and any positive-affine transformation M ′ =
αM + f , we have ei(M ′) = αei(M).

PROOF. This follows from a simple computation:

ei(M
′) = E

Si,Sj

[
M ′(Si, Sj)

]
− max
xi∈[m]

E
Sj

[
M ′(xi, Sj)

]
= E
Si,Sj

[
αM(Si, Sj) + f(Sj)

]
− max
xi∈[m]

E
Sj

[
αM(xi, Sj) + f(Sj)

]
= α E

Si,Sj

[
M(Si, Sj)

]
+ E
Sj

[
f(Sj)

]
− α max

xi∈[m]
E
Sj

[
M(xi, Sj)

]
− E
Sj

[
f(Sj)

]
= αei(M) .

From Section 4 we know that the space to optimize over is restricted to positive-
affine transformations of any truthful mechanism once the belief model constraint is
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fixed and given the conditions of Theorem 4.1. Using this, we can pin down the effort-
maximizing mechanism as given by the following theorem.

THEOREM 5.3. Let mechanism M and belief model constraint D satisfy the condi-
tions of Theorem 4.1. Let g(xj) = minxi

M(xi, xj), G = maxxi,xj
M(xi, xj) − g(xj), and

α = B/G. Then mechanism M ′(xi, xj) = αM(xi, xj)− αg(xj) optimizes effort in Eq. 8.

PROOF. We will show something slightly stronger, giving the full characterization
of mechanisms optimizing Eq. 8. By Theorem 4.1, M is the unique truthful mechanism
for D up to affine transformations Mα,f (xi, xj) = αM(xi, xj) + f(xj), so we need only
search for the optimal α, f . By Lemma 5.2, ei(Mα,f ) = αei(M), which since ei(M) is a
positive constant reduces the optimization to the following:

max α

s.t. αM(xi, xj) + f(xj) ∈ [0, B] ∀xi, xj
f ∈ Rm, α ∈ R+ .

Let G = maxxj

(
maxxi

M(xi, xj)−minxi
M(xi, xj)

)
denote the maximum payment dif-

ference within any column of M . We see that the largest value of α one could hope
for is α = B/G since the final mechanism should have values in [0, B], and in par-
ticular the difference between the minimum payment and maximum payment of the
final mechanism must be at most B. Indeed, taking this α, one sees that any f in the
range f(xj) ∈ [−αminxi M(xi, xj),−α(maxxi M(xi, xj) − minxi M(xi, xj))] 6= ∅ will sat-
isfy the constraints. One can check that in particular taking f(xj) = −αminxi M(xi, xj)
gives the mechanism in the theorem statement, which gives the lowest possible pay-
ments among the optimal mechanisms. As f = −αg, we are done. To confirm that
M ′(xi, xj) ≤ B for all xi, xj ∈ [m], note that M ′(xi, xj) = B

(
M(xi, xj) − g(xj)

)
/G =

B ·
M(xi,xj)−minx′

i
M(x′

i,xj)

maxx′
j

(
maxx′

i
M(x′

i,x
′
j)−minx′

i
M(x′

i,x
′
j)
) ≤ B, as the numerator is a difference of payoff

values within a column of M , and G by definition is the largest such difference in
any column of M . Similarly, for all xi, xj ∈ [m] we have M ′(xi, xj) = α(M(xi, xj) −
minx′

i
M(xi, xj)) ≥ 0 as α > 0 and M(xi, xj) ≥ minx′

i
M(x′i, xj).

Note that knowledge of only D is not sufficient to ensure that a specific effort cost
C > 0 is implemented (e.g. C = 1) since the magnitude of an agent’s effort incentive
will depend on the particular values of their posteriors {pi(·|s)}s∈[m]. In particular, the
agents posteriors could all be arbitrarily close to the intersection point, in which case
the required scaling α to meet effort cost C = 1 would be arbitrarily high. However,
even knowing only D and not the agent’s actual belief model, Theorem 5.3 gives you
the highest possible scaling (and thus the highest possible effort incentives) of a mech-
anism implementing D no matter the agent’s belief model.

To illustrate the power of Theorem 5.3, consider the Shadowing Method (Defini-
tion 2.8), which has a parameter δ specifying how much to perturb y in order to obtain
the shadow posterior y′. A natural question to ask is for which δ the effort is maximized
subject to the constraints in Eq. 8. (One can check that the resulting power diagram is
the same for any such δ.) A direct analysis is quite tedious, with many lines of algebra,
and even with the optimal δ in hand, it is not clear whether one could do better by
perhaps adding a score f(xj) that depends only on the peer agent’s signal report xj ,
or by allowing for shadow posteriors that aren’t valid distributions followed by renor-
malizing the scoring rule so that the score is again bounded by [0, B]. Moreover, the
optimal mechanism could have been of a different form entirely. Theorem 5.3 suggests
a better approach to this problem: take the Shadowing Method with any δ > 0 as a
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Fig. 5: The truthful mechanism with respect to the “complement 1/p” condition in power diagram form with
sites va,vb, and vc. Notice that while the intersection point y = (1/2, 1/3, 1/6) is the same as in Figure 2L,
the belief model constraint as depicted by the dashed partitioning is now given by the new “complement 1/p”
condition. (Compare to Figure 3.)

black box and simply find the maximum scaling allowing a translation that keeps the
scores in the interval [0, B].

5.3. Example
We now illustrate Algorithm 1, constructing a new mechanism that is truthful with
respect to a new condition. Moreover, we compute the optimal such mechanism with
respect to the effort it incentivizes as explained in Section 5.2.

As intuition for the new condition, imagine the mechanism has an estimate of
the agents’ signal priors p(a, b, c) = (0.01, 0.04, 0.95), which it designates as the in-
tersection point y(·) = p(·) of the belief model constraint. Consider now posterior
pi(a, b, c|s) = (0.02, 0.01, 0.97), where the 1/p mechanism would pick signal a since its
relative increase from prior (as estimated by the mechanism) to posterior is highest
(it doubles). However, one could also consider the relative decrease in “error”: in a
world without noise, the posterior would have pi(s|s) = 1 for every s, and so sig-
nal a’s relative decrease from 0.99 = 1 − 0.01 to 0.98 = 1 − 0.02 is not as “impres-
sive” as signal c’s decrease in error from 0.05 = 1 − 0.95 to 0.03 = 1 − 0.97 (a re-
duction of almost one half). Formalizing this intuition yields the “complement 1/p”
condition, 1−y(s)

1−pi(s|s) >
1−y(s′)

1−pi(s′|s) ∀ s
′ 6= s and ∀ i ∈ [n]. For this condition, one can take

us,s
′

= (1− y(s))1s′ − (1− y(s′))1s + (y(s)− y(s′))1.
Theorem 4.1 implies that there is a unique mechanism that is truthful for this new

condition, up to positive-affine transformations. We now exemplify the construction
of the new “complement 1/p” condition following the steps of Algorithm 1. For that
purpose, we return to our running example with m = 3 signals and intersection point
y = (1/2, 1/3, 1/6) as depicted in Figure 5.

1: Pick any point for va, say va = (4/5, 1/10, 1/10).11

2: Pick any vb on the blue dotted line, ensuring that the line between va and vb is
perpendicular to the a, b cell boundary. Here we choose vb = (1/10, 81/110, 9/55).

3: For all other signals s, vs is now uniquely determined by va and vb as the lines
between any two sites must be perpendicular to their cell boundary. Here we only
have one other signal, c, so we take vc to be the unique point at the intersection of
the red dotted lines, which is vc = (38/275, 111/550, 33/50).

11While we chose va ∈ Da, it could be in any other cell, e.g. Dc, or even outside the simplex.
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4: Calculate the weights by observing that y must be equidistant (in the power dis-
tance) to all sites simultaneously: w(a) = 0, w(b) = 23/100, w(c) = 548/1875.

5: We obtain the resulting mechanism by applying Eq. 5:

M(·, ·) =
1

1100

[
517 −253 −253
−113 587 −43

13 83 587

]
.

6: From Theorem 5.3, it then follows that, among all positive-affine transformations
of M , the mechanism M∗ optimizing effort incentives given a budget B = 1 is:

M∗(·, ·) =
1

20

[
15 0 0
0 20 5
3 8 20

]
.

This step can be computed as follows: subtract the largest amount from each column
that keeps payments nonnegative, and then scale so the largest entry is 1.

We conclude by noting that this example condition admits a closed form solution:
M(s, s′) = 0 if s = s′, and −1

1−y(s) otherwise.12 One can check that adding constants to
each column to give non-negative payments recovers M∗. Of course, our construction
applies even when no convenient closed-form solution exists; we discuss such examples
in Section 8.

6. EXPRESSIVENESS OF CLASSICAL PEER PREDICTION
We have seen from Theorem 3.4 that, as a result of viewing a minimal mechanism as
eliciting a “property” of an agent’s posterior, we can establish a strong correspondence
between minimal peer prediction mechanisms and power diagrams. Here we delve
further and find that, perhaps surprisingly, every minimal mechanism can in fact be
written as a classical peer prediction mechanism (Definition 2.10) for some choice of
distributions and proper scoring rule. Moreover, provided the belief model constraint
has an intersection point as needed in our uniqueness results from Section 4, we can,
without loss of generality, take this scoring rule to be the quadratic score, thus imply-
ing that “nondegenerate” minimal mechanisms in fact correspond to Voronoi diagrams.
These results tell us that the classical peer prediction method is “peer prediction com-
plete,” and for most cases remains so even when restricting to the quadratic score.

The key insight we will need has to do with a class of diagrams known as Bregman
Voronoi diagrams. These are Voronoi diagrams where instead of Euclidean distance,
the distance is given by a (typically asymmetric) Bregman divergence,

DG(u,v) = G(u)−G(v)−∇G(v) · (u− v) , (9)

where G is any convex function [Nielsen et al. 2007]. Specifically, the distance between
a site vs and a point u is given by DG(u,vs).13 Bregman divergences are known to
be equivalent to proper scoring rules when u,v ∈ ∆m [Gneiting and Raftery 2007],
making Bregman Voronoi diagrams precisely those which arise from classical peer
prediction mechanisms. Note that here v is the agent’s prediction, so we swap the
order of the arguments: R(p, q) = DG(q, p).

Somewhat surprisingly, Nielsen et al. [2007] show that Bregman Voronoi diagrams
are equivalent to power diagrams. The intuition for this is as follows. Examining the
form of DG(u,vs) = G(u) − G(vs) − ∇G(vs) · u + ∇G(vs) · vs, we see that the cell

12The expected payoff of reporting s′ when si = s is −Pr[sj 6=s′]
1−y(s′) = − 1−p(s′|s)

1−y(s′) < − 1−p(s|s)
1−y(s)

by the condition.
13Nielsen et al. dub this the first-type Bregman Voronoi diagram; the second reverses the arguments.
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va vb

vc vd

(L) c

b

a

d

(R)

Fig. 6: (L) A power diagram in the plane with 4 sites that is not a Voronoi diagram. If the sites are the
vertices of the unit square, the weights are w(a) = w(d) = 0 and w(b) = w(c) = 1/2. To see that the
diagram cannot be Voronoi, note that because the diagram is simple (see footnote 7) the sites drawn are
unique up to positive-affine transformations; due to the angles of the cell boundaries, they must always
form a square with the correct orientation. But clearly the Voronoi diagram for such sites would always
be “+” shaped, so this diagram cannot be Voronoi. Note that with 3 sites, every power diagram is actually
Voronoi: either the cell boundaries are parallel or they all intersect at some point y, the former of which is
trivially Voronoi and the latter of which is Voronoi by Theorem 6.2.
(R) For an example in our peer prediction setting, we must consider m = 4 signals to have four sites,
where the simplex ∆4 can be visualized as a tetrahedron. Here we simply embed the sites on a plane
within the tetrahedron in the same way; for example, one could take sites va = (0.1, 0.1, 0.1, 0.7), vb =
(0.4, 0.1, 0.1, 0.3), vc = (0.1, 0.4, 0.1, 0.3), vd = (0.4, 0.4, 0.1, 0.1), where the first two coordinates are tracing
out a square on the plane {v : v3 = 0.1} shown as dashed lines. Using the same weights as above, we get a
similar diagram, which is not Voronoi for the same reason.

boundaries are given by only the last three terms, as for a given u, the G(u) term will
be the same for all sites. Moreover, the interaction between ∇G(vs) and u is linear,
so we can take ∇G(vs) to be the site of the power diagram, and adjust the weight
so that when we “complete the square”, we will have a squared Euclidean distance
instead. Specifically, we can rewrite the last three terms as ‖v̂s‖s − v̂s · u − w(v̂s) for
v̂s = ∇G(vs) and w(v̂s) = ‖v̂s‖s + v̂s · vs − G(vs). Adding the term ‖u‖s which does
not depend on the site, we arrive at Eq. 2. (See Frongillo and Kash [2014] for a more
detailed analysis.)

Putting the above together with Theorem 3.4, we have minimal PP ⇐⇒ power
diagram ⇐⇒ Bregman Voronoi ⇐⇒ classical PP, or in other words, every minimal
mechanism can be written as a classical peer prediction mechanism with respect to
some proper scoring rule. We summarize this discussion as a corollary of Theorem 3.4.

COROLLARY 6.1. Every minimal peer prediction mechanism M can be written as
a classical peer prediction mechanism M(xi, xj) = R(pxi , xj) for some choice of proper
scoring rule R and sites {ps}s∈[m] in the affine hull of ∆m.

Note that the sites in Corollary 6.1 need not be in the simplex. Also, while it is
easy to construct such a proper scoring rule R given M by expressing it as the Breg-
man divergence with respect to the convex function G(p) = argmaxxi

Exj∼p[M(xi, xj)],
the resulting score R will not be strictly proper, as G is not strictly convex. It seems
intuitively clear that some other R can be chosen to be strictly proper, yet an ex-
plicit construction remains an open question. Such a construction would involve find-
ing a strictly convex function G and points ps satisfying vs = 1

2∇G(ps) and w(s) =
1
4‖∇G(ps)‖2 +G(ps)− ps · ∇G(ps) [Frongillo and Kash 2014, Appendix B].

Now that we have seen that classical peer prediction mechanisms cover all possible
minimal mechanisms, let us impose a further restriction on the mechanism: the belief



20 R. Frongillo and J. Witkowski

y

a b

c

va vb

vc

(L)

y

a b

c

ŷ
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Fig. 7: Converting a power diagram to a Voronoi diagram.

model constraint it induces must satify the conditions of Theorem 4.1, namely that the
constraint has a point at the intersection of every cell. Under this condition, we will
show that not only is the mechanism unique up to positive-affine transformations, but
it can be expressed as a positive-affine transformation of a classical peer prediction
mechanism with respect to the quadratic scoring rule. In other words, the induced be-
lief model constraint must in fact be a Voronoi diagram.14 For comparison, see Figure 6
for an example of a power diagram that is not a Voronoi diagram.

The intuition for this result is as follows. Because all pairs of cells have a nonempty
border, the sites must be in general position, meaning that they are affinely indepen-
dent within the affine hull of the simplex.15 Leveraging a standard geometric construc-
tion, we can compute the center p̂ of an (m − 1)-sphere such that the sites all lie on
the surface of the sphere (Figure 7M). This implies that the sites are all equidistant
(in Euclidean distance) to center p̂, so we merely translate the sites so that p̂ coincides
with the cell boundary intersection point p (Figure 7R). With appropriate weights, we
know that this translation preserves the power diagram, yet now all sites are equidis-
tant to p in Euclidean distance, so in fact we can set w(s) = 0 for all s and the diagram
is Voronoi.

THEOREM 6.2. Let M , D, and p satisfy the assumption of Theorem 4.1. Then there
exist points p1, . . . ,pm in the affine hull of ∆m such that M ′ is a truthful mechanism for
D if and only if

M ′(xi, xj) = αpxi(xj)−
α

2
‖pxi‖2 + f(xj) , (10)

for some f : [m]→ R and α > 0. In particular, D is Voronoi.

PROOF. Note that from Theorem 4.1 we already know that D is a power diagram
with sites vs ∈ Rm and weights w(s) ∈ R for s ∈ [m]. Following [Eberly 2008], we will
repeatedly refer to the identity

‖a + c‖2 − ‖b + c‖2 = ‖a‖2 − ‖b‖2 + 2c · (a− b) . (11)

Let d = m − 1, and as outlined in Appendix B, we restrict attention to Rd via isom-
etry to the affine hull of ∆m. Thus, we can assume without loss of generality that
v1, . . . ,vm,y ∈ Rd. Let A be the d× d matrix whose ith row is given by vi − vm.

14We can see from Appendix B, as is well-known, every power diagram on an affine subspace of lower
dimension (in our case, {v : v · 1 = 1}) can be expressed as a Voronoi diagram in the full space by moving
the sites perpendicularly to the affine subspace. Here we are saying something stronger: these diagrams are
Voronoi for sites within the affine subspace.
15Geometrically, no hyperplane in Rm can contain all m sites.



A Geometric Perspective on Minimal Peer Prediction 21

Note that y is the unique point satisfying y ∈ cl(cell(vs)) for all s, meaning that for
some power distance c ∈ R we have

∀s ∈ [m], ‖vs − y‖2 − w(s) = c . (12)

Let w(m) = 0 without loss of generality. Subtracting the equation for s = m we have,

∀s ∈ [d], 0 = ‖vs − y‖2 − ‖vm − y‖2 − w(s) (13)
= ‖vs‖2 − ‖vm‖2 − 2y · (vs − vm)− w(s) , (14)

where we have used the identity in Eq. 11. Letting u ∈ Rd be the vector with u(s) =
1
2 (‖vs‖2 − ‖vm‖2 − w(s)), and recalling the definition of A ∈ Rd×d, we see that y is the
unique solution to Ay = u, meaning that A is invertible.

Let û be defined as u but assuming w(s) = 0 for all s, i.e., with û(s) = 1
2 (‖vs‖2 −

‖vm‖2). Let ŷ = A−1û, the unique point satisfying ‖vs− ŷ‖2 = ‖vm− ŷ‖2 for all s ∈ [d].
(One can verify this by unfolding Aŷ = û and applying Eq. 14.)

Geometrically, it is now clear that sites v̂s = vs+ŷ−y and weights ŵ(s) = 0 represent
D, simply because y is equidistant from v + ŷ − y for all s, and as we only translated
the sites and changed the weights, we can only translate the hyperplanes separating
cells (i.e. we have not rotated any cell boundaries). To verify this claim algebraically,
we will show that for any q ∈ Rd, and any cells s, s′, the difference in power distances
to q remains the same:

‖v̂s − q‖2 − ‖v̂s
′
− q‖2

= ‖vs + y − ŷ − q‖2 − ‖vs
′
+ y − ŷ − q‖2

= ‖vs − ŷ‖2 − ‖vs
′
− ŷ‖2 + 2(y − q) · (vs − vs

′
)

= 2y · (vs − vs
′
)− 2q · (vs − vs

′
)

= ‖vs − q‖2 − ‖vs − y‖2 − ‖vs
′
− q‖2 + ‖vs

′
− y‖2

= ‖vs − q‖2 − w(s)− ‖vs
′
− q‖2 + w(s′) ,

where we have applied the identity of Eq. 11 three times, and in the final step we use
Eq. 13. Thus, D is a Voronoi diagram with sites v̂s. To complete the proof, we simply
convert to a mechanism via Theorem 3.4 and then apply Theorem 4.1.

7. MAXIMALLY-ROBUST MECHANISMS
In the classical peer prediction method [Miller et al. 2005], the mechanism is assumed
to have full knowledge of the agents’ belief models. Recent work relaxes the method’s
knowledge requirements, e.g. using additional reports [Prelec 2004; Witkowski and
Parkes 2012b; Witkowski and Parkes 2012a] or using reports on several items [Das-
gupta and Ghosh 2013; Witkowski and Parkes 2013]. An approach closer to the classi-
cal method has been suggested by Jurca and Faltings [2007], who compute a minimal
mechanism as the solution of a conic optimization problem that ensures truthfulness
as long as the agents’ belief models are close to the mechanism’s, with respect to Eu-
clidean distance. This restriction, a form of robustness, is defined as follows.

Definition 7.1. [Jurca and Faltings 2007] A mechanism M is ε-robust with respect
to belief model p(·|·) if M is truthful for p∗(·|·) whenever the following holds for all
si ∈ [m], ∑

sj∈[m]

(p(sj |si)− p∗(sj |si))2 ≤ ε2 . (15)
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Fig. 8: (L) Maximally-robust mechanism with respect to deviations from the mechanism’s belief model. The
sites of the power diagram are vs = p(·|s), and all weights are 0. The robustness areas, pictured in grey,
are circles of radius d/2, where d is the minimum distance between two posteriors. (R) A mechanism with
maximal robustness with respect to labeled posterior data.

While Jurca and Faltings fix the robustness ε as a hard constraint, one may also seek
the mechanism that maximizes this robustness. The achievable robustness is of course
limited by the mechanism’s belief model p(·|·); in particular, the “robustness areas”
around the mechanism’s posteriors cannot overlap; see Figure 8L. Viewing robustness
in geometric terms, we obtain a closed-form solution.16 Note that here the sites of the
power (actually Voronoi) diagram are the mechanism’s model posteriors.

THEOREM 7.2. Let p(·|·) be the mechanism’s belief model in classical peer predic-
tion. Then the following mechanism is maximally robust:

M(xi, xj) = p(xj |xi)−
1

2

m∑
s=1

p(s|xi)2. (16)

PROOF. In light of Theorem 3.4, we may focus instead on power diagrams. From
Eq. 17, for all s we must have Bε(p(·|s)) ⊆ cell(vs), where Bε(u) is the Euclidean ball of
radius ε about u (restricted to the probability simplex). Letting d = mins,s′∈[m] ‖p(·|s)−
p(·|s′)‖ be the minimum Euclidean distance between any two posteriors, it becomes
clear that robustness of d/2 or greater cannot be achieved, as 1

2p(·|s) + 1
2p(·|s

′) ∈
Bd/2(p(·|s)) ∩Bd/2(p(·|s′)). (See Figure 8L.) Robustness of any ε < d/2 can be achieved,
however, by taking a Voronoi diagram with sites vs = p(·|s); the definition of d ensures
that Bε(p(·|s)) = Bε(v

s) ⊆ cell(vs) for all s. One then recovers Eq. 16 via Eq. 5 with
vs = p(·|s) and w(s) = 0 for all s ∈ [m].

COROLLARY 7.3. The classical peer prediction method with the quadratic scoring
rule is maximally robust.

In Appendix C, we adapt the above to design maximally robust mechanisms with
respect to non-Euclidean distances as well, so long as that distance can be expressed
as a Bregman divergence (Eq. 9). Each such divergence has a corresponding scoring
rule which one simply uses in the place of the quadratic score [Frongillo and Kash
2014, Appendix F].

16Note that the maximal robustness is determined by the two posteriors that are closest to each other. This
gives some flexibility as to where the cell boundaries shall be between posteriors that are further away than
twice the maximal robustness. Our solution always selects the cell boundary that is equidistant from the
respective posteriors. See Figure 8L, where the maximal robustness is determined through p(·|a) and p(·|b),
and where the cell boundary between Da and Dc could be moved slightly towards either p(·|a) or p(·|c)
without breaking into the respective robustness areas.
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8. DISCUSSION AND CONCLUSION
We have presented a new geometric perspective on minimal peer prediction mech-
anisms, and proved that it is without loss of generality to think of a minimal peer
prediction mechanism as a power diagram. This perspective then allowed us to prove
uniqueness of several well-known mechanisms up to positive-affine transformations,
to construct novel peer prediction mechanisms for new conditions, to optimize for effort
incentives within this space, and to compute the mechanism that is maximally robust
with respect to the agents’ subjective belief models deviating from the center’s.

Several extensions of our model and results are straightforward, and are discussed
further in Appendix D. For example, mechanisms that score an agent with the reports
of multiple reference agents are still equivalent to power diagrams, but on a higher-
dimensional belief space (all distributions on tuples of signals). Additionally, if agents
are each given separate mechanisms Mi, essentially all of our main results go through,
including the uniqueness of each Mi with respect to some belief model constraint Di.

We believe the most exciting direction for future work is to construct mechanisms
from real-world data. One way to do this (aside, of course, from using gold standard
data), is to use the geometric framework to learn Bayesian Truth Serum mechanisms
from the agents’ reports. In addition to the signal report, these mechanisms also elicit
posterior reports, and with these (signal, posterior) pairs in hand, the mechanism de-
signer can then train a classifier within the class of power diagrams that predicts the
signal associated with a new posterior. (Note that multi-class Support Vector Machines
naturally produce power diagrams [e.g. Borgwardt 2015].) This power diagram can
then be converted to a mechanism using Eq. 5. If a max-margin criterion is imposed
when training, as depicted in Figure 8R, the resulting mechanism will be maximally
robust with respect to the training set. When the data are not linearly separable, a
soft-margin solution may be appropriate. We explore this approach in ongoing work.
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A. PROOF OF LEMMA 2.5
PROOF. The result follows directly from the fact that the argmax from Definition 2.3

is unchanged by positive-affine transformations. That is, for all i, j ∈ [n] and all si, xj ∈
[m], we have:

si = argmax
xi

E
Sj

[
M
(
xi, Sj

) ∣∣ Si = si

]
= argmax

xi

E
Sj

[
αM

(
xi, Sj

)
+ f(xj)

∣∣ Si = si

]
= argmax

xi

E
Sj

[
M ′
(
xi, Sj

) ∣∣ Si = si

]
,

where the second line follows from the first because f(xj) does not depend on xi.

B. WORKING IN THE AFFINE HULL OF THE SIMPLEX
In this section we will justify the step in Sections 3 and 4 where we assume without
loss of generality that we may work with power diagrams in d = m − 1 dimensions,
where as always m is the number of signal values. Specifically, we show that we may
assume WLOG that all sites vs are in the affine hull A = {u ∈ Rm :

∑
s u(s) = 1} of

∆m. Then, as this affine subspace has dimension d, we can apply an isometry to restate
the problem in Rd (which exists as they are both flats of the same dimension), so that
we can work with v̂1, . . . , v̂m, p̂ ∈ Rd.

To begin, we show that assuming vs ∈ A is WLOG. Let p ∈ ∆m and vs ∈ Rm, and
define v̂s = vs + c(s)1 for c(s) ∈ R where 1 ∈ Rm is the all-ones vector. Then we have

‖v̂s − p‖2 = ‖vs + c(s)1‖2 − 2(vs + c(s)1) · p + ‖p‖2

= ‖vs‖2 + 2vs · c(s)1 + ‖c(s)1‖2 − 2vs · p− 2c(s) + ‖p‖2

= ‖vs − p‖2 + c(s)2m+ 2c(s)(vs · 1− 1) .

Taking c(s) = (1 − vs · 1)/m, we have v̂s · 1 = 1 so v̂s ∈ A. We now check that taking
ŵ(s) = w(s)− (1− vs · 1)2/m preserves power distances. From the above, we see that

‖v̂s − p‖2 − ŵ(s) = ‖vs − p‖2 − w(s) + (1−vs·1)2

m +
(

1−vs·1
m

)2
m

+ 2
(

1−vs·1
m

)
(vs · 1− 1)

= ‖vs − p‖2 − w(s) .

Thus, we can move the sites to A and simply modify the weights to preserve the origi-
nal power diagram on all of A.

C. ROBUSTNESS FOR GENERAL (BREGMAN) DISTANCES
In this section, we generalize our definition of robustness to allow for any distance, and
show that classical peer prediction mechanisms are maximally robust for the distance
metric given by the Bregman divergence corresponding to the scoring rule used (see
Section 6 and Eq. 9). As before, robustness will mean that the mechanism must be
truthful as long as posteriors are “close” to the mechanism’s model, but now distance
will be measured via a general function.

Definition C.1. Given ε > 0 and a nonnegative function D(u,v), a mechanism M
is ε-D-robust with respect to belief model p(·|·) if M is truthful for p∗(·|·) whenever the
following holds for all si ∈ [m],

D(p∗(·|si), p(·|si)) < ε . (17)
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Note in contrast to Definition 7.1, we drop the square for ε and adopt a strict in-
equality for convenience. Naturally, when D is a Bregman divergence, the mechanism
which is maximally robust is the one generated from the same Bregman divergence.

THEOREM C.2. Let p(·|·) be the mechanism’s belief model in classical peer predic-
tion, and let DG be a Bregman divergence defined on the simplex ∆m. Then the classical
peer prediction mechanism M using scoring rule S(p, q) = DG(q, p) is maximally robust
with respect to distance D = DG.

PROOF. For brevity write ps := p(·|s). By Theorem 3.4, we may instead
work with a power diagram with sites vs. Let d be the minimum value of
D(u,ps) for any point u on some cell boundary and any ps. More formally, d =
mins,s′ minu∈∆m:DG(u,ps)=DG(u,ps′ )DG(u,ps). Taking ε = d, we now see that M is ε-DG-
robust, as DG(p∗(·|s),ps) < ε = d implies that p∗(·|s) ∈ cell(vs), since d is by definition
is the smallest Bregman distance from any ps to its cell boundary, so any smaller dis-
tance must stay within the cell. As this holds for all signals s, each posterior is in its
correct cell and M is truthful.

To show maximality, let s, s′,u be the signals and point achieving this minimum in
the definition of d. For any ε > d, we in particular haveDG(u,ps) = DG(u,ps

′
) < ε. Now

take p∗(·|s) = p∗(·|s′) = u, and let p∗(·|s′′) = p(·|s′′) for all other signals s′′; while this
choice of p∗ clearly satisfies the ε-DG-robustness condition (note that for any Bregman
divergence, DG(v,v) = 0 for all v), no mechanism can be (strictly) truthful for p∗.17

D. EXTENSIONS
In Section 8, we discuss two possible extensions of our model and results. The first
is to mechanisms that score an agent with the reports of multiple reference agents.
If the mechanism uses k such reference agents, the mechanism will no longer be a
matrix, but a “tensor” of the form M(si, sj1 , sj2 , . . . , sjk). To reason about their expected
utility then, agents will form posterior beliefs of the form pi(sj1 , sj2 , . . . , sjk |s), which
is a distribution over k · m possible values for the k reference agent reports/signals.
For example, with three signals {a, b, c}, and two reference agents, we would have
pi(·|s) ∈ ∆9, a distribution over values {aa, ab, ac, ba, bb, bc, ca, cb, cc} of the reports of
the two peer agents.

As the agent’s report space is still [m], mechanisms are still equivalent to power
diagrams, just on the higher-dimensional belief space ∆km corresponding to all distri-
butions on tuples of signals. Uniqueness would be “easier” to satisfy in the sense that
the ambient dimension, in this case the km− 1 degrees of freedom, is now going to be
higher than the number of sites of the power diagram, which is still m. Thus, the sites
will “probably” be in general position; for example, with three signals and two peer
agents, any mechanism corresponds to a power diagram with m = 3 sites in ∆9, an
8-dimensional space, and uniqueness holds as long as the sites are not collinear. (Even
if one requires symmetry in agent beliefs, i.e. that pi(ab|s) = pi(ba|s), one still has a
distribution on outcomes {aa, ab, ac, bb, bc, cc}, a 5-dimensional space.)

The other extension considered is for agents to face separate mechanisms Mi(xi, xj).
Here one could have a different belief model constraint Di for each agent i, but es-
sentially all of our main results go through, including the uniqueness of each Mi with
respect to Di.

17This proof could be extended to show that for any ε > d, there in fact are posteriors satisfying the robust-
ness condition for which no mechanism can even be “weakly” (non strictly) truthful, as the overlap between
the robustness regions will be of positive measure.
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