
Online Distributed Sensor Selection

Daniel Golovin
Caltech

Matthew Faulkner
Caltech

Andreas Krause
Caltech

ABSTRACT
A key problem in sensor networks is to decide which sen-
sors to query when, in order to obtain the most useful in-
formation (e.g., for performing accurate prediction), subject
to constraints (e.g., on power and bandwidth). In many ap-
plications the utility function is not known a priori, must be
learned from data and can even change over time. Further-
more, for large sensor networks solving a centralized opti-
mization problem to select sensors is not feasible, and thus
we seek a fully distributed solution. In this paper, we present
Distributed Online Greedy (DOG), an efficient, distributed
algorithm for repeatedly selecting sensors online, only re-
ceiving feedback about the utility of the selected sensors.
We prove very strong theoretical no-regret guarantees that
apply whenever the (unknown) utility function satisfies a nat-
ural diminishing returns property called submodularity. Our
algorithm has extremely low communication requirements,
and scales well to large sensor deployments. We extend
DOG to allow observation-dependent sensor selection. We
empirically demonstrate the effectiveness of our algorithm
on several real-world sensing tasks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design; G.3 [Probability and Statistics]: Ex-
perimental Design; I.2.6 [AI]: Learning

General Terms
Algorithms, Measurement
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Sensor networks, approximation algorithms, distributed mul-
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1. INTRODUCTION
A key challenge in deploying sensor networks for real-

world applications such as environmental monitoring [17],
building automation [22] and others is to decide when to ac-
tivate the sensors in order to obtain the most useful infor-
mation from the network (e.g., accurate predictions at unob-
served locations) and to minimize power consumption. This
sensor selection problem has received considerable attention
[1, 29, 9], and algorithms with performance guarantees have
been developed [1, 15]. However, many of the existing ap-
proaches make simplifying assumptions. First of call, many
approaches assume (1) that the sensors can perfectly observe
a particular sensing region, and nothing outside the region
[1]. This assumption does not allow us to model settings
where multiple noisy sensors can help each other obtain bet-
ter predictions. There are also approaches that base their
notion of utility on more detailed models, such as improve-
ment in prediction accuracy w.r.t. some statistical model [9]
or detection performance [16]. However, most of these ap-
proaches make two crucial assumptions: (2) The model, upon
which the optimization is based is known in advance (e.g.,
based on domain knowledge or data from a pilot deploy-
ment) and (3), the solution of the sensor selection optimiza-
tion is obtained in a centralized fashion (i.e., some central-
ized processor selects the sensors which obtain highest utility
w.r.t. to the model). We are not aware of any approach that
simultaneously addresses the three main challenges (1), (2)
and (3) above and still provides theoretical guarantees.

In this paper, we develop an efficient algorithm, called Dis-
tributed Online Greedy (DOG), which addresses these three
central challenges. Prior work has shown that many sensing
tasks satisfy an intuitive diminishing returns property, sub-
modularity, which states that activating a new sensor helps
more if few sensors have been selected so far, and less if
many sensors have already been selected. Our algorithm
applies to any setting where the true objective is submod-
ular [20], thus capturing a variety of realistic sensor mod-
els. Secondly, our algorithm does not require the model to
be specified in advance: It learns to optimize the objective
function in an online manner. Lastly, the algorithm is dis-
tributed; the sensors decide whether to activate themselves



based on local information. We analyze our algorithm in the
no-regret model, proving convergence properties similar to
the best bounds for any centralized solution.

A bandit approach toward sensor selection. At the heart
of our approach is a novel distributed algorithm for multi-
armed bandit problems: In the classical multi-armed bandit
[21] setting, we picture a slot machine with multiple arms,
where each arm generates a random payoff with unknown
mean. Our goal is to devise a strategy for pulling arms to
maximize the total reward accrued. The difference between
the optimal payoff and the obtained payoff is called the re-
gret. There are algorithms for which the average per-round
regret is O(

√
n log n/

√
T ) where n is the number of arms,

and T the number of rounds. Suppose we would like to,
at every time, select k sensors. The sensor selection prob-
lem can then be cast as a multi-armed bandit problem, where
there is one arm for each possible set of k sensors, and the
payoff is the accrued utility for the selected set. However,
since there is a large number of possible sets of sensor acti-
vations, the number n of arms is exponentially large. Thus
existing regret bounds are O(nk/2

√
log n/

√
T ), i.e., expo-

nential in k. However, since the utility function is submod-
ular, the payoffs of these arms are correlated. Recent re-
sults [25] show that this correlation due to submodularity
can be exploited by reducing the nk-armed bandit problem
to k n-armed bandit problems, with only a bounded loss in
performance. However, the existing no-regret algorithms for
bandit optimization are centralized in nature: A centralized
processor maintains a set of “weights” associated with each
arm, which depend on the performance of the arms in past
rounds. Arms are then pulled at random by interpreting the
weights as probabilities. The key question in distributed on-
line submodular sensing is thus how to perform this sampling
in a distributed fashion. In this paper, we develop a scheme
where each sensor maintains their own weights, and activates
itself independently from all other sensors purely depending
on this weight.

Observation specific selection. Another key question not
addressed in centralized sensor selection is the fact that sen-
sors have more information about whether they should be-
come activated. In many applications, obtaining sensor mea-
surements is much less costly than transmitting the measure-
ments across the network. For example, when using cell
phones in participatory sensing [5], it is inexpensive to obtain
measurements (such as temparature, GPS readings, etc.) on
a regular basis, but expensive to constantly communicate the
measurements over the network. In such a setting, one would
like to activate sensors depending on their observations. We
extend our algorithm to allow for observation specific acti-
vation, and analyze the tradeoff between power consumption
and obtained utility.

Our main contributions.
• Distributed EXP3, a novel distributed implementation

of the classic multiarmed bandit algorithm.
• Distributed Online Greedy (DOG) and LAZYDOG, novel

algorithms for distributed online sensor selection, which
applies in many settings, only requiring the utility func-
tion to be submodular.
• OD-DOG, an extension of DOG to allow for observation-

dependent selection.
• We analyze our algorithm in the no-regret model and

prove that it attains the optimal regret bounds attainable
by any efficient centralized algorithm.
• We evaluate our approach on several real-world sens-

ing tasks.

2. THE SENSOR SELECTION PROBLEM
We now formalize the sensor selection problem. Suppose

a network of sensors has been deployed at a set of locations
V with the task of monitoring some phenomenon (e.g., mea-
sure temperature in a building). Typically, constraints such
as limited bandwidth for communication, or limited battery
power require us to select a subset A of these sensors for
activation, according to some utility function. The activated
sensors then send their data to a server (base station). We
will first review the traditional, offline setting where the util-
ity function is specified in advance. We will then address the
more challenging setting where the utility function needs to
be learnt from data in an online manner.

2.1 The Offline Sensor Selection Problem
In the offline sensor selection problem, one specifies a

sensing quality objective function f(A), and chooses a set
to maximize this function subject to some constraints, e.g.,
on the number of activated sensors. One possible choice for
the sensing quality is based on prediction accuracy (we will
discuss other possible choices later on). In many applica-
tions, measurements are correlated across space, which al-
lows us to make predictions at the unobserved locations. For
example, prior work [9] has considered the setting where a
random variable Xs is associated with every location s ∈ V ,
and a joint probability distribution P (XV ) models the corre-
lation between sensor values. Here, XV = [X1, . . . ,Xn] is
the random vector over all measurements. If some measure-
ments XA = xA are obtained at a subset of locations, then
the conditional distribution P (XV \A | XA) = xA allows to
make predictions at the unobserved locations, e.g., by pre-
dicting E[XV \A | XA = xA]. Furthermore, this conditional
distribution quantifies the uncertainty in the prediction: In-
tuitively, we would like to select sensors that minimize the
predictive uncertainty. One way to quantify the predictive
uncertainty is the mean squared prediction error,

MSE(XV \A | xA) =
1
n

∑
s∈V \A

E[(Xs−E[Xs | xA])2 | xA].



In general, the measurements xA that sensorsA will make is
not known in advance. Thus, we can base our optimization
on the expected mean squared prediction error,

EMSE(A) =
∫
dp(xA) MSE(XV \A | xA).

Equivalently, we can minimize the reduction in mean squared
prediction error,

fEMSE(A) = EMSE(∅)− EMSE(A).

By definition, fEMSE(∅) = 0, i.e., no sensors obtain no util-
ity. Furthermore, fEMSE is monotonic: if A ⊆ B ⊆ V , then
fEMSE(A) ≤ fEMSE(B), i.e., adding more sensors always
helps. That means, fEMSE is maximized by the set of all
sensors V . However, in practice, we would like to only se-
lect a small set of, e.g., at most k sensors due to bandwidth
and power constraints:

A∗ = arg max
A

fEMSE(A) s.t. |A| ≤ k.

Unfortunately, this optimization problem is NP-hard, so we
cannot expect to efficiently find the optimal solution. Fortu-
nately, it can be shown [8] that in many settings1, the func-
tion fEMSE satisfies an intuitive diminishing returns property
called submodularity. A set function f : 2V → R is called
submodular [20] if, for all A ⊆ B ⊆ V and s ∈ V \ B it
holds that f(A∪{s})− f(A) ≥ f(B ∪ {s})− f(B). Many
other natural objective functions for sensor selection satisfy
submodularity as well [18]. For example, the sensing region
model where fREG(A) is the total area covered by all sen-
sorsA is submodular. The detection model where fDET (A)
counts the expected number of targets detected by sensorsA
is submodular as well.

A fundamental result by Nemhauser et al.[20] states that
for monotonic submodular functions, a simple greedy algo-
rithm, which starts with the empty setA0 = ∅ and iteratively
adds the element

sk = arg max
s∈V \Ak−1

f(Ak−1 ∪ {s}); Ak = Ak−1 ∪ {sk}

obtains a near-optimal solution: For the set Ak it holds that
f(Ak) ≥ (1−1/e) max|A|≤k f(A), i.e., the greedy solution
obtains at least a constant fraction of (1 − 1/e) ≈ 63% of
the optimal value.

One fundamental problem with this offline approach is
that it requires the function f to be specified in advance,
i.e., before running the greedy algorithm. For the function
fEMSE, this means that the probabilistic model P (XV ) needs
to be known in advance. While for some applications some
prior data, e.g., from pilot deployments may be accessible,
very often no such prior data is available. This leads to a
“chicken-and-egg” problem, where sensors need to be acti-
vated to collect data in order to learn a model, but also the
model is required to inform the sensor selection. This is akin
1For Gaussian models and conditional suppressorfreeness [8]

to the “exploration–exploitation tradeoff” in reinforcement
learning [2], where an agent needs to decide whether to ex-
plore and gather information about effectiveness of an action,
or to exploit, i.e., choose actions known to be effective. In
the following, we devise an online monitoring scheme based
on this analogy.

2.2 The Online Sensor Selection Problem
We now consider the more challenging problem where the

objective function is not specified in advance, and needs to be
learnt during the monitoring task. We assume that we intend
to monitor the environment for a number T of time steps
(rounds). In each round t, a set St of sensors is selected,
and these sensors transmit their measurements to a server
(base station). The server then determines a sensing quality
of ft(St) quantifying the utility obtained from the resulting
analysis. For example, if our goal is spatial prediction, the
server would build a model based on the previously collected
sensor data, pick a random sensor s, make prediction for the
variable Xs, and then compare the prediction µs with the
sensor reading xs. The error ft = σ2

s − (µs − xs)2 is an
unbiased estimate of the reduction in EMSE. In the following
analysis, we will only assume that the objective functions ft
2 are bounded (w.l.o.g., take values in [0, 1]), are monotone
and submodular. Our goal is to maximize the total reward
obtained by the system over T rounds,

∑T
t=1 ft(St).

Our goal is to develop a protocol for selecting the sets
St of sensors at each round, such that, after a small num-
ber of rounds, the average performance of our online algo-
rithm converges to the same performance of the offline strat-
egy (which knows the objective functions). We thus compare
our protocol against all strategies that can select a fixed set
of k sensors for use in all of the rounds; the best such strat-
egy obtains reward maxS⊆V :|S|≤k

∑T
t=1 ft(S). The differ-

ence between this quantity and what our protocol obtains is
known as its regret, and an algorithm is said to be no-regret
if the limit of its average regret over all rounds tends to zero.
When k = 1, our problem is simply the well-studied multi-
armed bandit (MAB) problem, for which many no-regret al-
gorithms are known (see e.g., the survey of [12]). For general
k, because the average of a set of submodular functions re-
mains submodular, we can apply the result of Nemhauser et
al. [20] (c.f., Sec. 2.1) to prove that a simple greedy algo-
rithm obtains a (1−1/e) approximation to the optimal offline
solution. Moreover, Feige [11] showed that this is optimal in
the sense that obtaining a (1 − 1/e + ε) approximation for
any ε > 0 is NP-hard. These facts suggest that we cannot ex-
pect any efficient online algorithm to converge to a solution
better than (1− 1/e) maxS⊆V :|S|≤k

∑T
t=1 ft(S). We there-

fore define the (1 − 1/e)-regret of a sequence of (possibly

2We assume ft is given as a value oracle, i.e., given a query S ⊆ V
we have a black box computing ft(S).



random) sets {St}Tt=1 as

RT := (1− 1/e) · max
S⊆V :|S|≤k

T∑
t=1

ft(S) −
T∑
t=1

E [ft(St)]

where the expectation is taken over the distribution for each
St. We say an online algorithm producing a sequence of sets
has no-(1− 1/e)-regret if limT→∞

RT

T = 0.

3. OVERVIEW OF OUR APPROACH
In the following Sections, we will develop our Distributed

Online Greedy (DOG) algorithm for distributed online se-
lection of sensors. In Sec. 4, we will first discuss how the
greedy algorithm for a known objective function can be ex-
tended to an online algorithm with no-(1− 1/e)-regret. The
key step is to replace each greedy selection step with a multi-
armed bandit algorithm. In Sec. 5, we will then show how the
online algorithm from Sec. 4 can be implemented efficiently
in a distributed manner. A primary consideration in devising
the protocol is the cost of sending messages between sensors
and the base station. We consider two cost models.

• In the broadcast model, each sensor can broadcast a
message to all other sensors at unit cost.

• In the point-to-point model, messages can only be be-
tween two sensors or a sensor and the base station, and
each message has unit cost.

In Sec. 5 we first consider the broadcast model, and then
show how it can be extended to the point-to-point model in
Sec. 6. In Sec. 7, we will then extend our algorithm to allow
for observation-specific selection.

4. CENTRALIZED ALGORITHM FOR ON-
LINE SENSOR SELECTION

We will first develop a centralized algorithm for online
sensor selection which is guaranteed to achieve no (1−1/e)-
regret. Our strategy will be to convert the greedy algorithm
for centralized sensor selection for known submodular func-
tions as introduced in Sec. 2.1 into an online algorithm. As
we will show, the key problem will be to develop an algo-
rithm for selecting a single sensor, which we consider in
Sec. 4.1. In Sec. 4.2 we will then present our algorithm for
selecting multiple sensors, which relies on the single sensor
case as a subroutine.

4.1 Centralized Online Single Sensor Selection
Let us first consider the case where k = 1, i.e., we would

like to select one sensor at each round. This simpler problem
can be interpreted as an instance of the multi-armed bandit
problem (as introduced in Sec. 2.2), where we have one arm
for each possible sensor. If we allow centralized solutions,
we can use no-regret algorithms such as the EXP3 algorithm
[2] to obtain a no-regret sensor selection. EXP3 works as

follows: It is parameterized by a learning rate η, and an ex-
ploration probability γ. It maintains a set of weights ws, one
for each arm (sensor) s, initialized to 1. At every round t, it
will select an arm with probability

ps = (1− γ)
ws∑
s′ ws′

+
γ

n
,

i.e., with probability γ it explores, picking an arm uniformly
at random, and with probability (1−γ) it exploits, picking an
arm swith probability proportional to its weightws. Once an
arm s has been selected, a feedback r = ft({s}) is obtained,
and the weight ws is updated to

ws ← ws exp(ηr/ps).

Auer et al. [2] showed that with appropriately chosen learn-
ing rate η and exploration probability γ it holds that the cu-
mulative regret RT of EXP3 is O(

√
nT ), i.e., the average

regret RT /T converges to zero.

4.2 Centralized Selection of Multiple Sensors
In principle, we could interpret the sensor selection prob-

lem as a
(
n
k

)
-armed bandit problem, and apply existing no-

regret algorithms such as EXP3. Unfortunately, this ap-
proach does not scale, since the number of arms grows ex-
ponentially with k. However, in contrast to the traditional
multi-armed bandit problem, where the arms are assumed to
have independent payoffs, in the sensor selection case, the
utility function is submodular and thus the payoffs are cor-
related across different sets. Recently, Streeter and Golovin
showed how this submodularity can be exploited, and de-
veloped a no-(1 − 1/e)-regret algorithm for online maxi-
mization of submodular functions [25]. The key idea behind
their algorithm, OGunit, is to turn the offline greedy algo-
rithm into an online algorithm by replacing the greedy se-
lection of the element sk that maximizes the benefit sk =
arg maxs f({s1, ..., sk−1} ∪ {s}) by a bandit algorithm. As
shown in the pseudocode below, OGUNIT maintains k bandit
algorithm, one for each sensor to be selected. At each round
t, k sensors are selected according to the choices of the k
bandit algorithms Ei. Once the elements have been selected,
the i-th bandit algorithm Ei receives as feedback the incre-
mental benefit ft(s1, . . . , si) − ft(s1, . . . , si−1), i.e., how
much additional utility is obtained by adding sensor si to the
set of already selected sensors.

Algorithm OGUNIT from [25]:
Initialize k multiarmed bandit algorithms E1, E2, . . . , Ek,
each with action set V .
For each round t ∈ [T ]

For each stage i ∈ [k] in parallel
Ei selects an action vti

For each i ∈ [k] in parallel
feedback ft(

{
vtj : j ≤ i

}
)− ft(

{
vtj : j < i

}
) to Ei.

Output St = {at1, at2, . . . , atk}.



In [24] it is shown that OGUNIT has a
(
1− 1

e

)
-regret bound

of O(kR) in this feedback model assuming each Ei has ex-
pected regret at most R.

Unfortunately, EXP3 (and in fact all multiarmed bandit al-
gorithms with no-regret guarantees for non-stochastic reward
functions) require sampling from some distribution with weights
associated with the sensors. If n is small, we could simply
store these weights on the server, and run the bandit algo-
rithms Ei there. However, this solution does not scale to
large numbers of sensors. Thus the key problem for online
sensor selection is to develop a multi-armed bandit algorithm
which implements distributed sampling across the network,
with minimal overhead of communication. In addition, the
algorithm needs to be able to maintain the distributions (the
weights) associated with each Ei in a distributed fashion. In
the following, we will develop DOG, an efficient distributed
algorithm that address these key challenges.

5. DISTRIBUTED ALGORITHM FOR
ONLINE SENSOR SELECTION

We will now develop DOG, an efficient algorithm for dis-
tributed online sensor selection. For now we make the fol-
lowing assumptions:

1. Each sensor v ∈ V is able to compute its contribution
to the utility ft(S∪{v})−ft(S), where S are a subset
of sensors that have already been selected.

2. Each sensor can broadcast to all other sensors.

3. The sensors have calibrated clocks and unique, linearly
ordered identifiers.

These assumptions are reasonable in many applications: (1)
In target detection, for example, the objective function ft(S)
counts the number of targets detected by the sensors S. Once
previously selected sensors have broadcasted which targets
they detected, the new sensor s can determine how many ad-
ditional targets have been detected. Similarly, in statistical
estimation, one sensor (or a small number of sensors) ran-
domly activates each round and broadcasts its value. After
sensors S have been selected and announced their measure-
ments, the new sensor s can then compute the improvement
in prediction accuracy over the previously collected data. (2)
The assumption that broadcasts are possible may be realistic
for dense deployments and fairly long range transmissions.
In Sec. 6 we will show how assumptions (1) and (2) can be
relaxed.

As we have seen in Sec. 4, the key insight in developing
a centralized algorithm for online selection is to replace the
greedy selection of the sensor which maximally improves the
total utility over the set of previously selected sensors by a
bandit algorithm. Thus, a natural approach for developing a
distributed algorithm for sensor selection is to first consider
the single sensor case.

5.1 Distributed Selection of a Single Sensor
The key challenge in developing a distributed version of

EXP3 when sensors can broadcast to all other sensors is to
find a way to sample exactly one element from a probabil-
ity distribution p over sensors in a distributed manner. We
measure the cost of the sampling procedure in terms of the
number of broadcast messages.

A naive distributed sampling scheme. A naive distributed
algorithm would be to let each sensor keep track of all ac-
tivation probabilities p. Then, one sensor (e.g., with the
lowest identifier) would broadcast a single random number
u uniformly distributed in [0, 1], and the sensor v for which∑v−1
i=1 pi ≤ u <

∑v
i=1 pi would activate. However, for large

sensor network deployments, this algorithm would require
each sensor to store a large amount of global information (all
activation probabilities p). Instead, each sensor v could store
only their own probability mass pv; the sensors would then,
in order of their identifiers, broadcast their probabilities pv ,
and stop once the sum of the probabilities exceeds u. This
approach only requires a constant amount of local informa-
tion, but requires an impractical Θ(n) messages to be sent,
and sent sequentially over Θ(n) time steps.

Distributed multinomial sampling. In this section we
present a protocol that requires only O(1) messages in ex-
pectation, and only a constant amount of local information.

For a sampling procedure with input distribution p, we let
p̂ denote the resulting distribution, where in all cases at most
one sensor is selected, and nothing is selected with proba-
bility 1 −

∑
v p̂v . A simple approach towards distributed

sampling would be to activate each sensor v ∈ V indepen-
dently from each other with probability pv . While in ex-
pectation, exactly one sensor is selected, with probability∏
v(1 − pv) > 0 no sensor is selected; also since sensors

are selected independently, there is a nonzero probability
that more than one sensor is selected. Using a synchronized
clock, the sensors could determine if no sensor is selected.
In this case, they could simply repeat the selection proce-
dure until at least one sensor is selected. However, in the
event that more than one sensor is selected, we have to pick
exactly one from the remaining sensors. One naive approach
would be to pick the sensor uniformly at random. This uni-
form sampling among the active sensors can be implemented
using few messages. The following protocol implements this
two-stage selection procedure:

The Simple Protocol:
For each sensor v in parallel

Sample Xv ∼ Bernoulli(pv).
If (Xv = 1), Xv activates.

All active sensors S coordinate to select a single sen-
sor uniformly at random from S.



It is not hard to show that for all sensors v,

p̂v = pv · E
[

1
|S|

∣∣∣∣ v ∈ S] ≥ pv/E [|S| | v ∈ S] ≥ pv/2

by appealing to Jensen’s inequality. Since p̂v ≤ pv , we find
that this simple protocol maintains a ratio rv := p̂v/pv ∈
[ 1
2 , 1]. Unfortunately, this analysis is tight, as can be seen

from an example with two sensors with p1 = ε, p2 = 1− ε.
To improve upon the simple protocol, first consider run-

ning it on an example with p1 = p2 = · · · = pn = 1/n.
Since the protocol behaves exactly the same under permu-
tations of sensor labels, by symmetry we have p̂1 = p̂2 =
· · · = p̂n, and thus ri = rj for all i, j. Now consider
an input distribution p where there exists integers N and
k1, k2, . . . , kn such that pv = kv/N for all v. Replace each
v with kv fictitious sensors, each with probability mass 1/N ,
and each with a label indicating v. Run the simple proto-
col with the fictitious sensors, selecting a fictitious sensor v′,
and then actually select the sensor indicated by the label of
v′. By symmetry this process selects each fictitious sensor
with probability (1 − β)/N , where β is the probability that
nothing at all is selected, and thus the process selects sensor
v with probability kv(1− β)/N = (1− β)pv (since at most
one fictitious sensor is ever selected).

We may thus consider the following improved protocol
which incorporates the above idea, simulating this modifi-
cation to the protocol exactly when pv = kv/N for all v.

The Improved Protocol(N ):
For each sensor v in parallel

Sample Xv ∼ Binomial(1/N, dN · pve).
If (Xv ≥ 1), then activate sensor v.

From the active sensors S, select sensor v with prob-
ability Xv/

∑
v′∈S Xv′ .

This protocol ensures the ratios rv := p̂v/pv are the same
for all sensors, provided each pv is a multiple of 1/N . As-
suming the probabilities are rational, there will be a suffi-
ciently large N to satisfy this condition. To reduce β :=
Pr [S = ∅] in the simple protocol, we may sample each Xv

from Bernoulli(α · pv) for any α ∈ [1, n]. The symmetry ar-
gument remains unchanged. This in turn suggests sampling
Xv from Binomial(α/N, dN · pve) in the improved proto-
col. Taking the limit as N → ∞, the binomial distribution
becomes Poisson, and we obtain the desired protocol.

The Limit Protocol(α):
Same as the improved protocol, except each
sensor v samples Xv ∼ Poisson(αpv)

Straight-forward calculation shows that

Pr [S = ∅] =
∏
v

exp {−α · pv} = exp
{
−
∑
v

α·pv
}

= e−α

Let C be the number of messages. Then

E [C] =
∑
v

Pr [Xv ≥ 1] =
∑
v

(1−e−αpv ) ≤
∑
v

αpv = α

Here we have used linearity of expectation, and 1 + x ≤ ex

for all x ∈ R. In summary, we have the following result
about our Limit Protocol:

PROPOSITION 5.1. Fix any fixed p and α > 0. The Limit
Protocol always selects at most one sensor, ensures

∀v : Pr [v selected] = (1− e−α)pv

and requires no more than α messages in expectation.

In order to ensure that exactly one sensor is selected, when-
ever S = ∅ we can simply rerun the protocol with fresh ran-
dom seeds as many times as needed until S is non-empty.
Using α = 1, this modification will require only O(1) mes-
sages in expectation and at most O(log n) messages with
high probability in the broadcast model. We can combine
this protocol with EXP3 to get the following result.

THEOREM 1. In the broadcast model, running EXP3 us-
ing the Limit Protocol with α = 1, and rerunning the pro-
tocol whenever nothing is selected, yields the same regret
bound as standard EXP3, namelyO(

√
OPTn log n), where

OPT is the total reward of the best action. Furthermore, in
each round at most e/(e − 1) + 2 ≈ 3.582 messages are
broadcast in expectation.

Proofs of our theoretical results can be found in Appendix ??

5.2 The Distributed Online Greedy Algorithm
We now use our single sensor selection algorithm to de-

velop our main algorithm, the Distributed Online Greedy al-
gorithm (DOG). It is based on the distributed implementa-
tion of EXP3 using the Limit Protocol. Suppose we would
like to select k sensors at each round t. Each sensor v main-
tains k weights wv,1, . . . , wv,k and normalizing constants
Zv,1, . . . , Zv,k. The algorithm proceeds in k stages, syn-
chronized using the common clock. In stage i, a single sen-
sor is selected using the Limit Protocol applied to the dis-
tribution (1 − γ)wv,i/Zv,i + γ/n. Suppose sensors S =
{v1, . . . , vi−1} have been selected in stages 1 through i− 1.
The sensor v selected at stage i then computes its local re-
wards πv,i using the utility function ft(S ∪{vi})− ft(S). It
then computes its new weight

w′v,i = wv,i exp(ηπv,i/pv,i),

and broadcasts the difference between its new and old weights
∆v,i = w′v,i − wv,i. All sensors then update their ith nor-
malizers using

Zv,i ← Zv,i + ∆v,i.

Fig. 1 presents the pseudo-code of the DOG algorithm. Thus
given Theorem 12 of [24] we have the following result about
the DOG algorithm:



THEOREM 2. The DOG algorithm selects, at each round
t a set St ⊆ V of k sensors such that

1
T

E

[
T∑
t=1

ft(St)

]
≥

1− 1
e

T
max
|S|≤k

T∑
t=1

ft(S)−O

(
k

√
n log n
T

)
.

In expectation, onlyO(k) messages are exchanged each round.

6. THE POINT-TO-POINT MODEL
In some applications, the assumption that sensors can broad-

cast messages to all sensors may be unrealistic. Furthermore,
in some applications sensors may not be able to compute the
marginal benefits ft(S ∪ {s}) − ft(S) (since this calcula-
tion may be computationally complex). In this section, we
analyze LAZYDOG, a variant of our DOG algorithm, which
replace the above assumptions by the assumption that there is
a dedicated base station3 available which computes utilities
and which can send non-broadcast messages to individual
sensors.

We make the following assumptions:

1. Every sensor stores its probability mass pv with it, and
can send messages to and receive messages from the
base station.

2. The base station is able, after receiving messages from
a set S of sensors, to compute the utility ft(S) and send
this utility back to the active sensors.

We do not assume that the base station has access to all
weights of the sensors – we will only require the base sta-
tion to have O(k + log n) memory. In the fully distributed
algorithm DOG that relies on broadcasts, it is easy for the
sensors to maintain their normalizers Zv,i, since they receive
information about rewards from all selected sensors. The
key challenge when removing the broadcast assumption is to
maintain the normalizers in an appropriate manner.

6.1 Lazy renormalization and Distributed EXP3
EXP3 (and all multiarmed bandit algorithms with no-regret

guarantees against arbitrary reward functions) must main-
tain a distribution over actions, and update this distribution
in response to feedback about the environment. In EXP3,
each sensor v requires only wv(t) and a normalizer Z(t) :=∑
v′ wv′(t) to compute pv(t)4. The former changes only

when v is selected. In the broadcast model the latter can sim-
ply be broadcast at the end of each round, however things are
not so easy in the point-to-point model. Nevertheless, in this
section we show that for EXP3 (and many algorithms like
3Though the existence of such a base station means the protocol is
not completely distributed, it is realistic in sensor network applica-
tions where the sensor data needs to be accumulated somewhere for
analysis.
4We let x(t) denote the value of variable x at the start of round t,
to ease analysis. We don’t actually need to store the value of the
variables at each time step.

it), we can perform the necessary renormalization in a lazy
manner, while keeping the amount of communication quite
low.

Our lazy renormalization scheme for EXP3 works as fol-
lows. Each sensor v maintains its weight wv(t) and an es-
timate Zv(t) for Z(t) :=

∑
v′ wv′(t), Initially, wv(0) = 1

and Zv(0) = n for all v. The central server stores Z(t). Let
ρ(x, y) := (1 − γ)xy + γ

n . Each sensor then proceeds with
the sampling procedure of section 5.1 as though its probabil-
ity mass in round t was qv = ρ(wv(t), Zv(t)) instead of its
true value of ρ(wv(t), Z(t)). Moreover, v’s estimate Zv(t)
is only updated on rounds when it communicates with the
server under these circumstances. This allows the estimated
probabilities of all of the sensors to sum to more than one, but
has the benefit of significantly reducing the communication
cost in the point-to-point model under certain assumptions.
We call the result Distributed EXP3, give its pseudocode for
round t in Fig. 2.

Since the sensors underestimate their normalizers, they may
activate more frequently than in the broadcast model. For-
tunately, the amount of “overactivation” remains bounded.
We prove Theorem 3 and Corollary 6.1 in Appendix B.

THEOREM 3. The expected number of sensor activations
in any round of our Distributed EXP3 algorithm is at most
α (1 + (e− 1)/α), and the expected number of messages is
at most twice this.

Unfortunately, there is still an e−α probability of nothing
being selected. To address this, we can set α = lnn, and in
the rare case that nothing is selected, transmit a message to
each of the n sensors to rerun the protocol.

COROLLARY 6.1. There is a distributed implementation
of EXP3 that always selects a sensor in each round such
that the expected number of sensor activations in any round
is at most lnn+O(1) and the expected number of messages
is at most 2 lnn+O(1).

6.2 LazyDOG
Once we have the distributed EXP3 variant described above,

we can use it for the bandit subroutines in the OGUNIT algo-
rithm (c.f. Sec. 4.2). We call the result the LAZYDOG algo-
rithm, due to its use of lazy renormalization. It has the same
performance guarantees with respect to

∑
t ft(St) as DOG,

works in the point-to-point communication model, and re-
quires few messages or sensor activations. Corollary 6.1 im-
mediately implies the following result.

COROLLARY 6.2. The expected number of sensors that
activate each round in our LAZYDOG algorithm is at most
k lnn +O(k), and and the expected number of messages is
at most 2k lnn+O(k).



Algorithm: Distributed Online Greedy (DOG) (described in the broadcast model)
Input: k ∈ N, a set V , and α, γ, η ∈ R>0. Reasonable defaults are any α ∈ [1, ln |V |], and γ = η =

min
(

1, (|V | ln |V |/g)1/2
)

, where g is a guess for the maximum cumulative reward of any single sensor [2].
Initialize wv,i ← 1 and Zv,i ← |V | for all v ∈ V , i ∈ [k]. Let ρ(x, y) := (1− γ)xy + γ

|V | .
for each round t = 1, 2, 3, . . . do

Initialize Sv,t ← ∅ for each v in parallel.
for each stage i ∈ [k] do

for each sensor v ∈ V in parallel do
repeat

Sample Xv ∼ Poisson(α · ρ(wv,i, Zv,i)).
if (Xv ≥ 1) then

Broadcast 〈sampled Xv, id(v)〉; Receive messages from sensors S. (Include v ∈ S for convenience).
if id(v) = minv′∈S id(v′) then

Select exactly one element vit from S such that each v′ is selected with probability Xv′/
∑
u∈S Xu.

Broadcast 〈select id(vit)〉.
Receive message 〈select id(vit)〉.
if id(v) = id(vit) then

Observe ft(Sv,t + v); π ← ft(Sv,t + v)− ft(Sv,t); ∆v ← wv,i(exp {η · π/ρ(wv,i, Zv,i)} − 1);
Zv,i ← Zv,i + ∆v; wv ← wv + ∆v; Broadcast 〈weight update ∆v, id(v)〉.

if receive message 〈weight update ∆, id(vit)〉 then Sv,t ← Sv,t + vit; Zv,i ← Zv,i + ∆
until v receives a message of type 〈select id〉 ;

Output: At the end of each round t each sensor has an identical local copy Sv,t of the selected set St.

Figure 1: The Distributed Online Greedy Algorithm

7. OBSERVATION-DEPENDENT SAMPLING
Theorem 2 states that DOG is guaranteed to do nearly as

well as the offline greedy algorithm run on an instance with
objective function fΣ :=

∑
t ft. Thus the reward of DOG is

asymptotically good on average. In many applications, how-
ever, we would like to perform well on rounds with “atypi-
cal” objective functions. For example, in an outbreak detec-
tion application as we discuss in Sec. 8, we would like to get
very good data on rounds with significant events, even if the
nearest sensors typically report “boring” readings that con-
tribute very little to the objective function. For now, suppose
that we are only running a single MAB instance to select a
single sensor in each round. If we have access to a value
oracle for ft on round t, then we can perform well on atypi-
cal rounds at the cost of some additional communication by
having each sensor v take a local reading of its environment
and estimate its payoff π̄ = ft({v}) if selected. This value,
which serves as a measure of how interesting its input is,
can then be used to decide whether to boost v’s probability
for reporting its sensor reading to the server. In the sim-
plest case, we can imagine each v has a threshold τv such
that v activates with probability 1 if π̄ ≥ τv , and with its
normal probability otherwise. In the case where we select
k > 1 sensors in each round, each sensor can have a thresh-
old for each of the k stages, where in each stage it computes
π̄ = ft(S ∪ {v}) − ft(S) where S is the set of currently
selected sensors. Since the activation probability only goes

up, we can retain the performance guarantees of DOG if we
are careful to adjust the feedback properly.

Ideally, the sensors should learn what their thresholds τv
should be. We treat the selection of τv in each round as an
online decision problem that each v must play. We construct
a particular game that the sensors play, where the strategies
are the thresholds (suitable discretized), there is an activation
cost cv that v pays if π̄v ≥ τv , and the value of of the infor-
mation obtained is split between the sensors that activate. Let
πv = ft(S∪{v})−ft(S) be the marginal benefit of selecting
v given that sensor set S has already been selected. Let A be
the set of sensor that activate in the current iteration of the
game, and let max

(
π(A\v)

)
:= max (πv′ : v′ ∈ A \ {v}).

The particular reward function ψ we chose for each sensor v
for each iteration of the game is

ψv(τ) =
{
cv −max

(
πv −max

(
π(A\v)

)
, 0
)

if π̄ < τ
max

(
πv −max

(
π(A\v)

)
, 0
)
− cv if π̄ ≥ τ

based on empirical performance.
In the broadcast model where each sensor can compute

its marginal benefit, we can use any standard no-regret al-
gorithm for combining expert advice, such as Randomized
Weighted Majority (WMR) [19], to play this game and ob-
tain no regret guarantees5 for selecting τv . In our context

5We leave it as an open problem to determine if the outcome is
close to optimal when all sensors play low regret strategies (i.e., is
the price of total anarchy [4] small in any variant of this game with



Algorithm: Distributed EXP3 (executing on round t)
Input: Parameters α, η, γ ∈ R>0, sensor set V .
Let ρ(x, y) := (1− γ)xy + γ

|V | .
Sensors (or Actions/Arms, equivalently):
foreach sensor v in parallel do

Sample rv uniformly at random from [0, 1].
if (rv ≥ 1− α · ρ(wv(t), Zv(t)) then

Send 〈rv, wv(t)〉 to the server.
Receive message 〈Z,w〉 from server.
Zv(t+ 1)← Z; wv(t+ 1)← w.

else Zv(t+ 1)← Zv(t); wv(t+ 1)← wv(t).
Server:
Receive messages from a set S of sensors.
if S = ∅ then Select nothing and wait for next round.
else foreach sensor v ∈ S do

Yv ← min {x : Pr [X ≤ x] ≥ rv}, where
X ∼ Poisson(α · ρ(wv(t), Z(t))).
Select v with probability Yv/

∑
v′∈S Yv′ .

Observe the payoff π for the selected sensor v∗;
wv∗(t+ 1)← wv∗(t) · exp {ηπ/ρ(wv∗(t), Z(t))};
Z(t+ 1)← Z(t) + wv∗(t+ 1)− wv∗(t);
for each v ∈ S \ v∗ do wv(t+ 1)← wv(t);
for each v∈S do Send 〈Z(t+1), wv(t+1)〉 to v.

Figure 2: Distributed EXP3: the limit protocol(α)
with lazy renormalization, applied to EXP3

a sensor using WMR simply maintains weights w(τi) =
exp (η · ψtotal(τi)) for each possible threshold τi, where η >
0 is a learning parameter, and ψtotal(τi) is the total cumula-
tive reward for playing τi in every round so far. On each step
each threshold is picked with probability proportional to its
weight. In the more restricted point-to-point model, we can
use a modification of WMR that feeds back unbiased esti-
mates for ψt(τi), the payoff to the sensor for using a thresh-
old of τi in round t, and thus obtains reasonably good esti-
mates of ψtotal(τi) after many rounds. We give psuedocode
in Fig. 3. In it, we assume that an activated sensor can com-
pute the reward of playing any threshold.

We incorporate these ideas into the DOG algorithm, to
obtain what we call the Observation-Dependent Distributed
Online Greedy algorithm (OD-DOG). In the extreme case
that cv = 0 for all v the sensors will soon set their thresholds
so low that each sensor activates in each round. In this case
OD-DOG will exactly simulate the offline greedy algorithm
run on each round. In other words, if we let G(f) be the
result of running the simple offline greedy algorithm on the
problem

arg max {f(S) : S ⊂ V, |S| ≤ k}

then OD-DOG will obtain a value of
∑
t ft(G(ft)); in con-

trast, DOG gets roughly
∑
t ft(G(

∑
t ft)), which may be

a reasonable way of splitting the value from the information?)

Algorithm: Modified WMR (point-to-point setting)
Input: parameter η > 0, threshold set {τi : i ∈ [m]}
Initialize w(τi)← 1 for all i ∈ [m].
for each round t = 1, 2, . . . do

Select τi with probability w(τi)/
∑m
j=1 w(τj).

if sensor activates then
Let ψ(τi) be the reward for playing τi in this
round of the game. Let q(τi) be the total
probability of activation conditioned on τi being
selected (including the activation probability that
does not depend on local observations.)
for each threshold τi do

w(τi)← w(τi) exp (ηψ(τi)/q(τi)).

Figure 3: Selecting activation thresholds for a sensor

significantly smaller. Note that Feige’s result [11] implies
that the former value is the best we can hope for from effi-
cient algorithms (assuming P 6= NP). Of course, querying
each sensor in each round is impractical when querying sen-
sors is expensive. In the other extreme case where cv = ∞
for all v, OD-DOG will simulate DOG after a brief learn-
ing phase. In general, by adjusting the activation costs cv
we can smoothly trade off the cost of sensor communication
with the value of the resulting data.

8. EXPERIMENTS
In this section, we evaluate our DOG algorithm on several

real-world sensing problems.

8.1 Data sets

Temperature data. In our first data set, we analyze tem-
perature measurements from the network of 46 sensors de-
ployed at Intel Research Berkeley. Our training data con-
sisted of samples collected at 30 sec. intervals on 3 consecu-
tive days (starting Feb. 28th 2004), the testing data consisted
of the corresponding samples on the two following days. The
objective functions used for this application are based on the
expected reduction in mean squared prediction error fEMSE,
as introduced in Sec. 2.

Precipitation data. Our second data set consists of pre-
cipitation data collected during the years 1949 - 1994 in the
states of Washington and Oregon [27]. Overall 167 regions
of equal area, approximately 50 km apart, reported the daily
precipitation. To ensure the data could be reasonably mod-
eled using a Gaussian process we preprocessing as described
in [17]. As objective functions we again use the expected
reduction in mean squared prediction error fEMSE.

Water network monitoring. Our third data set is based on
the application of monitoring for outbreak detection. Con-



sider a city water distribution networks for, delivering water
to households via a system of pipes, pumps and junctions.
Accidental or malicious intrusions can cause contaminants to
spread over the network, and we want to install sensors to de-
tect these contaminations as quickly as possible. In August
2006, the Battle of Water Sensor Networks (BWSN) [10]
was organized as an international challenge to find the best
sensor placements for a real (but anonymized) metropolitan
water distribution network, consisting of 12,527 nodes. In
this challenge, a set of intrusion scenarios is specified, and
for each scenario a realistic simulator provided by the EPA is
used to simulate the spread of the contaminant for a 48 hour
period. An intrusion is considered detected when one se-
lected node shows positive contaminant concentration. The
goal of BWSN was to minimize impact measures, such as
the expected population affected, which is calculated using
a realistic disease model. For a security-critical sensing task
such as protecting drinking water from contamination, it is
important to develop sensor selection schemes that maximize
detection performance even in adversarial environments (i.e.,
where an adversary picks the contamination strategy know-
ing our network deployment and selection algorithm). The
algorithms developed in this paper apply to such adversar-
ial settings. We reproduce the experimental setup detailed
in [16]. For each contamination event i, we define a sepa-
rate submodular objective function fi(S) that measures the
expected population protected when detecting the contami-
nation from sensors S. In [16], Krause et al. showed that the
functions fi(A) are monotonic submodular functions.

8.2 Convergence experiments
In our first set of experiments, we analyzed the conver-

gence of our DOG algorithm. For both the temperature [T]
and precipitation [R] data sets, we first run the offline greedy
algorithm using the fEMSE objective function to pick k = 5
sensors. We compare its performance to the DOG algorithm,
where we feed back the same objective function at every
round. We use an exploration probability γ = 0.01 and a
learning rate inversely proportional to the maximum achiev-
able reward fEMSE(V ). Fig. 4(a) presents the results for the
temperature data set. Note that even after only a small num-
ber of rounds (≈ 100), the algorithm obtains 95% of the per-
formance of the offline algorithm. After about 13,000 itera-
tions, the algorithm obtains 99% of the offline performance,
which is the best that can be expected with a .01 exploration
probability. Fig. 4(b) show the same experiment on the pre-
cipitation data set. In this more complex problem, after 100
iterations, 76% of the offline performance is obtained, which
increases to 87% after 500,000 iterations.

We also perform experiments on the water distribution mon-
itoring data set [W]. We use our algorithms to select an ac-
tive subset of k = 3 from a placement of 20 sensors. At
each round, a different objective function Fi is selected, one
for each contamination event. We first run the offline greedy

algorithm on the average objective fΣ(S) =
∑
i fi(S). We

compare the offline result with our DOG algorithm. Fig. 4(c)
presents the results of this experiment. Note that in contrast
to the results in Fig. 4(a) and Fig. 4(b), where we always
feed back the same objective function, in the varying objec-
tive function case, there is more variance in the performance.
However, even in spite of these varying objectives, the aver-
age performance still converges to the value of the offline
solution that optimizes the selection given knowledge of all
objective functions.

8.3 Observation dependent activation
We also run experiments on our OD-DOG algorithm with

observation specific sensor activations. We choose different
values for the activation cost cv , which we vary as multiples
of the total achievable reward. Fig. 4(d) presents the rewards
obtained over varying numbers of rounds for the different
values of cv . The activation cost cv lets us smoothly trade
off the average number of sensors activating each round and
the average obtained reward. Fig. 4(d) presents the perfor-
mance of different observation-dependent selection strate-
gies for varying activation costs. Note that for low acti-
vation costs, the performance quickly (within 1000 itera-
tions) converges to the performance of the offline solution. In
contrast, when not considering local observations, the same
performance level is not reached even for 25,000 iterations.
Even under the lowest activation costs in our experiments,
the number of extra activations per stage in the OD-DOG
algorithm is at most 5.8. These results indicate that observa-
tion specific activation can lead to drastically improved per-
formance at small additional activation cost.

9. RELATED WORK
Sensor Selection. The problem of deciding when to selec-
tively turn on sensors in sensor networks in order to conserve
power was first discussed by [23] and [29]. Many approaches
for optimizing sensor placements and selection assume that
sensors have a fixed region [14, 13, 3]. These regions are
usually convex or even circular. Furthermore, it is assumed
that everything within this region can be perfectly observed,
and everything outside cannot be measured by the sensors.
For complex applications such as environmental monitoring
however, such assumptions are unrealistic, and the direct op-
timization of prediction accuracy is desired. The problem
of selecting observations for monitoring spatial phenomena
has been investigated extensively in geostatistics (c.f., [7] for
an overview), and more generally (Bayesian) experimental
design (c.f., [6]). Several approaches have been proposed
to activate sensors in order to minimize uncertainty [29] or
prediction error [9]. However, these approaches do not have
performance guarantees. Submodularity has been used to
analyze algorithms for placing [17] or selecting [28] a fixed
set of sensors . These approaches however assume that the
model is known in advance.
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Figure 4: Experimental results on [T] Temperature data, [R] precipitation data and [W] water distribution network data.

Submodular optimization. The problem of centralized
maximization of a submodular function has been studied by
[20], who proved that the greedy algorithm gives a factor
(1−1/e) approximation. Since then, several algorithms have
been developed for solving submodular maximization prob-
lems subject to more complex constraints (see [26] for an
overview). Streeter and Golovin developed an algorithm for
online optimization of submodular functions, which we build
on in this paper [25].

10. CONCLUSIONS
In this paper, we considered the problem of repeatedly se-

lecting subsets St from a large set of deployed sensors, in
order to maximize a sequence of submodular utility func-
tions f1, . . . , fT . We developed an efficient Distributed On-
line Greedy algorithm DOG, which we proved to obtain no
(1 − 1/e)-regret, essentially the best possible performance
obtainable unless P = NP . Our algorithm is fully dis-
tributed, requiring only a small number of messages to be ex-
changed at each round with high probability. We analyze our

algorithm both in the broadcast model (where sensors can
broadcast messages to all other sensors), and in the point-
to-point model, where a separate base station is responsi-
ble for computing utilities of selected sets of sensors. Our
LAZYDOG algorithm for the latter model uses lazy renor-
malization in order to reduce the number of messages re-
quired from Θ(n) to O(k log n), and the server memory re-
quired from Θ(n) to O(k + log n), where k is the desired
number of sensors to be selected. In addition, we developed
OD-DOG, an extension of DOG that allows observation-
dependent sensor selection. We empirically demonstrate the
effectiveness of our algorithms on three real-world sensing
tasks, demonstrating the ability of our DOG algorithm to
converge to a comparable performance of the offline algo-
rithm. In addition, our results with the OD-DOG algorithm
indicate that a small number of extra sensor activations can
lead to drastically improved convergence. We believe that
our results provide an interesting step towards a principled
study of distributed active learning and information gather-
ing approaches.
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APPENDIX
A. RESULTS IN THE BROADCAST MODEL

PROOF OF THEOREM 1. To prove the regret bounds, note
that in every round the distribution over sensor selections in
the variant of EXP3 we describe (that uses the distributed
multinomial sampling scheme and repeatedly reruns the pro-
tocol in order to always select some sensor in each round)



is precisely the same as the original EXP3. Thus the regret
bounds for EXP3 [2] carry over unchanged. We next bound
the number of broadcasts. Fix a round, and let S set of sen-
sors that activate in that round. The total number of broad-
casts is then |S|+2; using their calibrated clocks, each sensor
(re)samples Xv ∼ Poisson(αpv) and activates if Xv ≥ 1.
If no sensors activate before a specified timeout period, the
default behavior is to rerun the sampling step. Eventually
|S| ≥ 1 sensors activate in the same period. A distinguished
sensor in S then determines the selected sensor v, broad-
casts id(v), and v broadcasts its observed reward. We prove
E [|S|] ≤ α/(1−e−α) in Proposition A.1. When α = 1, this
gives us the claimed bound on the number of broadcasts.

PROPOSITION A.1. Rerunning the limit protocol until an
element is selected results in at most α/(1 − e−α) elements
being activated in expectation. Moreover, this value is tight.

PROOF. LetXv ∼ Bernoulli(α · pv) be the indicator ran-
dom variable for the activation of v, and let X :=

∑
vXv .

The expected number of sensor activations is then

E [X | X ≥ 1] = E [X] /Pr [X ≥ 1] .

In the limit as maxv pv tends to zero, X converges to a Pois-
son random variable with mean α. In this case, E[X]

Pr[X≥1] =
α/(1− e−α) To see that this is an upper bound, consider an
arbitrary distribution p on the sensors, and fix some v with
x := pv > 0. We claim that replacing v with two sen-
sors v1 and v2 with positive probability mass x1 and x2 with
x = x1 + x2 can only serve to increase the expected num-
ber of sensor activations, because E [X] is unchanged, and
Pr [X ≥ 1] decreases. The latter is true essentially because
Pr [∃i ∈ {1, 2} : vi activates] = 1 − (1 − x1)(1 − x2) =
x − x1x2 < x. To complete the proof, notice that repeating
this process with v = arg max(pv) and xi = x/2 ensures
X converges to a Poisson variable with mean α, while only
increasing E [X | X ≥ 1].

B. RESULTS IN THE POINT-TO-POINT
MODEL

In this section we will bound the communication overhead
of using lazy renormalization for any MAB algorithm satis-
fying certain assumptions enumerated below, and then show
how these bounds apply to EXP3.

Fix an action v and a multiarmed bandit algorithm. Let
pv(t) ∈ [0, 1] be the random variable denoting the probabil-
ity the algorithm assigns to v on round t. The value of pv(t)
depends on the random choices made by the algorithm and
the payoffs observed by it on previous rounds. We assume
the following about each pv(t).

1. pv(t) can be computed from local information v pos-
sesses and global information the server has.

2. There exists an ε > 0 such that pv(t) ≥ ε for all t.
3. pv(t) < pv(t+ 1) implies v was selected in round t.

4. There exists ε̂ > 0 such that pv(t+ 1) ≥ pv(t)/(1 + ε̂)
for all t.

Many MAB algorithms satisfy these conditions. For exam-
ple, all MAB algorithms with non-trivial no-regret guaran-
tees against adversarial payoff functions must continually
explore all their options, which effectively mandates pv(t) ≥
ε for some ε > 0. In Lemma 1 we prove that EXP3 does so
with ε = γ/n and ε̂ = (e− 1) γn , assuming payoffs in [0, 1].
In this case, Theorem 4 bounds the expected increase in sen-
sor communications due to lazy renormalization by a factor
of 1 + e−1

α .

THEOREM 4. Fix a multiarmed bandit instance with pos-
sibly adversarial payoff functions, and a MAB algorithm sat-
isfying the above assumptions on its distribution over actions
{pv(t)}v∈V . Let qv(t) be the corresponding random esti-
mates for pv(t) maintained under lazy renormalization with
oversampling parameter α. Then for all v and t,

E [qv(t)/pv(t)] ≤ 1 +
ε̂

αε

and

E [qv(t)] ≤
(

1 +
ε̂

αε

)
E [pv(t)] .

PROOF. Fix v, and let p(t) := pv(t), q(t) := qv(t). We
begin by bounding Pr [q(t) ≥ λp(t)] for λ ≥ 1. Let t0 be
the most recent round in which q(t0) = p(t0). We assume
q(0) = p(0), so t0 exists. Then q(t) = p(t0) ≥ λp(t) im-
plies p(t0)/p(t) ≥ λ. By assumption p(t′)/p(t′ + 1) ≤
(1 + ε̂) for all t′, so p(t0)/p(t) ≤ (1 + ε̂)t−t0 . Thus λ ≤
(1 + ε̂)t−t0 and t − t0 ≥ ln(λ)/ ln(1 + ε̂). Define t(λ) :=
ln(λ)/ ln(1 + ε̂).

By definition of t0, there were no activations under lazy
renormalization in rounds t0 through t − 1 inclusive, which
occurs with probability

∏t−1
t′=t0

(1−αq(t′)) = (1−αq(t))t−t0
≤ (1− αq(t))dt(λ)e, where α is the oversampling parameter
in the protocol. We now bound E [q(t)/p(t) | q(t)]. Recall
that E [X] =

∫∞
x=0

Pr [X ≥ x] dx for any non-negative ran-
dom variable X . It will also be convenient to define ω :=
ln(1/(1−αq(t)))/ ln(1+ ε̂) and assume for now that ω > 1.
Conditioning on q(t), we see that

E [q(t)/p(t) | q(t)] =
∫∞
λ=0

Pr [q(t) ≥ λp(t)] dλ

= 1 +
∫∞
λ=1

Pr [q(t) ≥ λp(t)] dλ

≤ 1 +
∫∞
λ=1

(1− αq(t))t(λ)dλ

= 1 +
∫∞
λ=1

λln(1−αq(t))/ ln(1+ε̂)dλ

= 1 +
∫∞
λ=1

λ−ωdλ

= 1 + 1
ω−1

Using ln
(

1
1−x

)
≥ x for all x < 1 and ln(1 + x) ≤ x for

all x > −1, we can show that ω ≥ αq(t)/ε̂ so 1 + 1
ω−1 ≤



αq(t)/(αq(t) − ε̂). Thus, if αq(t) > ε̂ then ω > 1 and we
obtain E [q(t)/p(t) | q(t)] ≤ αq(t)/(αq(t)− ε̂).

If q(t) >> ε̂, this gives a good bound. If q(t) is small, we
rely on the assumption that p(t) ≥ ε for all t to get a trivial
bound of q(t)/p(t) ≤ q(t)/ε. We thus conclude

E [q(t)/p(t) | q(t)] ≤ min (αq(t)/(αq(t)− ε̂), q(t)/ε) .
(B.1)

Setting q(t) = (ε̂/α+ ε) to maximize this quantity yields an
unconditional bound of E [q(t)/p(t)] ≤ 1 + ε̂/αε.

To bound E [q(t)] in terms of E [p(t)], note that for all q

q/E [p(t) | q(t) = q] ≤ E [q(t)/p(t) | q(t) = q]
≤ 1 + ε̂/αε

where the first line is by Jensen’s inequality, and the second
is by equation B.1. Thus q ≤ (1 + ε̂/αε) E [p(t) | q(t) = q]
for all q. Taking the expectation with respect to q then proves
E [qv(t)] ≤

(
1 + ε̂

αε

)
E [pv(t)] as claimed.

LEMMA 1. EXP3 with η = γ/n satisfies the conditions
of Theorem 4 with ε = γ/n and ε̂ = (e− 1) γn .

PROOF. The former equality is an easy observation. To
prove the latter equality, fix a round t and a selected ac-
tion v. Let wv(t) be the weight of v in round t, and W (t)
be the total weight of all actions in round t. Let π be the
payoff to v in round t. Given the update rule wv(t + 1) =
wv(t) exp

(
γ
n
π(v,t)
pv(t)

)
, only the probabilities of the other ac-

tions will be decreased. It is not hard to see that they will be
decreased by a multiplicative factor of at most W (t)/W (t+
1), no matter what the learning parameter γ is. By the update
rule,

W (t+ 1) = W (t) + wv(t)
(

exp
(
γ

n

π

pv(t)

)
− 1
)

.

Let p := pv(t) and x := γ
nπ. Dividing the above equation

by W (t), we get

W (t+ 1)
W (t)

= 1 + p (exp (x/p)− 1) (B.2)

≤ 1 + p
(
x/p+ (e− 2)(x/p)2

)
(B.3)

≤ 1 + x+ (e− 2)x2/p (B.4)

where in the second line we have used ex ≤ 1+x+(e−2)x2

for x ∈ [0, 1]. Note π ≤ 1 implies x ≤ γ/n ≤ p, so
W (t+1)
W (t) ≤ 1+(e−1)x ≤ 1+(e−1) γn . It follows that setting
ε̂ = (e−1) γn is sufficient to ensure pv(t+1) ≥ pv(t)/(1+ ε̂)
for all t.

We now prove Theorem 3 and Corollary 6.1.

PROOF OF THEOREM 3.. We prove in Lemma 1 that EXP3
satisfies the conditions of Theorem 4 with ε = γ/n and

ε̂ = (e− 1) γn . Thus by Theorem 4

E

[∑
v

qv(t)

]
≤ (1 + (e− 1)/α) E

[∑
v

pv(t)

]
= (1 + (e− 1)/α)

because
∑
v pv(t) = 1. Each sensor v activates with proba-

bility αqv(t), so the expected number of activations is

E

[
α
∑
v

qv(t)

]
≤ α (1 + (e− 1)/α) .

Also, it is not too difficult to show that lazy renormalization
selects each sensor v with probability (1 − e−α)pv(t), be-
cause of the way the random bits rv are shared in order to
implement a coupled distribution for sensor activation and
selection.

As for the number of messages, note that each message
involves a sensor as sender or receiver, and by inspection the
protocol only involves two messages per activated node.

PROOF OF COROLLARY 6.1.. Use the distributed EXP3
protocol with lazy renormalization with α = lnn. We have
already established that the probability of nothing being se-
lected is e−α or 1/n in this case. If nothing is selected, send
out n messages, one to each sensor, to rerun the protocol.
The expected number of messages sent to initiate additional
runs of the protocol is

∑∞
x=1 nx/n

x = (1− 1/n)−2 =
1 +O(1/n). Let X be the number of sensor activations. As
in the proof of Proposition A.1, if Y is the expected number
of sensor activations without rerunning the protocol when
nothing is selected, then E [X] = E [Y ] /Pr [Y ≥ 1]. By
Theorem 3 E [Y ] ≤ α (1 + (e− 1)/α). Since Pr [Y ≥ 1] =
1− e−α, we conclude

E [X] ≤ lnn+ (e− 1) +O
(

lnn
n

)
.

As for the number of messages, note that other than mes-
sages sent to initiate additional runs of the protocol, there
are only two messages per activated node.
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