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Key insight: GBS is adaptive submodular

 How should we perform experiments to determine the most Strategy: Reduce noisy problem

accurate scientific theory among competing candidates? AGBS (S | l'A) > AG’BS (S ‘ ZUB) whenever TA = TR to noiseless problem We behaviorally test theori.es of de.cision-making }Jnder ur}certainty where the
2 i includes all observations in 4 and tests are generated dynamically using the EffECXtive algorithm.

: - - possibly more. Key Idea: Make test outcomes
* How should we dec.lde amons e)’(penS|v.e. medical procedures Adaptive submodularity [Golovin & Krause, COLT 2010] generalizes part of the hypothesis * Prospect Theory  Ul(z,p) = » (=A)pilz:l” + > pilzi|” ‘
to accurately determine a patient’s condition? submodularity to the adaptive setting. 2<0 v>0 e

X X, Y * Mean-Variance-Skewness U(z,p) = it — ay0? + o, v = ———— outeome
* How should we select which labels to obtain in order to Adaptive-Greedy is a | (In(1/pmin) + 1) |approximation v = [X1, X, X « Expected Value U(z,p) =Y piz; /
determine the hypothesis that minimizes generalization error? . o o z . revn s
Results require that tests are exact (no noise)! « Constant Relative Risk Aversion U(z,p) = sz'(ﬂff,: ") /(1 = p)

Suppose we

What would you prefer?

. Bayesian Active Learning with Noisy Observations: find X; =1 Experimental design:
We have to sequentially 7 | |
select amona a set Of | : b : : Its f icof g i - Prob. 4 -/ Prob. & _7 Choice between 2 lotteries.
g n practice, observations are noisy. Results for noise free case do not generalize. 4 Each lottery has a loss,
] 1 & i neutral and gain outcome
o Psychomotor nolsy, Expensive Key Problem: Tests no longer eliminate hypotheses (only make them less likely) 3 3 with varying probabilities.
o gitation observations in order to : : | N
. O . . ] o o We varied the probabilities
% determine which Suppose all tests are run, see L'V, best we can do is maximize expected utility: H H for the outcomes.
P(NO)\\ Skin paleness? hypothes,s IS most
- - +
nes? accurate. a” = argmax E Py |xv)U(a,y) 105 05 +105 10> 05 +105
Aches: a Ground truth analysis: We randomly generate a true hypothesis and parameter. We pick the MAP hypothesis after
Y %, 30 tests and check if it corresponds to truth. We repeat this for 1000 trials.
How should we cheaply test to guarantee that we choose (1 : Weight of edge = . With .
. . . , oroduct of incident Fixed parameter ith parameter uncertainty
Bayesian Active Learning problem: Existing approaches: s 1 | 1 e
ot - e Generalized binary search? Not adaptive submodular | i
Distinguish among a set of hypotheses {h,,--- , h,,} + Maximize information gain? in the noisy setting! EfECXUve ~infoGain
oy performing tests from a set T = {13 cee N} of possible tests. * Maximize value of information? The expected conditional marginal benefit for test t upon observations X A: 08
Running test t incurs cost ¢(¢) and produces an outcome in{1,...,¢} Our noise model: Apc(t | z4) = Elweight of edges eliminated] . /_f_.- z rcsrmigsamoivg|  §
With noisy observations, E / Random rerEL | g ”E
We have a prior distribution P modeling assumptions on the joint P(Xy,....Xn [ H) is not deterministic. . . . ol ]
probability P(H X, - XN) over the hypotheses and test Thg noise is modeled with a random Theorem: For the adaptive greedy policy mgc implemented
" " " variable ©, so that P(X1,...,X,, | H,0) 2
outcomes. . 22 by EC#, it holds that
is deterministic.
Noise-free Bayesian Active Learning: c(mpc) < (2In(1/Puim) + 1) e(7*) : % = = ; e = -
SUppOSE that P(Xt ’ H) is deterministic (nO|Se'erE) Greedily max,',tnizing Information Gain is not adaptive submodular in the noisy case: h P mind P . p 0 is th .. : EffECXtive outperforms InfoGain when the hypotheses are identifiable, and performs as well as InfoGain when
Example: H is a random oval, and © € {up7 dOWﬂ} WIEre . fmn T mln{ (XV) . (XV) > } 15 . C mmm.lum pI‘l(?I‘ there is parameter uncertainty, which violates the identifiability assumption of EC?.
Each test rules out a set of hypotheses, based on its outcome. Test result positive [ \Linear probability of any outcome vector, and 7™ is the optimal policy. 1 - -
. Test result negative L 6 @6 6 ) Tests 6 66 6 Learn @ =T, "':E%x We tested 11 human subjects using Caltech
How should we test to rule out all incorrect hypotheses? ‘ ) \ y , | | , , o | . 0.8| " - IRB protocols.
i _ 6 6@6 r ) Reducing Bayesian active learning to Equivalence Class Determination may in some = Most subjects (n=7) were classified as
probability mass I(S:ceedily;.magmizing W \6 6@6 )} Binary ir;]stla;nces result in exponentially-large eqluivalence classes, which makes running EC? 2 o AT | EXpeCtedJVaIue e
S : nrormation Gain r N [ search challenging. We can use rejection sampling. 7
AGBS(S ‘ CCA) = I | ruled out by s if chooses all Linear \ J @666 Sing J Ping s = ey Some subjects (n=2) exhibited risk aversion
| g A ot _ , N= | and loss aversion and were classified as
- we know T A tests: 6 6@6 : g Alternatively we develop the Efficient Edge Cutting approXimate objective algorithm < 4 TY CRRA. n=1 Prospect Theory types.
\ ) . p) . . . . E HH
Generalized Binary Search (GBS)Z that approximates the EC“ objective function: £ . A | One subject violated stochastic dominance
. : n : _ _ _ _ - and behaviour was best classified using Mean-
Greedily maximize AGBS Theorem: All previous approaches pay Q(@) times the The EffECXtive objective function & MVS, n=1 Variance-Skewness theory.

_ S _ optimum with noisy observations, in the worst case, even 5 5 %% - = = 20 o5 30
(equivalent to maximizing info-gain.) when © has constant-sized support, and pui = O(1/n) Agpe(t|za) = Z P(X, =z $A)(Zp(hi |24, Xy = 1)?) — Zp(hi |2 4) No. of Tests




