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ETH Zürich

Zurich, Switzerland

Beth Gardner
NCSU

Raleigh, NC, USA

Sarah J. Converse
USGS Patuxent WRC

Laurel, MD, USA

Steve Morey
USFWS

Portland OR, USA

Abstract

Consider the problem of protecting endangered species by
selecting patches of land to be used for conservation purposes.
Typically, the availability of patches changes over time, and
recommendations must be made dynamically. This is a chal-
lenging prototypical example of a sequential optimization
problem under uncertainty in computational sustainability. Ex-
isting techniques do not scale to problems of realistic size. In
this paper, we develop an efficient algorithm for adaptively
making recommendations for dynamic conservation planning,
and prove that it obtains near-optimal performance. We further
evaluate our approach on a detailed reserve design case study
of conservation planning for three rare species in the Pacific
Northwest of the United States.

1 Introduction
One key challenge in computational sustainability is to al-
locate resources in order to optimize long-term objectives.
An archetypal application is conservation planning: man-
agers recommend patches of land for conservation in order to
achieve long-term persistence of endangered species. In this
and similar applications, we typically have to make decisions
over time: Financial resources (or other budgets) are peri-
odically made available and should be used effectively. For
example, every year, a certain budget may be available to sup-
port land conservation. The problem of how to optimally use
this budget over time, facing uncertainty about the availability
of future resources, is a challenging optimization problem.

In this paper, we tackle this optimization problem using
conservation planning as an important real-world example
of such a decision task. We prove a surprising fact: Under
some natural conditions, a simple policy, that in every round
of the decision making process opportunistically allocates
the budget given the current reserve and current resources,
attains a performance which is competitive with the optimal
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clairvoyant policy with knowledge of the future availability
of resources. While there is a significant amount of both
theoretical and applied work on conservation planning (which
we review in §5), we are unaware of principled approaches
that can solve such dynamic problems on a realistic scale.

We further conduct a detailed computational study, evalu-
ating our approach on the problem of conservation planning
for three rare taxa (see Fig. 1(a)) in the Pacific Northwest
of the United States. Our case study uses complex patch dy-
namics models (Hanski et al. 1996) for predicting persistence
of species, using parameters elicited from an expert panel.
Our results indicate that the optimized solutions outperform
baselines, and that significant benefit can be derived from
dynamic optimization.

2 Problem Statement
In the following, we formalize the problem of recommend-
ing parcels of land for conservation in order to maximize
the persistence probability of a set I of species of interest.
Let U be the set of all parcels (atomic units of land) in the
geographic area. In many cases, such as in our case study
described in §4.1, individual parcels may be too small to be
managed as separate reserves, or to serve by themselves as a
viable habitat for any particular species. Multiple, spatially
adjacent parcels satisfying certain constraints (such as on the
minimum total size) can form a patch P of land, which can
be recommended for conservation (see also Fig. 1(b)). Let P
be the set of all feasible patches. Our goal is to select one or
more patchesR ⊆ P as a reserve, in order to maximize the
long-term persistence probability of the species.

There are two main questions which we formalize in the
following: 1) How can one quantify the benefit of a particular
reserve for the purpose of sustaining the species, and 2) how
can one effectively maximize this objective function?

2.1 Modeling Species Dynamics
Since we would like to ensure long-term survival of the
species, we model the population dynamics among the
parcels recommended for conservation. We use a patch
dynamics model, i.e., employ Bernoulli random variables
Z

(i)
p,t ∈ {0, 1} for i ∈ I, p ∈ U and t ∈ N to model whether

species i is present (1) or absent (0) on parcel p at time t
(usually, in t years). The random vector Zt = [Z

(i)
p,t]i∈I,p∈U

models the state of all parcels at time t. We model the



(a) Rare species considered in our case study

	  
 
	  
 

	   	   

(b) Problem domain

...
...

...
...

!"
#$
%&
'&

!"
#$
%&
(&

R

ηt ηt+1

Z
(i)
2,t

Z
(i)
1,t

Z
(i)
5,t

Z
(i)
5,t+1

Z
(i)
2,t+1

Z
(i)
1,t+1

(c) Controlled DBN

Figure 1: (a) The three taxa considered in our case study include the streaked horned lark (left), Taylor’s checkerspot (middle) and the Mazama
pocket gopher (right). (b) Illustration of the problem domain. A map is partitioned into parcels (white cells), which are grouped into contiguous
patches (red) of land. We model annual survival and colonization within selected patches. (c) Illustration of our metapopulation model.

species survival as a controlled Dynamic Bayesian Network
(DBN, see e.g., Koller and Friedman [2009], and illustrated
in Fig. 1(c)) with prior probability P [Z1] and transition prob-
abilities P [Zt+1 | Zt,R, ηt], i.e., the presence of species at
time t+1 depends on the presence at time t as well as which
patches have been selected for conservation, and environmen-
tal conditions ηt (e.g., modeling the effect of a harsh winter).
Hereby, the transition probability factorizes as

P [Zt+1 | Zt,R, ηt] =
∏
i

∏
p

P
[
Z

(i)
p,t+1 | Zt,R, ηt

]
, (1)

and the environmental conditions η̃ = (η1, . . . , ηT ) form
a Markov chain. We need to capture two aspects with the
species survival model P

[
Z

(i)
p,t+1 | Zt,R, ηt

]
: the fact that

a population may or may not survive on its own within a
parcel, and the fact that other populations of the same species
may colonize it from nearby parcels. These distributions can
be quite complex, and depend on habitat attributes of the
parcels (e.g., vegetation, soils, etc.) as well as properties of
the particular reserves (i.e., whether the contained parcels are
separated by roads or waterways which hinder migration),
and global properties (e.g., the likelihood of a harsh winter).
In §4.1, we present details about the models used in our study.

2.2 Static Reserve Design
Once we are able to model the population dynamics of the
species, we would like to choose a reserveR to ensure long-
term persistence. One natural goal is to define an objective
function f (i) : 2P → R such that

f (i)(R) = P
[
∃P ∈ R, p ∈ P : Z

(i)
p,T = 1

]
,

quantifies the probability that species i is still present in at
least one parcel in the reserve after some prediction hori-
zon T (e.g., after 50 years). In order to ensure persistence
of all species i ∈ I, a natural objective function is (typi-
cally in years) f(R) =

∑
i∈I wif

(i)(R), where wi are a
set of weights associated with the different species. In the
following, w.l.o.g., we set wi = 1 for all species i, and thus
f(R) effectively quantifies the expected number of species
persisting after T timesteps.

Typically, each candidate patch P also has some cost c(P )
for reservation, e.g., its monetary cost, or the effort required
to negotiate for its protection with the owners of its parcels.
The goal of the static conservation planning problem then is
to select a reserve

R∗ = argmax
R : c(R)≤b

f(R), (2)

that maximizes the persistence probability while respecting a
budget constraint b on the total cost c(R) = ∑

P∈R c(P ).

2.3 The Dynamic Reserve Design Problem
In many natural reserve design settings, such as the one in
our case study, it is not possible to conduct and implement
a single optimization. Instead, we have to solve a sequen-
tial decision making process where over time new resources
(patches of land and budget to spend) become available, and
we have to dynamically determine recommendations based
on our previous actions. Let Pt ⊆ P be the set of patches
available for potential conservation at time t. Note that the
sequence P1, . . . ,PT may not be known to us in advance;
we may not know if or when a particular patch becomes a
candidate for conservation. LetRt denote the set of patches
selected in the first t time steps. At every timestep, we are
given a budget bt, and can select a collectionR′ of additional
patches from Pt of cost at most bt, taking into account which
patches we have already selected, and setRt = Rt−1 ∪R′.
Unused budget from one timestep does not carry over to the
next timestep. For clarity of presentation, here we consider
the setting where conservation recommendations are made
on a faster timescale than the patch dynamics. Thus, the goal
is to plan the recommendation of patches to protect such that
the final reserve1 RT maximizes the persistence probability
f(RT ).

Formally, we are interested in a conservation policy π :
2P × 2P ×N×R+ → 2P , such that π(R,P ′, t, b) specifies
which patches to recommend at time t, given that we have
already selected patches R, have the set P ′ of patches to
choose from, and budget b to spend. A policy is feasible if,
whenever π(R,P ′, t, b) = R′, thenR′ ⊆ P ′ and c(R′) ≤ b.

1Our model can be extended so that f also depends on the
sequence of selections. We defer to an extended version of this paper.



For simplicity we focus on feasible stationary policies (i.e.,
π is independent of t).

For fixed sequences of available patches and budgets P̃ =
(P1, . . . ,PT ) and b̃ = (b1, . . . , bT ), let R(π, P̃, b̃) ⊆ P be
the final reserve assembled at time T . We say a policy is
α-competitive for some α ∈ [0, 1] if for all P̃ and b̃ we have

f(R(π, P̃, b̃)) ≥ α max
feasible π′

f(R(π′, P̃, b̃)). (3)

We call the problem of efficiently determining an α-
competitve policy the dynamic reserve design problem. Note
that α-competitiveness is a very strong notion: It requires that
the selected reserve be nearly as good as a reserve that could
be selected by a clairvoyant policy, one that gets to know the
sequences P̃ and b̃ in advance.

3 Optimization Algorithm
Even for a single timestep, selecting the set of patches that
maximizes the survival probability is an NP-hard optimiza-
tion problem2. Despite this hardness, in the following, we
present an efficient policy that exploits certain structural fea-
tures for dynamic conservation planning.

3.1 Problem Structure.
We will prove that if species do not colonize between sepa-
rate patches, then we can guarantee near-optimal solutions.
Formally, we require that

P [ZP,t+1 |Zt,R, ηt]=P [ZP,t+1 | ZP,t, [P ∈ R], ηt] , (4)

where ZP,t is the state of all parcels in patch P at time t,
and [P ∈ R] refers to a binary variable indicating whether
P ∈ R. Thus, the patch dynamics for patch P depend only
on the state of all parcels in patch P , whether P is included
in reserve R, and environmental conditions η. This condi-
tion is naturally satisfied if the candidate patches are spa-
tially separated, such that natural barriers blocking coloniza-
tion are likely to exist. Note that crucially we do model
colonization between parcels within one patch. Under con-
dition (4), it can be shown that the function f(R) satis-
fies a natural diminishing returns condition: It holds that
f(R ∪ {P}) − f(R) ≥ f(R′ ∪ {P}) − f(R′) whenever
R ⊆ R′. Set functions with this property are called sub-
modular3 (c.f., Nemhauser, Wolsey, and Fisher, 1978). Fur-
thermore, it holds that f is monotonic, i.e., f(R) ≤ f(R′)
wheneverR ⊆ R′.
Proposition 1. Suppose Condition (4) holds. Then the func-
tion f : 2P → R is a monotonic submodular function.

Proof. Fix environmental conditions sequence η̃ and initial
states for all parcels z0. Using the factorial structure of the
DBN (1) and assumption (4), one can show by induction on
T that P [ZT | z0,R, η̃] =

∏
P P [ZP,T | z0,R, η̃]. Thus

P
[
∃P ∈R, p∈P :Z

(i)
p,T = 1 |z0,R, η̃

]
=1−

∏
P∈R

qP,i(z0, η̃),

2Using a reduction from the max-k-cover problem.
3Note that without this condition, submodularity can be violated

as shown by Sheldon et al. [2010].

where qP,i(z0, η̃) := P
[
∀p ∈ P : Z

(i)
p,T = 0 | z0,R, η̃

]
.

One can see that g(R; z0, η̃) := 1 − ∏
P∈R qP,i(z0, η̃) is

monotonic submodular inR. Since nonnegative linear com-
binations preserve submodularity, the objective f(R) =∫
g(R; z0, η̃)dP [z0, η̃] is monotonic submodular.

Note that this result is rather general: In particular, it sup-
ports modeling complex relationships among species (such
as symbiosis or predator-prey relationships), and arbitrary
(potentially correlated) priors on the initial occupancy P [Z0].

3.2 Solving the Static Problem
For submodular functions, a seminal result of Nemhauser,
Wolsey, and Fisher [1978] states that a simple greedy al-
gorithm, which starts with R0 = ∅, and iteratively sets
R`+1 = R` ∪ {argmaxP f(R` ∪ {P})} achieves a near-
optimal solution in the case where the cost of all patches is
uniform: It holds that f(Rk) ≥ (1 − 1/e)max|R|≤k f(R).
Using a more complex algorithm which combines partial
enumeration with greedy selection, the same guarantee can
be obtained for arbitrary nonnegative costs (c.f., Sviridenko,
2004). This algorithm can hence be used to obtain a near-
optimal solution to the static reserve design problem (2).

3.3 Opportunistic Dynamic Selection
The dynamic problem (3) appears much more demanding:
In principle, to do well, one may need to plan ahead based
on which patches may become available at future timesteps,
but there is a combinatorial number of possibilities. In the
following, perhaps surprisingly, we show that one can do well
purely by opportunistically selecting patches at each round,
disregarding the potential availability of patches in the future.
Formally, in round t the algorithm implements the policy

πopp(Rt−1,Pt, t, bt) = argmax
R′⊆Pt:c(R′)≤bt

ft(R′), (5)

where ft(R′) := f(Rt−1 ∪ R′) − f(Rt−1) is the residual
objective at round t. We have the following result:
Theorem 2. The policy πopp is 1/2-competitive, that is

f(R(πopp, P̃, b̃)) ≥ 1/2 · max
feasible π

f(R(π, P̃, b̃)).
If we use a β-approximate implementation of πopp, the result-
ing policy is β/(1 + β) competitive.

Note that if f is submodular, then so is ft. Thus, prob-
lem (5) is an instance of the static design problem (2) and
thus we can use the algorithm analyzed by Sviridenko [2004]
for optimization (β = 1− 1

e ), resulting in a e−1
2e−1 -competitive

policy. Thus, this simple opportunistic policy obtains at least
38.7% of the reward of any feasible policy, even clairvoyant
ones (which know when each patch will become available).

Proof Sketch. Suppose the sequences P̃ and b̃ are given in ad-
vance. Then the problem of developing an optimal policy can
be reduced to the problem of maximizing a submodular func-
tion subject to a simple partition matroid constraint with the
base set F1 ∪ · · · ∪ FT , where Ft = {R ⊆ Pt : c(R) ≤ bt}.
The (approximate) opportunistic policy can then be seen to
be the (approximate) locally-greedy algorithm applied to this
problem instance, and the result follows from the analysis of
Goundan and Schulz [2007].



(a) Elicited survival probabilities for SHL
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(b) Fitted survival probabilities for SHL
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(d) Dynamic reserve design
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(e) Dynamic reserve design
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Figure 2: Experimental results.

4 Experimental Results
4.1 Reserve Design Case Study
We are conducting a computational study in collaboration
with the US Fish and Wildlife Service Washington Office, in
Washington State, USA. The eventual goal of this collabora-
tion is to develop a tool that will facilitate decision-making
about assembly of a reserve adequate to protect three Federal
Candidate taxa inhabiting a remnant prairie ecosystem in
the South Puget Sound region. The target species are Tay-
lor’s checkerspot (TCS; Euphydryas editha taylori), Mazama
pocket gopher (MPG; Thomomys mazama), and streaked
horned lark (SHL; Eremophila alpestris strigata). As part of
this effort, we held elicitation workshops to garner the input
of biologists with expertise on the target taxa and the South
Puget Sound prairie ecosystem. The goal of these workshops
was to parameterize patch dynamics models for each of the
species. Substantial uncertainty currently exists about the
ecological processes governing the behavior of populations
of the target taxa. Our intent during the workshops was to
formally capture this uncertainty, via inter-expert variation,
so that it could be reflected in the predictive patch dynamics
models, and ultimately conservation recommendations could
be obtained that are robust to this uncertainty; to do so we
used a modified Delphi process for expert elicitation (c.f.,
Vose, 1996). Fig. 2(a) presents an example annual survival
curve elicited from an expert for SHL, and Fig. 2(b) shows a
fit based on inputs from multiple experts. The primary objec-
tive is to maximize persistence probability after 50 years for
each of the candidate taxa. We first identified the set of land
parcels in appropriate portions of the Washington counties of

Grays Harbor, Lewis, Mason, Pierce, and Thurston (including
Ft. Lewis Army Base): These are located at least partially on
appropriate prairie soil types; are classified by county survey-
ors offices as undeveloped, agriculture, open space, or forest;
and are at least 5 acres in size and can be combined with
adjacent qualifying parcels to assemble a contiguous patch
that is at least 100 acres in size. We also obtained spatial
data on soil types, elevation, vegetation type, and barriers
(selected roads and water ways), which were processed us-
ing ArcGIS 9.3 (Environmental Systems Research Institute
2008) to determine the habitat properties of each parcel and
the barriers hindering colonization.

We use parametric models for the stochastic aspects in the
patch dynamics model P

[
Z

(i)
p,t+1 | Zt,R, ηt

]
. Due to space

limitations, we only provide an overview here.

1. Annual Survival. Annual survival of a population in a
parcel depends on the usable habitat size. This dependence
of the survival probability on habitat size, as well as the
factors determining habitat size itself, were elicited. Since
ecological processes vary over time, and environmental
conditions (e.g., a harsh winter, the spread of a disease) can
affect survival, we estimate a spatially correlated reduction
or increase in the effective habitat area by using a Gaussian
process model with exponential kernel; the components of
this model (e.g., the degree of annual variance and spatial
correlation in variance), were also elicited from experts.

2. Colonization. The probability of species colonization is
modeled using a parametric function of the source parcel
habitable area (annually-varying, as described above), the



distance between source and target parcel, and environ-
mental conditions using models from the literature where
available (for the Taylor’s checkerspot; see Hanski et al.
[1996]) or based on expert elicitation. Barriers (interstates,
major highways, and water bodies) reduce migration prob-
ability to varying degrees for TCS and MPG.

Prior distributions on the parameters of these stochastic com-
ponents were elicited from the expert panel. In order to cap-
ture the variation, we conduct multiple simulations, with pa-
rameters sampled from the estimated prior distributions. For
conservation cost, we use the size (in km2) of each parcel.

4.2 Experimental Setup
We generate contiguous candidate patches from the parcels
by a region growing process, which picks a random parcel as
seed, and then iteratively grows the patch up to a random size.
This growth process is randomly biased to avoid complex
boundaries. Using this procedure we generate 10,000 candi-
date patches for selection. To evaluate the objective function,
we generate 100 random samples from the DBN (1). To avoid
overfitting, two thirds of those are used for optimization (as
done, for example by Sheldon et al. [2010] for a similar prob-
lem), and the quality of the solutions are evaluated against
the remaining one third. As noted by Sheldon et al. [2010],
the advantage of this procedure is that preprocessing can be
used to drastically speed up computation and bounds on the
generalization error can be obtained. Further, instead of using
the algorithm described by Sviridenko [2004] for solving
Problem (2), we use a faster algorithm of Leskovec et al.
[2007] that also carries theoretical guarantees.

4.3 Optimization Results
In our experiments, we mainly aim to investigate the follow-
ing questions:

1. How much better do optimized solutions perform com-
pared to simple baselines?

2. How much can be gained from dynamic optimization?
We first conduct experiments on the static reserve design
problem (2). We vary the budget from 0 to 60 km2, and com-
pare the optimized reserves with random selection, as well
as selecting patches according to decreasing area. Fig. 2(c)
presents the results. Note that optimized selection drastically
outperforms the baselines. Running time for this problem
instance is less than 45 seconds on a standard 2.66 GHz,
4 GB configuration. Fig. 3 shows a solution obtained for
b = 10km2.

We then evaluate our near-optimal policy for dynamic
conservation planning. We randomly partition the set of all
patches into T = 10 different subsets P1, . . . ,PT . In our
experiment, we vary the budget bt which is made available in
each round from 0 to 60 km2. We then opportunistically se-
lect patches each round, either by optimization, in decreasing
order of area, or at random. All experiments are repeated, and
results averaged, over 10 random trials. In order to estimate
the benefit of dynamic selection, we also compare against
another baseline, where we a priori (approximately) optimize
a fixed reserve (having access to all patches and the entire
budget), and then, for this fixed solution, pick patches in the
first round in which they become available.

0 10 205 Kms

±

Figure 3: Selected patches (red) for one solution, with b = 10km2.

In Fig. 2(d) we plot the expected number of persistent
species (after 50 years) after ten rounds of selection. Note that
the dynamically optimized solution outperforms the baselines.
Note that even after all ten rounds (i.e., after all patches
were made available) the sequential solution outperforms
the a priori solution. The reason is that the static a priori
optimization is not aware of the per-round budget constraints,
and therefore may not be able to select some patches as
they become available. Fig. 2(e) plots, for a fixed budget per
round, the value of the reserves f(Rt) during the ten rounds
of selection. Note that the dynamic approaches drastically
outperform the a priori selection.

Lastly, we also perform an experiment, where the algo-
rithms at each round attempt to recommend some patches for
conservation. However, these recommendations may fail (i.e.,
cannot be implemented due to external constraints). Here we
consider failures that happen randomly, with probability 0.5
independently for each patch4. Fig. 2(f) presents the result
of this experiment. Note that in contrast to Fig. 2(e), here the
dynamic approaches achieve much better performance than
the static baseline. The reason for this is that the dynamic
approaches may be able to substitute an “important” failed
selection by a similar alternative that becomes available in
a later round.

5 Related Work
Conservation planning. There are several powerful tools
available for conservation planning, including Marxan (Ball,
Possingham, and Watts 2009) and Zonation (Moilanen and
Kujala 2008). However, none of those tools currently im-
plements complex patch dynamics models of species persis-
tence. Also, they do not provide guarantees of (near-) opti-
mality. Perhaps closest in spirit to our work is an approach
by Sheldon et al. [2010]. They propose a network optimiza-
tion approach with applications to conservation planning. In
their approach, they model the population behavior using

4Our theoretical analysis holds even in this more general setting,
relying on a generalization of submodularity to adaptive policies
(Golovin and Krause 2010). We omit details due to space limitations.



the independent cascade model of Goldenberg, Libai, and
Muller [2001]. One particular aspect that they consider is the
non-submodularity of the reserve design problem in absence
of Condition 4. They propose an approach based on Mixed-
Integer Programming (MIP) to overcome limitations of the
greedy algorithm. However, their work does not handle the
dynamic aspects of conservation planning that are the focus
of this paper. The independent-cascade model is essential
to their approach, and it seems difficult to use it to model
complex interactions between species (such as symbiosis or
predator-prey relationships), or more complex population
dynamics (beyond presence-only population models), which
all can be handled by our approach. Furthermore, in most
of their experiments conducted on a real reserve design case
study, the non-greedy network design approach based on
MIP performs comparably to the greedy approach, providing
further evidence about the appropriateness of Condition 4.
We consider the development of principled dynamic planning
approaches that do not rely on Condition 4 an interesting
direction of future work.

Submodular optimization. The problem of adaptively op-
timizing submodular functions has been studied by Golovin
and Krause [2010]. However, their approach is not known to
provide competitiveness guarantees such as those of Theo-
rem 2, where the set of available actions changes over time.
Streeter and Golovin [2008] provide an algorithm for the
problem of online maximization of submodular functions.
In their setting, the decision maker chooses a different set
at each round, maximizing the sum of objective values at-
tained over time. The conservation planning problem does
not fit into this framework, since we are interested in building
a single set of reserves by adding patches over time. An-
other related problem is submodular optimization over data
streams, as studied by Gomes and Krause [2010]. However,
their algorithm requires that it is possible to unselect already
selected items (patches), which may not be possible in the
conservation planning problem. Lastly, the problem studied
in this paper is also related to the submodular secretary prob-
lem, studied by Bateni, Hajiaghayi, and Zadimoghaddam
[2010]. However, their guarantees require that the sequence
of elements that become available over time is randomly per-
muted. Our approach does not make any assumption about
the order in which patches become available.

6 Conclusion
We considered the problem of protecting rare species by rec-
ommending patches of land for conservation. Our approach
employs a detailed probabilistic patch dynamics model in
order to ensure long-term persistence of taxa in the selected
reserves. Our model can handle complex annual survival and
colonization patterns, as well as interactions among species
(though not demonstrated here). In order to cope with chang-
ing availability of patches, we proposed an opportunistic
policy for dynamically making recommendations. We proved
the surprising result that this simple opportunistic policy is
competitive with a clairvoyant solution that is informed in
advance of the budget in each timestep and when each patch
will be available. We conducted a detailed case study of con-
servation planning for three rare taxa in the Pacific Northwest

of the United States. Our results indicate that the optimized
solutions drastically outperform simple baselines, and that
significant benefit can be obtained from dynamic planning.
We believe that our results provide interesting insights for
dynamic/adaptive optimization, and could be useful for other
applications such as influence maximization over networks.
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