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Abstract

We consider the problem of extracting infor-
mative exemplars from a data stream. Ex-
amples of this problem include exemplar-
based clustering and nonparametric inference
such as Gaussian process regression on mas-
sive data sets. We show that these prob-
lems require maximization of a submodular
function that captures the informativeness
of a set of exemplars, over a data stream.
We develop an efficient algorithm, Stream-
Greedy, which is guaranteed to obtain a
constant fraction of the value achieved by the
optimal solution to this NP-hard optimiza-
tion problem. We extensively evaluate our
algorithm on large real-world data sets.

1. Introduction

Modern machine learning is increasingly confronted
with the challenge of very large data sets. The un-
precedented growth in text, video, and image data de-
mands techniques that can effectively learn from large
amounts of data, while still remaining computation-
ally tractable. Streaming algorithms (Gaber et al.,
2005; Domingos & Hulten, 2000; Guha et al., 2003;
Charikar et al., 2003) represent an attractive approach
to handling the data deluge. In this model the learning
system has access to a small fraction of the data set
at any point in time, and cannot necessarily control
the order in which the examples are visited. This is
particularly useful when the data set is too large to fit
in primary memory, or if it is generated in real time
and predictions are needed in a timely fashion.

While computational tractability is critical, powerful
methods are required in order to learn useful mod-
els of complex data. Nonparametric learning meth-
ods are promising because they can construct complex
decision rules by allowing the data to “speak for it-
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self”. They may use complex similarity measures that
capture domain knowledge while still providing more
flexibility than parametric methods. However, non-
parametric techniques are difficult to apply to large
datasets because they typically associate a parame-
ter with every data point, and thus depend on all the
data. Therefore, most algorithms for nonparametric
learning operate in batch mode. To overcome this dif-
ficulty, nonparametric learning methods may be ap-
proximated by specifying a budget: a fixed limit on
the number of examples that are used to make predic-
tions.

In this work, we develop a framework for budgeted
nonparametric learning that can operate in a stream-
ing data environment. In particular, we study sparse
Gaussian process regression and exemplar based clus-
tering under complex, non-metric distance functions,
which both meet the requirements of our framework.
The unifying concept of our approach is submodular-
ity, an intuitive diminishing returns property. When
a nonparametric problem’s objective function satis-
fies this property, we show that a simple algorithm,
StreamGreedy, may be used to choose examples
from a data stream. We use submodularity to prove
strong theoretical guarantees for our algorithm. We
demonstrate our approach with experiments involv-
ing sparse Gaussian Process regression and large scale
exemplar-based clustering of 1.5 million images.

2. Problem statement

We consider the problem of extracting a subset A ⊆ V
of k representative items from a large data set V (which
can, e.g., consist of vectors in Rd or other objects such
as graphs, lists, etc.). Our goal is to maximize a set
function F that quantifies the utility F (A) of any pos-
sible subset A ⊆ V. We give examples of such util-
ity functions in Sec. 3. Intuitively, in the clustering
example, F (A) measures, e.g., the reduction in quan-
tization error when selecting exemplars A as cluster
centers. In Gaussian process (GP) regression, F (A)
measures the prediction performance when selecting
the active set A. As we show below, many utility
functions, such as those arising in clustering and GP
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regression, satisfy submodularity, an intuitive dimin-
ishing returns property: Adding a cluster center helps
more if we have selected few exemplars so far, and
less if we have already selected many exemplars. For-
mally, a set function F is said to be submodular, if
for all A ⊆ B ⊆ V and s ∈ V \ B it holds that
F (A ∪ {s}) − F (A) ≥ F (B ∪ {s}) − F (B). An ad-
ditional natural assumption is that F is monotonic,
i.e., F (A) ≤ F (B) whenever A ⊆ B ⊆ V.

Since the data set V is large, it is not possible to store it
in memory, and we hence can only access a small num-
ber of items at any given time t. Let B1, . . . ,BT , . . .
be a sequence of subsets of V, where Bt is the set of
elements in V that are available to the algorithm at
time t. Typically |Bt| = m � n = |V|. For example,
hardware limitations may require us to read data from
disk, one block Bt of data points at a time.

We only assume that there is a bound ρ, such that for
each element b ∈ V, if b /∈ Bt ∪ · · · ∪ Bt+�, then � < ρ,
i.e., we have to wait at most ρ steps until b reappears.
This assumption is satisfied, for example, if Bt is a slid-
ing window over the data set (in which case ρ = n), or
V is partitioned into blocks, and the Bt cycle through
these blocks (in which case ρ is n/(mini |Bi|)). Our
goal is to select at each time t a subset At ⊆ At−1∪Bt,
|At| ≤ k, in order to maximize F (AT ) after some num-
ber of iterations T . Thus, at each time t we are allowed
to pick any combination of k items from both the pre-
vious selection At−1 and the available items Bt, and
we would like to maximize the final value F (AT ).

Our streaming assumptions mirror those in (Charikar
et al., 2003), in that we assume a finite data set in
which data items may be revisited although the or-
der is not under our control. For certain submodu-
lar objectives (FV and FC but not FH , see section 3)
we require the additional assumption that we may ac-
cess data items uniformly at random (see section 4).
Note that even if B1 = · · · = BT = V, i.e., access to
the entire data set is always available, the problem of
choosing a set

A∗ = argmax
|A|≤k

F (A)

maximizing a submodular function F is an NP-hard
optimization problem (Feige, 1998). Hence, we cannot
expect to efficiently find the optimal solution in gen-
eral. The setting where Bt � V is strictly more general
and thus harder. In this paper, we will develop an effi-
cient approximation algorithm with strong theoretical
guarantees for this problem.

3. Examples of online budgeted learning

In this section, we discuss concrete problem instances
of the streaming budgeted learning problem, and the
corresponding submodular objective functions F .

Active set selection in GPs. Gaussian processes
have been widely used as a powerful tool for non-
parametric regression (Rasmussen & Williams, 2006;
Cressie, 1991). Formally, a Gaussian process (GP) is
a joint probability distribution P (XV) over a (possi-
bly infinite) set of random variables XV indexed by a
set V, with the property that every finite subset XA
for A = {s1, . . . , sk}, A ⊆ V is distributed according
to a multivariate normal distribution, P (XA = xA) =
N (xA;µA,ΣAA), where µA = (M(s1), . . . ,M(sk)) is
the prior mean and

ΣAA =




K(s1, s1) . . . K(s1, sk)

...
...

K(sk, s1) . . . K(sk, sk)





is the prior covariance, parameterized through the pos-
itive definite kernel function K. In GP regression,
each data point s ∈ V is interpreted as a random
variable in a GP. Based on observations XA = xA
of a subset A of variables, the predictive distribution
of a new data point s ∈ V is a normal distribution
P (Xs | XA = xA) = N (µs|A;σ2

s|A), where

µs|A = µs + ΣsAΣ−1
AA(xA − µA) (3.1)

σ2
s|A = σ2

s
− ΣsAΣ−1

AAΣAs, (3.2)

and ΣsA = (K(s, s1), . . . ,K(s, sk)) and ΣAs = ΣT

sA.
Computing the predictive distributions according to
(3.1) is expensive, as it requires “inverting” (find-
ing the Cholesky decomposition) of the kernel matrix
ΣAA, which, in general requires Θ(|A|3) floating point
operations. Reducing this computational complexity
(and thereby enabling GP methods for large data sets)
has been subject of much research (see Rasmussen &
Williams 2006).

Most approaches for efficient inference in GPs rely on
choosing a small active set A of data points for mak-
ing predictions. For example, the informative vector
machine (IVM) uses the set A that maximizes the in-
formation gain

FH(A) = H(XV)−H(XV | XA), (3.3)

or, equivalently, the entropy H(XA) of the random
variables associated with the selected data pointsA. It
can be shown, that this criterion is monotonic and sub-
modular (Seeger, 2004). While efficiently computable,
the IVM criterion FH only depends on the selected



Budgeted Nonparametric Learning from Data Streams

data points, and does not explicitly optimize the pre-
diction error of the non-selected examples V \ A.

An alternative is to choose data points which mini-
mize the prediction accuracy on the non-selected data:
�L(A) =

�
s∈V\A(xs − µs|A)2. If the data points V are

drawn from some distribution P (s), then this criterion
can be seen as a sample approximation to the expected
variance reduction,

�L(A) ≈
�

P (s)
�

P (xs | xA)(xs − µs|A)2dsdxs

=
�

P (s)σ2
s|Adxs = L(A).

It can be shown, that under certain assumptions on
the kernel function, the expected variance reduction

FV (A) = L(∅)− L(A) (3.4)

is a monotonic submodular function.

Exemplar based clustering with complex dis-

tance functions on data streams. In exemplar
clustering problems, the goal is to select a set of ex-
amples from the data set that are representative of
the data set as a whole. Exemplar clustering is par-
ticularly relevant in cases where choosing cluster cen-
ters that are averages of training examples (as in
the k-means algorithm) is inappropriate or impossi-
ble (see Dueck & Frey 2007 for examples). The k-
medoid (Kaufman & Rousseeuw, 1990) approach seeks
to choose exemplars that minimize the average dissim-
ilarity of the data items to their nearest exemplar:

L(A) =
1
|V|

�

s∈V
min
c∈A

d(xs,xc). (3.5)

This loss function can be transformed to a monotonic
submodular utility function by introducing a phantom
exemplar x0 which may not be removed from the active
set, and defining the utility function

FC(A) = L({x0})− L(A ∪ {x0}). (3.6)

This measures the decrease in the loss associated with
the active set versus the loss associated with just the
phantom exemplar, and maximizing this function is
equivalent to minimizing (3.5). The dissimilarity func-
tion d(x,x�) need only be a positive function of x and
x
�, making this approach potentially very powerful.

4. StreamGreedy for budgeted
learning from data streams

If, at every time, full access to the entire data set V
is available, a simple approach to selecting the subset

Algorithm 1 StreamGreedy

Initialize active set A0 = ∅; Bound ρ on wait time
for t = 1 : k do

Set st = argmax
s∈Bt

F (At−1 ∪ {s})
Set At ← At−1 ∪ {st}

end for

Set NI = 0
while NI ≤ ρ do

Set (s�, s) = argmax
s�∈At−1,s∈At−1∪Bt

F (At−1\{s�}∪{s})

Set t ← t + 1; At = At−1 \ {s�} ∪ {s}
if F (At) > F (At−1) + η then

Set NI = 0
else

Set NI = NI + 1
end if

end while

AT would be to start with the empty set, A0 = ∅, and,
at iteration t, greedily select the element

st = argmax
s∈V

F (At−1 ∪ {s}) (4.1)

for t ≤ k, and At = At−1 for t > k. Perhaps
surprisingly, this simple greedy algorithm is guaran-
teed to obtain a near-optimal solution: Nemhauser
et al. (1978) prove that for the solution AT , for any
T ≥ k, obtained by the greedy algorithm it holds that
F (AT ) ≥ (1 − 1/e) max|A|≤k F (A), i.e., it achieves
at least a constant fraction of (1 − 1/e) of the opti-
mal value. In fact, no efficient algorithms can provide
better approximation guarantees unless P=NP (Feige,
1998).

Unfortunately, the greedy selection rule (4.1) requires
access to all elements of V, and hence cannot be ap-
plied in the streaming setting. A natural extension to
the streaming setting is the following algorithm: Ini-
tialize A0 = ∅. For t ≤ k, set At ← At−1 ∪ {st},
where

st = argmax
s∈Bt

F (At−1 ∪ {s}). (4.2)

For t > k, let

(s�, s) = argmax
s�∈At−1,s∈At−1∪Bt

F (At−1 \ {s�}∪ {s}), (4.3)

and set At = At−1 \ {s�}∪ {s}, i.e., replace item s� by
item s in order to greedily maximize the utility. Stop
after no significant improvement (at least η for some
small value η > 0) is observed after a specified num-
ber ρ of iterations. StreamGreedy is summarized in
Algorithm 1.
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Dealing with limited access to the stream. So
far, we have assumed that StreamGreedy can eval-
uate the objective function F for any candidate set A.
While the IVM objective FH(A) for active set selection
in GPs (see Section 3) only requires access to the se-
lected data points A, evaluating the objectives FC and
FV requires access to the entire data set V. However,
these objective functions share a key property: They
additively decompose over the data set. Hence, they
can be written in the form F (A) = 1

|V|
�

s∈V f(A,xs)
for suitable function f such that f(·,xs) is submodu-
lar for each input xs. If we assume that data points
xs are generated i.i.d. from a distribution and f is a
measurable function of xs, then f(A,xs) are them-
selves a series of i.i.d. outcomes of a random variable.
Moreover, the range of random variables f(A,xs) is
bounded by some constant B (for clustering, B is the
diameter of the data set; for GP regression, B is the
maximum prior marginal variance). We can construct
a sample approximation �F (A) = 1

|W|
�

s∈W f(A,xs)
by choosing a validation set W uniformly at random
from the stream V. The following corollary of Ho-
effding’s inequality adapted from Smola et al. (1999)
bounds the deviation between �F (A) and F (A):

Corollary 1 (Smola et al. 1999). Let c = B
2 log( 2

δ )
2|V|ε2 and

δ > 0. Then, with probability 1− δ for |W| = c

1+c
|V|:

����
1
|W|

�F (A)− 1
|V|F (A)

���� < ε

The result relates the level of approximation to the
fraction of the data set that is needed for validation.
As the number of elements in the stream |V| increases,
smaller fractions are needed to reach a given accuracy.
Because this result holds for any (bounded) data dis-
tribution, it is usually pessimistic; in practice, smaller
validation sets often suffice.

Furthermore, this sample based approximation only
requires a constant amount of memory: When xs ar-
rives from the stream, f(A,xs) may be added to a
sufficient statistic and xs itself may be discarded.

5. Theoretical analysis

Clustering-consistent objectives. For clarity of
notation, we will consider the setting where Bt = {bt}
contains only a single element bt ∈ V. The results
generalize to sets Bt containing more elements.

We first show that for an interesting class of submod-
ular functions, the algorithm actually converges to the
optimal solution. Suppose, the data set V can be par-
titioned into a set of clusters, i.e., V = C1 ∪ · · · ∪ CL,

where Ci ∩ Cj = ∅. We call a monotonic submodular
function F clustering-consistent for a particular clus-
tering C1, . . . , CL, if the following conditions hold:

1. F (A) =
�

L

�=1 F (A ∩ C�), i.e., F decomposes ad-
ditively across clusters.

2. Whenever for two sets A,B ⊆ V such that B =
A∪{s}\{s�}, s ∈ Ci, s� ∈ Cj , i �= j it holds that if
|A ∩ Cj | > 1 and A ∩ Ci = ∅, then F (A) ≤ F (B).

Intuitively, a submodular function F is clustering-
consistent, if it is always preferable to select a rep-
resentative from a new cluster than having two repre-
sentatives of the same cluster.

Proposition 2. Suppose F is clustering-consistent for
V and k ≤ L. Then, for T = 2ρ it holds for all sets
At, t ≥ T returned by StreamGreedy (for η = 0)
that

F (At) = max
|A|≤k

F (A).

The proofs can be found in the Appendix. Thus, for
clustering-consistent objectives F , if the data set really
consists of L clusters, and we use StreamGreedy to
select a set of k ≤ L exemplars, then StreamGreedy
converges to the optimal solution after at most two
passes through the data set V.

Of course the question is which classes of objective
functions are clustering-consistent. In the following,
suppose that the elements in V are endowed with a
metric d. The following proposition gives interesting
examples:

Proposition 3. Suppose V = C1∪· · ·∪CL, |Ci| < α|Cj |
for all i, j. Further suppose that

max
i

diam(Ci) < β min
i,j

d(Ci, Cj)

for suitable constants α and β, where d(Ci, Cj) =
minr∈Ci,s∈Cj d(r, s) and diam(Ci) = maxr,s∈Ci d(r, s).
Then the following objectives from Sec. 3 are
clustering-consistent with V = C1 ∪ · · · ∪ CL:

• The clustering objective FC , whenever
maxx∈Ci d(x,x0) ≤ minj d(Ci, Cj) for all i, j,
where x0 is the phantom exemplar.

• The entropy FH and variance reduction1 FV for
Gaussian process regression with squared exponen-
tial kernel functions with appropriate bandwidth
σ2, and where d is the Euclidean metric in Rd.

1under the condition of conditional suppressor-freeness
(Das & Kempe, 2008)
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Intuitively, Propositions 2 and 3 suggests that in situa-
tions where the data actually exhibits a well-separated,
balanced clustering structure, and we are interested in
selecting a number of exemplars k consistent with the
number of clusters L in the data, we expect Stream-
Greedy to perform near-optimally.

General submodular objectives. However, the
assumptions made by Propositions 2 and 3 are fairly
strong, and likely violated by the existence of outliers,
overlapping and imbalanced clusters, etc. Further-
more, when using criteria such as FC and FV (Sec. 3),
it is not possible to evaluate F (A) exactly, but only
up to additive error ε. Perhaps surprisingly, even in
such more challenging settings, the algorithm is still
guaranteed to converge to a near-optimal solution:
Theorem 4. Let η > 0. Suppose F is monotonic
submodular on V, and we have access to a function
�F such that for all A ⊆ V, |A| ≤ 2k it holds that
| �F (A)−F (A)| ≤ ε. Furthermore suppose F is bounded
by B. Then, for T = ρB/η it holds for all sets At,
t ≥ T selected by StreamGreedy applied to �F that

F (At) ≥
1
2

max
|A|≤k

F (A)− k(ε + η).

Thus, e.g., in the case where bt = st mod n, i.e., if
StreamGreedy sequentially cycles through the data
set V, at most B/η passes (typically it will stop far
earlier) through the data set will suffice to produce
a solution that obtains almost half the optimal value.
The proof relies on properties of the pairwise exchange
heuristic for submodular functions (Nemhauser et al.,
1978). See the Appendix for details.

6. Experimental results

Exemplar based streaming clustering. Our ex-
emplar based clustering experiments involve Stream-
Greedy applied to the clustering utility FC

(Eq. (3.6)) with d(x,x�) = ||x − x
�||2. The imple-

mentation can be made efficient by exploiting the fact
that only a subset of the validation points (c.f., Sec. 4)
change cluster membership for each candidate swap.
We have also implemented an adaptive stopping rule
that is useful when determining an appropriate size of
the validation set. Please see Appendix II for details.

Our first set of experiments uses MNIST handwritten
digits with 60,000 training images and 10,000 test im-
ages.2 The MNIST digits were preprocessed as follows:
The 28 by 28 pixel images are initially represented as

2MNIST was downloaded from
http://yann.lecun.com/exdb/mnist/.

784 dimensional vectors, and the mean of the train-
ing image vectors was subtracted from each image;
then the resulting vectors are normalized to unit norm.
PCA was performed on the normalized training vec-
tors and the first 50 principal components coefficients
were used to form feature vectors. The same normal-
ization procedure was performed on the test images
and their dimensionality was also reduced using the
training PCA basis.

Fig. 1 compares the performance of our approach
against batch k-means and online k-means (Dasgupta,
2009) with the number of exemplars set to K = 100.
We chose the origin as the phantom exemplar in this
experiment, since this yielded better overall quantiza-
tion performance than choosing a random exemplar.
To unambiguously assess convergence speed we use the
entire training set of 60,000 points as the validation
set. We assess convergence by plotting (3.6) against
the number of swap candidates (

�
T

t=1 |Bt|) considered.
We find that our algorithm converges to a solution af-
ter examining nearly the same number of data points
as online k-means, and is near its final value after a
single pass through the training data. Similar conver-
gence was observed for smaller validation sizes. The
left plot in Fig. 1 shows that k-means performs better
in terms of quantization loss. This is probably be-
cause StreamGreedy must choose exemplar centers
from the training data, while k-means center locations
are unconstrained. When the k-means’ centers are re-
placed with the nearest training example (center plot),
the advantage disappears. The right plot in Fig. 1 ex-
amines the impact of validation set size on quantiza-
tion performance on the held out test set, measured as
test set utility ((3.6) where V is the test set). It is pos-
sible to obtain good generalization performance even
when using a small validation set. The y-axis indicates
test performance relative to the performance attained
with the full data set at the specified value of K (1.0
indicates equal performance, values less than one in-
dicate worse performance than the full set), and the
x-axis is plotted as the relative size of the validation
set versus the full set. We find that as the number of
centers K increases, a larger fraction of the data set is
needed to approach the performance with the full set.
This appears to be because as K increases, the nu-
merical differences between FC(At−1 \ {s�} ∪ {s}) for
alternative candidate swaps (s, s�) decrease, and more
samples are needed in order to stably rank the swap
alternatives.

Our second set of experiments involves approximately
1.5 million Tiny Images3 (Torralba et al., 2008), and

3http://people.csail.mit.edu/torralba/tinyimages/.
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Figure 1. Left and Center: Convergence rates on MNIST data set. The y-axis represents the clustering utility evaluated
on the training set. The x-axis shows the number of data items processed by StreamGreedy and online k-means.
K-means’ unconstrained centers yield better quantization performance. When k-means’ centers are replaced with the
nearest training set example, the advantage disappears (center). Right: Test performance versus validation set size. It is
possible to obtain good generalization performance even using relatively small validation sets. The validation set size is
varied along the x-axis. The y-axis shows test utility divided by the test utility achieved with the entire data set used for
validation. As K increases, more validation data is needed to achieve full performance.
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Figure 2. Tiny Image data set. Top Left: Cluster exemplars discovered by StreamGreedy, sorted according to
descending size. Top Right: Cluster centers from online kmeans (singleton clusters omitted). Bottom Left: Cluster sizes
(number of members) for our algorithm. Bottom Right: Cluster sizes for online k-means. Online k-means finds a poor
local minima with many of the 200 clusters containing only a single member.
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Figure 3. Examples from Tiny Image cluster 26. Left:
100 examples nearest to exemplar 26. Right: 100 randomly
sampled images from cluster 26.

is designed to test our algorithm on a large scale data
set. Each image in the data set was downloaded by
Torralba et al. from an Internet search engine and is
associated with an English noun query term. The 32
by 32 RGB pixel images are represented as 3,072 di-
mensional vectors. Following Torralba et al. (2008),
we subtract from each vector its mean value (average
of all components), then normalize it to unit norm.
No dimensionality reduction is performed. We gener-
ate a random center to serve as the phantom exemplar
for this experiment, since we find that this leads to
qualitatively more interesting clusters than using the
origin. 4

Fig. 2 (left) shows K = 200 exemplars discovered
by our algorithm. Clusters are organized primarily
according to non-semantic visual characterstics such
as color and basic shape owing to the simple sum
of squared differences similarity measure employed
(Fig. 3). We set the validation size to one-fifth of the
data set. This was determined by examining the sta-
bility of argmax

s�∈At−1,s∈At−1∪Bt
FC(At−1\{s�}∪{s})

as validation data was progressively added to the sums
in FC , which tends to stabilize well before this amount
of data is considered. The algorithm was halted after
600 iterations (each considering |Bt| = 1, 000 candi-
date centers). This was determined based on inspec-
tion of the utility function, which converged before a
single pass through the data. We compare against the
online k-means algorithm with 200 centers initialized
to randomly chosen images, and run through a single
pass over the data. We find that online k-means con-
verges to a suboptimal solution in which many of the
clusters are empty or contain only a single member
(see Fig. 2.)

4We find that a random phantom exemplar is unlikely
to be chosen as a prototype, while one near the origin is
the prototype for a significant fraction of the data.
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Figure 4. Left: Algorithm utility score versus run time
on the Tiny Images data set. Right: Gaussian Process
regression. y-axis is test set mean squared prediction error.
x-axis is the size of the active set.

In Fig. 4 (left) we assess the tradeoff between run
time and performance by varying the parameter
|Bt| = {500, 1000, 2000} and the validation set size as
{10%, 20%, 40%} of the data set. The number of cen-
ters and iterations are fixed at 200 and 600, respec-
tively. Our Matlab StreamGreedy implementation
was run on a quad-core Intel Xeon server. Performance
is visualized as a point in the test utility versus run
time plane, and only the Pareto optimal points are
displayed for clarity. Online k-means is also shown for
comparison. We find a clear saturation in performance
as run time increases.

Online active set selection for GP regression.

Our Gaussian Process regression experiments involve
specialization of StreamGreedy for the objective
function FV in Sec. 3. The implementation can be
made more efficient by using Cholesky factorization
on the covariance matrix combined with rank one up-
dates and downdates. Please see Appendix II for
details. We used the KIN40K dataset5 which consists
of 9 attributes generated by a robotic arm simula-
tor. We divide the dataset into 10,000 training and
30,000 test instances. We follow the preprocessing
steps outlined in (Seeger et al., 2003) in order to com-
pare our approach to the results in that study. We
used the squared exponential kernel with automatic
relevance determination (ARD) weights and learn the
hyperparameters using marginal likelihood maximiza-
tion (Rasmussen & Williams, 2006) on a subset of
2,000 training points, again following (Seeger et al.,
2003).

Fig. 4 (right) shows the mean squared error predictive
performance 1

2

�
s
(ys−µs) on the test set as a function

of the size of the active set. Comparing our results
to the experiments in (Seeger et al., 2003), we find
that our approach outperforms the info-gain criterion
for active set size K = {200, 400, 600} at all values

5Downloaded from http://ida.first.fraunhofer.de/ an-
ton/data.html.
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of the validation set size |W| = {2000, 6000, 10000}.
At values K = {800, 1000} our approach outperforms
info-gain for |W| = {6000, 10000}. Our performance
matches Smola and Bartlett (Smola & Bartlett, 2000)
at K = {200, 400} but slightly underperforms their
approach at larger values of K. We find that even for
|W| = 2, 000, the algorithm is able to gain predictive
ability by choosing more active examples from the data
stream. The performance gap between |W| = 6, 000
and |W| = 10, 000 is quite small.

7. Related Work

Specialization of StreamGreedy to the clustering
objective FC (3.6) yields an algorithm which is sim-
ilar to the Partitioning Around Medoids (PAM, Kauf-
man & Rousseeuw 1990) algorithm for k-medoids, and
related algorithms CLARA (Kaufman & Rousseeuw,
1990) and CLARANS (Ng & Han, 2002). Like our ap-
proach, these algorithms are based on repeatedly ex-
changing centers for non-center data points if the swap
improves the objective function. Unlike our approach,
however, no performance guarantees are known for
these approaches. PAM requires access to the entire
data set, and every data point is exhaustively exam-
ined at each iteration, leading to an approach unsuit-
able for large databases. CLARA runs PAM repeat-
edly on subsamples of the data set, but then makes
use of the entire dataset when comparing the results of
each PAM run. Like our algorithm, CLARANS eval-
uates a random subset of candidate centers at each
iteration, but then makes use of the entire data set to
evaluate candidate swaps. Our approach takes advan-
tage of the i.i.d. concentration behavior of the clus-
tering objective in order to eliminate the need for ac-
cessing the entire data set, while still yielding a perfor-
mance guarantee. Domingos & Hulten (2001) exploit
the concentration behavior of the (non-exemplar) k-
means objective in a similar way. While there exist
online algorithms for k-medoids with strong theoreti-
cal guarantees (Charikar et al., 2003), these algorithms
require the distance function d to be a metric, and the
memory to grow (logarithmically) in |V|. In contrast,
our approach uses arbitrary dissimilarity functions and
the memory requirements are independent of the data
set size.

Specialization of StreamGreedy to sparse GP infer-
ence is an example of the subset of datapoints class of
sparse Gaussian Process approximations (Rasmussen
& Williams, 2006), in which the GP predictive distri-
bution is conditioned on only the datapoints in the
active set. Seeger et al. (2003) also use a subset of
datapoints approach that makes use of a submodu-

lar (Seeger, 2004) utility function (the entropy of the
Gaussian distribution of each site in the active set).
This approach is computationally cheaper than ours
in that the evaluation criterion does not require a vali-
dation set, but depends only on the current active set.
Seeger et al.’s approach also fits the framework pro-
posed by this paper, and our approach could be used
to optimize this objective over data streams. Smola
& Bartlett (2000) use a subset of regressors approach.
Their criterion for greedy selection of regressors has
the same complexity as our approach if we use the en-
tire data set for validation. Our approach is cheaper
when we make use of a limited validation set. Csató
& Opper (2002) develop an approach for online sparse
GP inference based on projected process approxima-
tion that also involves swapping candidate examples
into an active set, but without performance guaran-
tees. See Rasmussen & Williams (2006) for a survey
of other methods for sparse Gaussian Process approx-
imation.

StreamGreedy’s structure is similar to the algo-
rithm by Weston et al. (2005) for online learning of
kernel perceptron classifiers, in that both approaches
make use of a fixed budget of training examples (the
active set) that are selected by evaluating a loss func-
tion defined over a limited validation set.

Nemhauser et al. (1978) analyzed the greedy algorithm
and a pairwise exchange algorithm for maximizing sub-
modular functions. As argued in Sec. 4, these algo-
rithms do not apply to the streaming setting. Streeter
& Golovin (2008) develop an online algorithm for max-
imizing a sequence of submodular functions over a
fixed set (that needs to be accessed every iteration).
Our approach, in contrast, maximizes a single sub-
modular function on a sequence of sets, using bounded
memory.

8. Conclusions

We have developed a theoretical framework for ex-
tracting informative exemplars from data streams that
led to StreamGreedy, an effective algorithm with
strong theoretical guarantees. We have shown that
this framework can be successfully specialized to ex-
emplar based problems and nonparametric regression
with Gaussian Processes. In the case of clustering,
our experiments demonstrate that our approach is ca-
pable of discovering meaningful clusters in large high-
dimensional data sets, while remaining computation-
ally tractable. Our sparse Gaussian Process regres-
sion algorithm is competitive with respect to other
approaches and is capable of operating in a streaming
data environment. Future work involves discovering
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other machine learning problems that fit the frame-
work (including classification) and exploring alterna-
tive ways to approximately evaluate submodular func-
tions without full access to a large data set.

Appendix I: Proofs

Proof of Proposition 2. Suppose F is clustering-
consistent for clustering C1, . . . , CL. We prove
Proposition 2 in two steps:

Let T1 be such that at least one element b ∈ Ci has
been encountered for each cluster Ci. Then, for the
solution AT1 it holds that |Ci ∩ AT1 | ≤ 1 for each i,
i.e., AT1 contains at most one representative of each
cluster: Let ti be the smallest index such that bti ∈
Ci (i.e., the first iteration where a representative of
cluster i appears in the stream). W.l.o.g., assume that
t1 < t2 < · · · < tL ≤ T1. For any set A ⊆ V, let

r(A) = |{i : Ci ∩A �= ∅}|

denote the number of clusters from which at least
one representative has been selected. By definition of
clustering-consistency, it can be seen that for the se-
quence of sets A1, . . . ,AT chosen by StreamGreedy
it holds that r(A1) ≤ · · · ≤ r(AT ), i.e., it is never
preferable to remove a single representative s of clus-
ter Ci in order to have multiple representatives of some
cluster Cj . Moreover, it can be seen that

r(At�) = min{�, k}.

Note that T1 ≤ ρ.

For the second step, note that for each t ≥ T1, it holds
that r(At) = k, i.e., k clusters will be represented, i.e.,
no set At will contain more than one exemplar from
any cluster i. Let

s∗
i

= argmax
s∈Ci

F ({s})

be the (w.l.o.g. unique) highest scoring representa-
tive of cluster i. Assume, w.l.o.g., that F ({s∗1}) ≥
F ({s∗2}) ≥ · · · ≥ F ({s∗

L
}). Due to the first condition

of cluster-consistency (additive decomposition), it can
be seen that

F ({s∗1, . . . , s∗k}) = max
|A|≤k

F (A).

Let t∗
i
≥ T1 be the smallest integer such that bt

∗
i

= s∗
i

where the element s∗
i

appears in the stream. It can
be seen that, for all � ≤ k and for all t ≥ t∗

�
it holds

that s∗
�
∈ At, hence at time T = tk it must hold that

F (AT ) = max|A|≤k F (A). Note that T ≤ 2ρ.

Proof of Proposition 3. First consider the clus-
tering objective F = FC . Let Li(A) =�

s∈Ci
minc∈A∪{x0} d(xs,xc) be the loss associ-

ated with cluster Ci. Let A ⊆ Ci. Note that if
s ∈ Cj for j �= i, then Li(A ∪ {s}) = Li(A), since
d(xs� ,x0) ≤ d(xs� ,xs) for all s� ∈ Ci. Hence, for any
A ⊆ V, F (A) =

�
L

�=1 F (A∩C�). Now suppose A ⊆ Ci

and s ∈ Ci \ A. Then

F (A ∪ {s})− F (A) ≤ |Ci|diam(Ci).

On the other hand, if s ∈ Cj , then

F ({j}) ≥ |Cj |(d(x0, Cj)− diam(Cj)).

Hence, choosing

α =
mini d(x0, Ci)−maxj diam(Cj)

mini diam(Ci)

suffices to prove cluster-consistency of FC . Choosing

β =
mini d(x0, Ci)
mini,j d(Ci, Cj)

suffices to ensure that α > 0.

Now let us consider active set selection on GP regres-
sion. Under the squared exponential kernel with band-
width h,

K(s, s�) = η2 exp(−d(s, s�)2/h2),

for any ε > 0, there is a constant c, such that
for two sets A,B with d(A,B) > ch, it holds that
|H(XA,XB) − H(XA) − H(XB)| < ε, and similarly
|σ2

s
− σ2

s|A| ≤ ε, whenever s ∈ B. This proves the ad-
ditive decomposition property (up to arbitrarily small
error ε; Proposition 2 can be generalized to accom-
modate this arbitrarily small error). Let Li(A) =�

s∈Ci
[σ2

s
−σ2

s|A]. Now, there exists a constant c� such
that if diam(Ci) < c�h then for any s ∈ Ci and γ < 1
it holds that Li({s}) < γ|Ci|η2, and thus

F ({s}) > (1− γ)|Ci|.

Similarly, for any A ⊆ Ci and s ∈ Ci \ A,

F (A ∪ {s})− F (A) < γ|Ci|,

proving cluster-consistency for appropriate choice of
α. A similar reasoning can be used to prove cluster-
consistency of the IVM objective FH .

Proof of Theorem 4. StreamGreedy can be inter-
preted as an instance of the pairwise exchange heuris-
tic for submodular functions, which iteratively replaces
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a selected element by a non-selected element until no
further improvement in score is possible, with the dif-
ference that the choice of candidate elements for re-
placement is determined by the data stream. The
proof of Theorem 4 is thus analogous to the analysis of
the pairwise exchange heuristic for submodular func-
tions by Nemhauser et al. (1978), exploiting the key
insight that the ordering in which pairwise exchanges
are performed is immaterial for the performance guar-
antee of the pairwise exchange heuristic. The proof
below also accommodates for the fact that F is only
evaluated up to small additive error ε (by means of
�F ), and improvement of at least η is required for each
exchange.

Let T be index such that At = AT for all sets
At, t ≥ T , chosen by StreamGreedy. Such a T
must exist, since F (At+1) ≥ F (At) for all t, and
At+1 �= At only if F (At+1) ≥ F (At) + η, and F (V)
is bounded. Construct an ordering s1, . . . , sk such
that si ∈ argmax

s∈AT
F ({s1, . . . , si−1, s}). Also let

A∗ = {r1, . . . , rk} such that F (A∗) = max|A|≤k F (A).
Let S = {s1, . . . , sk−1}, and δi = F ({s1, . . . , si}) −
F ({s1, . . . , si−1}). Note that δi ≤ δi−1, due to sub-
modularity and the fact that s1, . . . , sk are in greedy
order. Now, due to submodularity and monotonicity
of F it holds that

F (A∗) ≤ F (A∗ ∪ S)

≤ F (S) +
k�

i=1

[F (S ∪ {ri})− F (S)]

≤ F (S) + k (δk + ε + η) (8.1)

≤ F (S) +
k�

i=1

δi (8.2)

= F (S) + F (S ∪ {sk})
≤ 2F (AT )

where inequality (8.1) follows from the fact that
StreamGreedy did not replace sk by any element ri

from the optimal solution A∗. Note that after ρ itera-
tions, F (At) must increase by at least η, or Stream-
Greedy will stop. Hence, T ≤ ρF (V)/η ≤ ρB/η.

Appendix II: Implementation Details

Clustering

When determining the swap to perform at iteration
t > K, we maintain the following quantities from iter-
ation t− 1:

• The distance of each validation point i ∈W to its

cluster exemplar:

mi = min
c∈At−1∪{x0}

d(xi,xc) (8.3)

• The identity of each validation point’s exemplar:

zi = arg min
c∈At−1∪{x0}

d(xi,xc) (8.4)

• The distance of each validation point to its second
nearest exemplar

oi = min
c∈At−1∪{x0}\zi

d(xi,xc) (8.5)

We then compute the dissimilarity of each candidate
in Bt to the points in the validation set W which re-
quires O(|Bt||W|cost{d}) operations (where cost{d} is
the cost associated with computing the dissimilarity
d(x,x�)). We then score each of the K|Bt| potential
swaps (indexed by s ∈ Bt and s� ∈ At−1) by computing

L(At−1 \ {s�} ∪ {s,x0})
= L(At−1 \ {s�} ∪ {s,x0})− L(At−1 ∪ {s,x0})
+ L(At−1 ∪ {s,x0})− L(At−1 ∪ {x0})
+ L(At−1 ∪ {x0}).

This can be done in O(|W|) operations since the de-
crease in loss due to adding center s

L(At−1 ∪ {s,x0})− L(At−1 ∪ {x0})

=
�

i:d(xi,xs)<mi

d(xi,xs)−mi

and the increase in loss associated with removing cen-
ter s�

L(At−1 \ {s�} ∪ {s,x0})− L(At−1 ∪ {s,x0})

=
�

i:zi=s�∧[d(xi,xs� )<d(xi,xs)]

oi −mi

require O(|W|). The third term L(At−1 ∪ {x0}) =�
i∈W mi doesn’t depend on s or s�. The total cost

for iteration t is O(K|Bt||W|+ |Bt||W|cost{d}).

GP Regression

At each iteration t we retain from iteration t − 1 the
Cholesky decomposition of ΣAt−1,At−1 = RT

t−1Rt−1,
where Rt−1 is an upper right triangular matrix, as
well as the output of the kernel function K evaluated
between points in W and At−1. We compute K be-
tween each member of Bt and W as well as between
Bt and At−1 in O((|W|+ K)|Bt|cost(K)).
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For each candidate swap indexed by s ∈ Bt and s� ∈
At−1, we compute R(s,s

�)
t−1 which is the Cholesky de-

composition of ΣAt−1\s�∪{s},At−1\s�∪{s} with a down-
date of element s� and update of element s performed
in O(K2) operations. The prediction weight vector
Σ−1
At−1\s�∪{s},At−1\s�∪{s}xAt−1\s�∪{s} can be computed

in O(K2) operations using two forward substitutions
(matrix right division R(s,s

�)
t−1 \([R(s,s

�)
t−1 ]T \xAt−1\s�∪{s})

in Matlab). The candidate swaps are scored according
to

�
i∈W(xi − µi|At−1\s�∪{s})

2 in O(K|W|).

The total cost for iteration t is O((|W| +
K)|Bt|cost(K) + K3|Bt|+ K2|Bt||W|). We are explor-
ing ways to reduce this cost that involve identifying
and evaluating only a fraction of the K|Bt| possible
swaps, while still maintaining convergence guarantees.

Adaptive Stopping Rule

We have implemented an adaptive stopping rule based
on updating a sufficient statistic �F (At−1∪{s}\{s�}) =�

i∈W f(At−1∪{s}\{s�},xi) for each swap candidate
(indexed by s ∈ Bt and s� ∈ At−1). Each time a data
point xi arrives from the steam, f(At−1∪{s}\{s�},xi)
is added to its corresponding sufficient statistic. We
define an algorithm failure probablity δ̂, and use
Lemma 1 with δ = δ̂

A
where A is the maximum num-

ber of times the bound will be used during the course
of the algorithm. This establishes confidence bands
εs,s� around each statistic depending on the number of
samples summarized so far by the sufficient statistics,
as well as confidence band εAt−1 on �F (At−1) (the cur-
rent utility). We halt when one of two conditions are
met:

• There exists a swap (s, s�) such that �F (At−1∪{s}\
{s�})−εs,s� > �F (At−1)+εAt−1 . We then perform
swap (s, s�) and move on to the next iteration t+1.

• For all swaps (s, s�), �F (At−1∪{s}\{s�})+εs,s� <
�F (At−1) − εAt−1 . No swap is performed and we
move on to the next iteration t + 1.

This setup is similar to Hoeffding Racing (Maron &
Moore, 1994). We have experimented with this rule
on the Tiny Images data set. We find that in the early
iterations, it can cut down the number of validation
samples used by a factor between 3 and 10. However,
as the algorithm proceeds, the difference in utility be-
tween swap candidates becomes smaller and eventually
the entire data set is used. We observe that this ap-
proach is pessimistic: arg maxs,s�

�F (At−1 ∪ {s} \ {s�})
stablizes with many fewer samples than required by
the stopping rule.
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