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Motivation

•  Many AI problems boil down to selecting a number of elements 
from a large set of options

•  Sequentially make “smart” choices based on past observations

•  Fundamental goal: Find classes of objective functions that are 
amenable to efficient sequential optimization with theoretical 
approximation guarantees

Example applications

•  Active learning for medical diagnosis

•  Viral marketing in social networks

Running Example: Birdwatching

Visit locations and observe different 
bird species (max cover problem)

•  Ground set: 𝑉 = {𝑎, 𝑏, 𝑐,  𝑑}

•  Objective: 𝑓 : 2𝑉  → ℝ⩾0

•  Example:  𝑓 ({𝑑}) =  4 
  𝑓 ({𝑐, 𝑑}) = 5

Monotonicity and Submodularity

•  𝑓  is monotone
Visiting a location provides non-negative benefit

•  𝑓  is submodular
Locations have “diminishing returns”; the more of them we have 
already visited, the less benefit we get from visiting a new one

•  Example: 𝑓 ({𝑐}) =  3 
  𝑓 (𝑐 | {𝑑}) = 𝑓 ({𝑐, 𝑑}) - 𝑓 ({𝑑}) = 5 - 4 =  1

Monotone Submodular Maximization

Want to maximize 𝑓 —observe as many bird species as possible

Greedy algorithm

•  Start with empty set of locations

•  Keep adding the location that provides the largest benefit—the 
most new bird species)

•  Stop as soon as we have visited 𝑘 locations

•  Cardinality-constrained problem
(visit up to 𝑘 locations)

NP-hard

Trivial OPT =  𝑓 (𝑉 ) •  Unconstrained problem

The Adaptive Setting

•  In practice, the number of observed bird species will vary ac-
cording to some distribution per location

•  Two-argument objective: 𝑓 (𝛢,  𝜙) 

•  Non-adaptive: Commit to set 𝛢 before observing any outcomes 
(e.g., take expectation over 𝜙)

•  Adaptive: Take past outcomes into account to make better deci-
sions at each step
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Non-monotone Objectives

•  Assume each set 𝛢 of locations has an associated cost c(𝛢) 

•  New objective: 𝑔(𝛢) =  𝑓 (𝛢) - 𝑐(𝛢) 

•  For example, uniform cost term: 𝑐(𝛢) =  𝜆|𝛢|
•  Visiting a location may cost more than the benefit it provides

•  Greedy has no guarantees for non-monotone functions

Random greedy algorithm

Idea: At each step, uniformly at random add one of the 𝑘 most 
beneficial locations

𝑔 is non-monotone

Theorem [Buchbinder et al., 2014]

If 𝑓  is submodular, then random greedy gives a (1/𝑒) -
approximation (in expectation).

If 𝑓  is also monotone, then random greedy gives a (1 -  1/𝑒) -
approximation (in expectation).

Theorem [Nemhauser et al., 1978]

If 𝑓  is monotone submodular, then greedy gives a (1 -  1/𝑒) -
approximation.

Theorem [Golovin and Krause, 2011]

If 𝑓  is adaptive monotone submodular, then adaptive greedy 
gives a (1 -  1/𝑒) -approximation (in expectation).
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Non-monotone Objectives

We present two classes of objective functions that naturally arise 
in practice, and are adaptive submodular but not monotone.

1. Objectives with a modular cost term

 𝑔(𝛢, 𝜙) = 𝑓 (𝛢, 𝜙)  -  𝑐(𝛢) 

Example: Network influence maximization

•  Select a subset of nodes to maximize spread of influence

•  Ground set: Nodes of the graph

•  𝑓 (𝛢, 𝜙) : classic network influence objective (𝜙 captures the 
random outcomes of the independent cascade model)

•  𝑐𝑎: cost of choosing node 𝑎 (e.g., proportional to its degree)

2. Objectives with factorial realizations

•  The dependence of 𝑓 (𝛢, 𝜙)  on 𝜙 is constrained to the outcomes 
of the selected elements

•  𝑓 ( · , 𝜙)  is submodular, for any realization 𝜙

•  The distribution of realizations 𝜙 factorizes over 𝑉 

Example: Maximum graph cut

•  Select a subset of nodes to maximize the weight of the edges cut

•  When picking a node, either that node or a random neighbor 
theoreof is added to the cut

•  Ground set: Nodes of the graph

•  Easy to check that the above properties hold

Monotone adaptive 
submodular function Modular cost term, 𝑐(𝛢) =  � 𝑐𝑎

𝑎∊𝛢

•  No known algorithm with theoretical guarantees for non-mono-
tone adaptive submodular objectives

•  We propose the adaptive random greedy policy to fill this gap

Input: 𝑉 , 𝑓 , 𝑝(𝜙) , 𝑘

𝛢 ← ⌀
𝜓 ← ⌀

for 𝑖 = 1 to 𝑘

Compute marginal gains Δ(𝑣 | 𝜓 ) , for all 𝑣 ∈ 𝑉 ∖ 𝛢
ℳ𝑘 ←  set of 𝑘 elements with the largest marginal gains

Sample element 𝑚 from ℳ𝑘 uniformly at random

𝛢 ← 𝛢 ∪ {𝑚}
Observe outcome 𝜙(𝑚) 
Update history 𝜓 

return 𝛢

Theoretical Guarantees

Theorem [Our contribution]

If 𝑓  is adaptive submodular, and, additionally, 𝑓 ( · , 𝜙)  is sub-
modular for any realization 𝜙,  then adaptive random greedy 
gives a (1/𝑒) -approximation (in expectation).

If 𝑓  is also adaptive monotone, then adaptive random greedy 
gives a (1 -  1/𝑒) -approximation (in expectation).

•  We require a slightly stronger condition than adaptive submod-
ularity, which holds for the majority of practical objectives

•  The expectation here is taken over both the randomization of 
the algorithm, as well as the randomness of the environment

Experiments
•  Three network data sets from the KONECT database, represent-

ing ego networks of Facebook, Google+, and Twitter

•  Subsample each of them down to 2000 nodes

•  Ground set: 100 randomly sampled nodes

•  Repeat experiments over random ground sets and realizations

•  Compare adaptive random greedy to non-adaptive version
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Figure 2: Improvement in expected utiliy of using adaptive compared to non-adaptive random greedy for varying node budget
k. (a)–(c) influence maximization; (d)–(f) maximum cut.

[McAuley and Leskovec, 2012]. Figure 2 shows the % rel-
ative improvement of adaptive random greedy over its non-
adaptive counterpart in terms of expected utility for influ-
ence maximization (top) and maximum cut (bottom); each
plot shows the improvement for varying values of the cardi-
nality constraint k. For the influence maximization objective,
the influence propagation probability of each edge is chosen
to be p = 0.1, and for the maximum cut objective, select-
ing a node cuts that node or one of its neighbors with equal
probability.

We can see that adaptivity is beneficial in general, while
the improvement it provides varies substantially depending
on the properties of each network. As an example, for net-
works containing a few nodes of very high degree, like the
Google+ network in plots (b) and (e), adaptivity provides lit-
tle benefit for influence maximization, since these nodes are
the main source of influence, hence are almost always se-
lected by the non-adaptive algorithm as well. On the other
hand, adaptivity is much more beneficial for the maximum
cut objective in such networks, since the feedback of whether
such high degree nodes have already been cut by some of their
neighbors helps making future selections more efficient.

Furthermore, if our goal is to reach a specific level of ob-
jective value using as few nodes as possible, then our gains
due to adaptivity can be even more substantial in terms of the
number of required nodes. For example, as shown in Fig-
ure 3(a), if we want to attain a maximum cut objective value
of 1900 for the FACEBOOK network, a budget k of about 13
nodes is enough for adaptive random greedy, while a bud-
get of almost 30 nodes is required for non-adaptive random
greedy.

For the other two plots of Figure 3 we fix k = 20. In

plot (b) we show the improvement on FACEBOOK for vary-
ing edge probabilities p of the independent cascade model. At
the extreme values of p, adaptivity provides no benefit, since
the network is either disconnected (p = 0), or fully connected
(p = 1). In plot (c) we show the improvement on TWITTER
for varying cut distributions. The parameter β quantifies the
probability of a node being cut when it is selected. A value of
β = 0 corresponds to the setting we used in Figure 2, where
the cutting probability is uniformly distributed among the se-
lected node and each of its neighbors; β = 1 corresponds to
deterministically cutting the selected node. We can see that,
as the cutting distribution gets close to deterministic (β → 1),
the benefit of adaptivity diminishes.

Finally, we would like to comment on the behavior of the
simple adaptive greedy algorithm with the additional modifi-
cation to stop when the largest marginal gain becomes nega-
tive. In particular, for the specific objectives considered here,
we have observed that its performance is very close to that
of adaptive random greedy. This is presumably because both
these objectives are approximately monotone for small values
of k, and also fairly benign in the sense that they do not create
traps that would severely diminish the performance of adap-
tive greedy. Intuitively, choosing one element cannot reduce
the marginal gain of many other elements by a lot. How-
ever, even in the non-adaptive setting it is easy to come up
with much harder non-monotone objectives for which simple
greedy exhibits arbitrarily bad performance. The takeaway is
that adaptive random greedy is comparable to adaptive greedy
for the easier objectives that we have used here, while it also
provides performance guarantees for the harder ones, a be-
havior that is completely analogous to how greedy vs. ran-
dom greedy work in the non-adaptive setting.
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[McAuley and Leskovec, 2012]. Figure 2 shows the % rel-
ative improvement of adaptive random greedy over its non-
adaptive counterpart in terms of expected utility for influ-
ence maximization (top) and maximum cut (bottom); each
plot shows the improvement for varying values of the cardi-
nality constraint k. For the influence maximization objective,
the influence propagation probability of each edge is chosen
to be p = 0.1, and for the maximum cut objective, select-
ing a node cuts that node or one of its neighbors with equal
probability.

We can see that adaptivity is beneficial in general, while
the improvement it provides varies substantially depending
on the properties of each network. As an example, for net-
works containing a few nodes of very high degree, like the
Google+ network in plots (b) and (e), adaptivity provides lit-
tle benefit for influence maximization, since these nodes are
the main source of influence, hence are almost always se-
lected by the non-adaptive algorithm as well. On the other
hand, adaptivity is much more beneficial for the maximum
cut objective in such networks, since the feedback of whether
such high degree nodes have already been cut by some of their
neighbors helps making future selections more efficient.

Furthermore, if our goal is to reach a specific level of ob-
jective value using as few nodes as possible, then our gains
due to adaptivity can be even more substantial in terms of the
number of required nodes. For example, as shown in Fig-
ure 3(a), if we want to attain a maximum cut objective value
of 1900 for the FACEBOOK network, a budget k of about 13
nodes is enough for adaptive random greedy, while a bud-
get of almost 30 nodes is required for non-adaptive random
greedy.

For the other two plots of Figure 3 we fix k = 20. In

plot (b) we show the improvement on FACEBOOK for vary-
ing edge probabilities p of the independent cascade model. At
the extreme values of p, adaptivity provides no benefit, since
the network is either disconnected (p = 0), or fully connected
(p = 1). In plot (c) we show the improvement on TWITTER
for varying cut distributions. The parameter β quantifies the
probability of a node being cut when it is selected. A value of
β = 0 corresponds to the setting we used in Figure 2, where
the cutting probability is uniformly distributed among the se-
lected node and each of its neighbors; β = 1 corresponds to
deterministically cutting the selected node. We can see that,
as the cutting distribution gets close to deterministic (β → 1),
the benefit of adaptivity diminishes.

Finally, we would like to comment on the behavior of the
simple adaptive greedy algorithm with the additional modifi-
cation to stop when the largest marginal gain becomes nega-
tive. In particular, for the specific objectives considered here,
we have observed that its performance is very close to that
of adaptive random greedy. This is presumably because both
these objectives are approximately monotone for small values
of k, and also fairly benign in the sense that they do not create
traps that would severely diminish the performance of adap-
tive greedy. Intuitively, choosing one element cannot reduce
the marginal gain of many other elements by a lot. How-
ever, even in the non-adaptive setting it is easy to come up
with much harder non-monotone objectives for which simple
greedy exhibits arbitrarily bad performance. The takeaway is
that adaptive random greedy is comparable to adaptive greedy
for the easier objectives that we have used here, while it also
provides performance guarantees for the harder ones, a be-
havior that is completely analogous to how greedy vs. ran-
dom greedy work in the non-adaptive setting.
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[McAuley and Leskovec, 2012]. Figure 2 shows the % rel-
ative improvement of adaptive random greedy over its non-
adaptive counterpart in terms of expected utility for influ-
ence maximization (top) and maximum cut (bottom); each
plot shows the improvement for varying values of the cardi-
nality constraint k. For the influence maximization objective,
the influence propagation probability of each edge is chosen
to be p = 0.1, and for the maximum cut objective, select-
ing a node cuts that node or one of its neighbors with equal
probability.

We can see that adaptivity is beneficial in general, while
the improvement it provides varies substantially depending
on the properties of each network. As an example, for net-
works containing a few nodes of very high degree, like the
Google+ network in plots (b) and (e), adaptivity provides lit-
tle benefit for influence maximization, since these nodes are
the main source of influence, hence are almost always se-
lected by the non-adaptive algorithm as well. On the other
hand, adaptivity is much more beneficial for the maximum
cut objective in such networks, since the feedback of whether
such high degree nodes have already been cut by some of their
neighbors helps making future selections more efficient.

Furthermore, if our goal is to reach a specific level of ob-
jective value using as few nodes as possible, then our gains
due to adaptivity can be even more substantial in terms of the
number of required nodes. For example, as shown in Fig-
ure 3(a), if we want to attain a maximum cut objective value
of 1900 for the FACEBOOK network, a budget k of about 13
nodes is enough for adaptive random greedy, while a bud-
get of almost 30 nodes is required for non-adaptive random
greedy.

For the other two plots of Figure 3 we fix k = 20. In

plot (b) we show the improvement on FACEBOOK for vary-
ing edge probabilities p of the independent cascade model. At
the extreme values of p, adaptivity provides no benefit, since
the network is either disconnected (p = 0), or fully connected
(p = 1). In plot (c) we show the improvement on TWITTER
for varying cut distributions. The parameter β quantifies the
probability of a node being cut when it is selected. A value of
β = 0 corresponds to the setting we used in Figure 2, where
the cutting probability is uniformly distributed among the se-
lected node and each of its neighbors; β = 1 corresponds to
deterministically cutting the selected node. We can see that,
as the cutting distribution gets close to deterministic (β → 1),
the benefit of adaptivity diminishes.

Finally, we would like to comment on the behavior of the
simple adaptive greedy algorithm with the additional modifi-
cation to stop when the largest marginal gain becomes nega-
tive. In particular, for the specific objectives considered here,
we have observed that its performance is very close to that
of adaptive random greedy. This is presumably because both
these objectives are approximately monotone for small values
of k, and also fairly benign in the sense that they do not create
traps that would severely diminish the performance of adap-
tive greedy. Intuitively, choosing one element cannot reduce
the marginal gain of many other elements by a lot. How-
ever, even in the non-adaptive setting it is easy to come up
with much harder non-monotone objectives for which simple
greedy exhibits arbitrarily bad performance. The takeaway is
that adaptive random greedy is comparable to adaptive greedy
for the easier objectives that we have used here, while it also
provides performance guarantees for the harder ones, a be-
havior that is completely analogous to how greedy vs. ran-
dom greedy work in the non-adaptive setting.
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ative improvement of adaptive random greedy over its non-
adaptive counterpart in terms of expected utility for influ-
ence maximization (top) and maximum cut (bottom); each
plot shows the improvement for varying values of the cardi-
nality constraint k. For the influence maximization objective,
the influence propagation probability of each edge is chosen
to be p = 0.1, and for the maximum cut objective, select-
ing a node cuts that node or one of its neighbors with equal
probability.

We can see that adaptivity is beneficial in general, while
the improvement it provides varies substantially depending
on the properties of each network. As an example, for net-
works containing a few nodes of very high degree, like the
Google+ network in plots (b) and (e), adaptivity provides lit-
tle benefit for influence maximization, since these nodes are
the main source of influence, hence are almost always se-
lected by the non-adaptive algorithm as well. On the other
hand, adaptivity is much more beneficial for the maximum
cut objective in such networks, since the feedback of whether
such high degree nodes have already been cut by some of their
neighbors helps making future selections more efficient.

Furthermore, if our goal is to reach a specific level of ob-
jective value using as few nodes as possible, then our gains
due to adaptivity can be even more substantial in terms of the
number of required nodes. For example, as shown in Fig-
ure 3(a), if we want to attain a maximum cut objective value
of 1900 for the FACEBOOK network, a budget k of about 13
nodes is enough for adaptive random greedy, while a bud-
get of almost 30 nodes is required for non-adaptive random
greedy.

For the other two plots of Figure 3 we fix k = 20. In

plot (b) we show the improvement on FACEBOOK for vary-
ing edge probabilities p of the independent cascade model. At
the extreme values of p, adaptivity provides no benefit, since
the network is either disconnected (p = 0), or fully connected
(p = 1). In plot (c) we show the improvement on TWITTER
for varying cut distributions. The parameter β quantifies the
probability of a node being cut when it is selected. A value of
β = 0 corresponds to the setting we used in Figure 2, where
the cutting probability is uniformly distributed among the se-
lected node and each of its neighbors; β = 1 corresponds to
deterministically cutting the selected node. We can see that,
as the cutting distribution gets close to deterministic (β → 1),
the benefit of adaptivity diminishes.

Finally, we would like to comment on the behavior of the
simple adaptive greedy algorithm with the additional modifi-
cation to stop when the largest marginal gain becomes nega-
tive. In particular, for the specific objectives considered here,
we have observed that its performance is very close to that
of adaptive random greedy. This is presumably because both
these objectives are approximately monotone for small values
of k, and also fairly benign in the sense that they do not create
traps that would severely diminish the performance of adap-
tive greedy. Intuitively, choosing one element cannot reduce
the marginal gain of many other elements by a lot. How-
ever, even in the non-adaptive setting it is easy to come up
with much harder non-monotone objectives for which simple
greedy exhibits arbitrarily bad performance. The takeaway is
that adaptive random greedy is comparable to adaptive greedy
for the easier objectives that we have used here, while it also
provides performance guarantees for the harder ones, a be-
havior that is completely analogous to how greedy vs. ran-
dom greedy work in the non-adaptive setting.
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We can see that adaptivity is beneficial in general, while
the improvement it provides varies substantially depending
on the properties of each network. As an example, for net-
works containing a few nodes of very high degree, like the
Google+ network in plots (b) and (e), adaptivity provides lit-
tle benefit for influence maximization, since these nodes are
the main source of influence, hence are almost always se-
lected by the non-adaptive algorithm as well. On the other
hand, adaptivity is much more beneficial for the maximum
cut objective in such networks, since the feedback of whether
such high degree nodes have already been cut by some of their
neighbors helps making future selections more efficient.

Furthermore, if our goal is to reach a specific level of ob-
jective value using as few nodes as possible, then our gains
due to adaptivity can be even more substantial in terms of the
number of required nodes. For example, as shown in Fig-
ure 3(a), if we want to attain a maximum cut objective value
of 1900 for the FACEBOOK network, a budget k of about 13
nodes is enough for adaptive random greedy, while a bud-
get of almost 30 nodes is required for non-adaptive random
greedy.

For the other two plots of Figure 3 we fix k = 20. In

plot (b) we show the improvement on FACEBOOK for vary-
ing edge probabilities p of the independent cascade model. At
the extreme values of p, adaptivity provides no benefit, since
the network is either disconnected (p = 0), or fully connected
(p = 1). In plot (c) we show the improvement on TWITTER
for varying cut distributions. The parameter β quantifies the
probability of a node being cut when it is selected. A value of
β = 0 corresponds to the setting we used in Figure 2, where
the cutting probability is uniformly distributed among the se-
lected node and each of its neighbors; β = 1 corresponds to
deterministically cutting the selected node. We can see that,
as the cutting distribution gets close to deterministic (β → 1),
the benefit of adaptivity diminishes.

Finally, we would like to comment on the behavior of the
simple adaptive greedy algorithm with the additional modifi-
cation to stop when the largest marginal gain becomes nega-
tive. In particular, for the specific objectives considered here,
we have observed that its performance is very close to that
of adaptive random greedy. This is presumably because both
these objectives are approximately monotone for small values
of k, and also fairly benign in the sense that they do not create
traps that would severely diminish the performance of adap-
tive greedy. Intuitively, choosing one element cannot reduce
the marginal gain of many other elements by a lot. How-
ever, even in the non-adaptive setting it is easy to come up
with much harder non-monotone objectives for which simple
greedy exhibits arbitrarily bad performance. The takeaway is
that adaptive random greedy is comparable to adaptive greedy
for the easier objectives that we have used here, while it also
provides performance guarantees for the harder ones, a be-
havior that is completely analogous to how greedy vs. ran-
dom greedy work in the non-adaptive setting.
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Figure 2: Improvement in expected utiliy of using adaptive compared to non-adaptive random greedy for varying node budget
k. (a)–(c) influence maximization; (d)–(f) maximum cut.

[McAuley and Leskovec, 2012]. Figure 2 shows the % rel-
ative improvement of adaptive random greedy over its non-
adaptive counterpart in terms of expected utility for influ-
ence maximization (top) and maximum cut (bottom); each
plot shows the improvement for varying values of the cardi-
nality constraint k. For the influence maximization objective,
the influence propagation probability of each edge is chosen
to be p = 0.1, and for the maximum cut objective, select-
ing a node cuts that node or one of its neighbors with equal
probability.

We can see that adaptivity is beneficial in general, while
the improvement it provides varies substantially depending
on the properties of each network. As an example, for net-
works containing a few nodes of very high degree, like the
Google+ network in plots (b) and (e), adaptivity provides lit-
tle benefit for influence maximization, since these nodes are
the main source of influence, hence are almost always se-
lected by the non-adaptive algorithm as well. On the other
hand, adaptivity is much more beneficial for the maximum
cut objective in such networks, since the feedback of whether
such high degree nodes have already been cut by some of their
neighbors helps making future selections more efficient.

Furthermore, if our goal is to reach a specific level of ob-
jective value using as few nodes as possible, then our gains
due to adaptivity can be even more substantial in terms of the
number of required nodes. For example, as shown in Fig-
ure 3(a), if we want to attain a maximum cut objective value
of 1900 for the FACEBOOK network, a budget k of about 13
nodes is enough for adaptive random greedy, while a bud-
get of almost 30 nodes is required for non-adaptive random
greedy.

For the other two plots of Figure 3 we fix k = 20. In

plot (b) we show the improvement on FACEBOOK for vary-
ing edge probabilities p of the independent cascade model. At
the extreme values of p, adaptivity provides no benefit, since
the network is either disconnected (p = 0), or fully connected
(p = 1). In plot (c) we show the improvement on TWITTER
for varying cut distributions. The parameter β quantifies the
probability of a node being cut when it is selected. A value of
β = 0 corresponds to the setting we used in Figure 2, where
the cutting probability is uniformly distributed among the se-
lected node and each of its neighbors; β = 1 corresponds to
deterministically cutting the selected node. We can see that,
as the cutting distribution gets close to deterministic (β → 1),
the benefit of adaptivity diminishes.

Finally, we would like to comment on the behavior of the
simple adaptive greedy algorithm with the additional modifi-
cation to stop when the largest marginal gain becomes nega-
tive. In particular, for the specific objectives considered here,
we have observed that its performance is very close to that
of adaptive random greedy. This is presumably because both
these objectives are approximately monotone for small values
of k, and also fairly benign in the sense that they do not create
traps that would severely diminish the performance of adap-
tive greedy. Intuitively, choosing one element cannot reduce
the marginal gain of many other elements by a lot. How-
ever, even in the non-adaptive setting it is easy to come up
with much harder non-monotone objectives for which simple
greedy exhibits arbitrarily bad performance. The takeaway is
that adaptive random greedy is comparable to adaptive greedy
for the easier objectives that we have used here, while it also
provides performance guarantees for the harder ones, a be-
havior that is completely analogous to how greedy vs. ran-
dom greedy work in the non-adaptive setting.
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Figure 3: (a) The budget k required by adaptive random greedy to reach a certain objective value (here 1900) is considerably
smaller compared to its non-adaptive counterpart; (b) Improvement vs. independent cascade edge probability p; (c) improve-
ment vs. cut distribution parameter β.

6 Related Work
Compared to monotone submodular maximization, for which
the (1 − 1/e)-approximation of the greedy algorithm was
shown by Nemhauser et al. [1978], constant-factor approx-
imations for non-monotone submodular functions have been
much more recent, for both the unconstrained case [Feige et
al., 2007], as well as under matroid and knapsack constraints
[Lee et al., 2009; Chekuri et al., 2011]. Even more recently,
Buchbinder et al. [2014] introduced the random greedy al-
gorithm for maximizing non-monotone submodular functions
under a cardinality constraint, from which we drew inspira-
tion for our proposed adaptive random greedy policy.

The concepts of adaptive monotonicity and adaptive sub-
modularity were introduced by Golovin and Krause [2011],
who also showed that the greedy policy provides a (1−1/e)-
approximation under these assumptions. Example applica-
tion domains, apart from those we present in this paper, in-
clude active learning [Chen et al., 2014; Chen et al., 2015],
interactive set coverage [Guillory and Bilmes, 2010], and in-
centive mechanism design [Singla and Krause, 2013].

The problem of influence maximization was originally
proposed by Kempe et al. [2003] and was extended to the
adaptive setting by Golovin and Krause [2011]. Various
techniques have been proposed to make the computation of
marginal gains feasible for large-scale networks using, for
instance, more efficient sampling methods [Ohsaka et al.,
2014], and sketching-based approximations [Cohen et al.,
2014]. In this paper we chose to run experiments on smaller-
scale networks, but these techniques could be applied to scale
up adaptive random greedy as well. He and Kempe [2014] re-

cently considered the problem of assessing the robustness of
influence maximization algorithms under network parameter
misspecification, which interestingly leads to maximizing a
non-monotone submodular objective.

Maximum graph cut has been a much-studied NP-complete
problem with constant-factor SDP-based approximation algo-
rithms for both the unconstrained [Goemans and Williamson,
1995] and cardinality-constrained [Feige and Langberg,
2001] cases. An interesting application of maximum cut ob-
jectives has been proposed by Lin and Bilmes [2010] and Lin
and Bilmes [2011] for text summarization.

7 Conclusion
We proposed the adaptive random greedy policy for adap-
tive submodular maximization, the first policy with prov-
able approximation guarantees for non-monotone objectives.
We also presented two simple ways of constructing non-
monotone objectives in practice, and observed the advantage
of adaptivity by evaluating our policy on two network-related
functions obtained this way. We believe that our work is a
step towards understanding the class of functions amenable
to adaptive optimization, and hope that it will encourage
the broader use of non-monotone objectives in modeling and
solving practical AI problems.
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Improvement can be even more pro-
nounced when focusing on “coverage”.


